" 'filename' is a disk image filename\n"
" 'fmt' is the disk image format. It is guessed automatically in most cases\n"
" 'cache' is the cache mode used to write the output disk image, the valid\n"
- " options are: 'none', 'writeback' (default), 'writethrough', 'directsync'\n"
- " and 'unsafe'\n"
+ " options are: 'none', 'writeback' (default, except for convert), 'writethrough',\n"
+ " 'directsync' and 'unsafe' (default for convert)\n"
" 'size' is the disk image size in bytes. Optional suffixes\n"
" 'k' or 'K' (kilobyte, 1024), 'M' (megabyte, 1024k), 'G' (gigabyte, 1024M)\n"
" and T (terabyte, 1024G) are supported. 'b' is ignored.\n"
" rebasing in this case (useful for renaming the backing file)\n"
" '-h' with or without a command shows this help and lists the supported formats\n"
" '-p' show progress of command (only certain commands)\n"
+ " '-S' indicates the consecutive number of bytes that must contain only zeros\n"
+ " for qemu-img to create a sparse image during conversion\n"
+ "\n"
+ "Parameters to check subcommand:\n"
+ " '-r' tries to repair any inconsistencies that are found during the check.\n"
+ " '-r leaks' repairs only cluster leaks, whereas '-r all' fixes all\n"
+ " kinds of errors, with a higher risk of choosing the wrong fix or\n"
+ " hiding corruption that has already occured.\n"
"\n"
"Parameters to snapshot subcommand:\n"
" 'snapshot' is the name of the snapshot to create, apply or delete\n"
/* Get image size, if specified */
if (optind < argc) {
int64_t sval;
- sval = strtosz_suffix(argv[optind++], NULL, STRTOSZ_DEFSUFFIX_B);
- if (sval < 0) {
+ char *end;
+ sval = strtosz_suffix(argv[optind++], &end, STRTOSZ_DEFSUFFIX_B);
+ if (sval < 0 || *end) {
error_report("Invalid image size specified! You may use k, M, G or "
"T suffixes for ");
error_report("kilobytes, megabytes, gigabytes and terabytes.");
const char *filename, *fmt;
BlockDriverState *bs;
BdrvCheckResult result;
+ int fix = 0;
+ int flags = BDRV_O_FLAGS;
fmt = NULL;
for(;;) {
- c = getopt(argc, argv, "f:h");
+ c = getopt(argc, argv, "f:hr:");
if (c == -1) {
break;
}
case 'f':
fmt = optarg;
break;
+ case 'r':
+ flags |= BDRV_O_RDWR;
+
+ if (!strcmp(optarg, "leaks")) {
+ fix = BDRV_FIX_LEAKS;
+ } else if (!strcmp(optarg, "all")) {
+ fix = BDRV_FIX_LEAKS | BDRV_FIX_ERRORS;
+ } else {
+ help();
+ }
+ break;
}
}
if (optind >= argc) {
}
filename = argv[optind++];
- bs = bdrv_new_open(filename, fmt, BDRV_O_FLAGS);
+ bs = bdrv_new_open(filename, fmt, flags);
if (!bs) {
return 1;
}
- ret = bdrv_check(bs, &result);
+ ret = bdrv_check(bs, &result, fix);
if (ret == -ENOTSUP) {
error_report("This image format does not support checks");
return 1;
}
+ if (result.corruptions_fixed || result.leaks_fixed) {
+ printf("The following inconsistencies were found and repaired:\n\n"
+ " %d leaked clusters\n"
+ " %d corruptions\n\n"
+ "Double checking the fixed image now...\n",
+ result.leaks_fixed,
+ result.corruptions_fixed);
+ ret = bdrv_check(bs, &result, 0);
+ }
+
if (!(result.corruptions || result.leaks || result.check_errors)) {
printf("No errors were found on the image.\n");
} else {
}
}
+ if (result.bfi.total_clusters != 0 && result.bfi.allocated_clusters != 0) {
+ printf("%" PRId64 "/%" PRId64 "= %0.2f%% allocated, %0.2f%% fragmented\n",
+ result.bfi.allocated_clusters, result.bfi.total_clusters,
+ result.bfi.allocated_clusters * 100.0 / result.bfi.total_clusters,
+ result.bfi.fragmented_clusters * 100.0 / result.bfi.allocated_clusters);
+ }
+
bdrv_delete(bs);
if (ret < 0 || result.check_errors) {
return 0;
}
-/*
- * Checks whether the sector is not a zero sector.
- *
- * Attention! The len must be a multiple of 4 * sizeof(long) due to
- * restriction of optimizations in this function.
- */
-static int is_not_zero(const uint8_t *sector, int len)
-{
- /*
- * Use long as the biggest available internal data type that fits into the
- * CPU register and unroll the loop to smooth out the effect of memory
- * latency.
- */
-
- int i;
- long d0, d1, d2, d3;
- const long * const data = (const long *) sector;
-
- len /= sizeof(long);
-
- for(i = 0; i < len; i += 4) {
- d0 = data[i + 0];
- d1 = data[i + 1];
- d2 = data[i + 2];
- d3 = data[i + 3];
-
- if (d0 || d1 || d2 || d3) {
- return 1;
- }
- }
-
- return 0;
-}
-
/*
* Returns true iff the first sector pointed to by 'buf' contains at least
* a non-NUL byte.
*/
static int is_allocated_sectors(const uint8_t *buf, int n, int *pnum)
{
- int v, i;
+ bool is_zero;
+ int i;
if (n <= 0) {
*pnum = 0;
return 0;
}
- v = is_not_zero(buf, 512);
+ is_zero = buffer_is_zero(buf, 512);
for(i = 1; i < n; i++) {
buf += 512;
- if (v != is_not_zero(buf, 512))
+ if (is_zero != buffer_is_zero(buf, 512)) {
break;
+ }
}
*pnum = i;
- return v;
+ return !is_zero;
+}
+
+/*
+ * Like is_allocated_sectors, but if the buffer starts with a used sector,
+ * up to 'min' consecutive sectors containing zeros are ignored. This avoids
+ * breaking up write requests for only small sparse areas.
+ */
+static int is_allocated_sectors_min(const uint8_t *buf, int n, int *pnum,
+ int min)
+{
+ int ret;
+ int num_checked, num_used;
+
+ if (n < min) {
+ min = n;
+ }
+
+ ret = is_allocated_sectors(buf, n, pnum);
+ if (!ret) {
+ return ret;
+ }
+
+ num_used = *pnum;
+ buf += BDRV_SECTOR_SIZE * *pnum;
+ n -= *pnum;
+ num_checked = num_used;
+
+ while (n > 0) {
+ ret = is_allocated_sectors(buf, n, pnum);
+
+ buf += BDRV_SECTOR_SIZE * *pnum;
+ n -= *pnum;
+ num_checked += *pnum;
+ if (ret) {
+ num_used = num_checked;
+ } else if (*pnum >= min) {
+ break;
+ }
+ }
+
+ *pnum = num_used;
+ return 1;
}
/*
char *options = NULL;
const char *snapshot_name = NULL;
float local_progress;
+ int min_sparse = 8; /* Need at least 4k of zeros for sparse detection */
fmt = NULL;
out_fmt = "raw";
out_baseimg = NULL;
compress = 0;
for(;;) {
- c = getopt(argc, argv, "f:O:B:s:hce6o:pt:");
+ c = getopt(argc, argv, "f:O:B:s:hce6o:pS:t:");
if (c == -1) {
break;
}
case 's':
snapshot_name = optarg;
break;
+ case 'S':
+ {
+ int64_t sval;
+ char *end;
+ sval = strtosz_suffix(optarg, &end, STRTOSZ_DEFSUFFIX_B);
+ if (sval < 0 || *end) {
+ error_report("Invalid minimum zero buffer size for sparse output specified");
+ return 1;
+ }
+
+ min_sparse = sval / BDRV_SECTOR_SIZE;
+ break;
+ }
case 'p':
progress = 1;
break;
out_filename = argv[argc - 1];
+ /* Initialize before goto out */
+ qemu_progress_init(progress, 2.0);
+
if (options && !strcmp(options, "?")) {
ret = print_block_option_help(out_filename, out_fmt);
goto out;
ret = -1;
goto out;
}
-
- qemu_progress_init(progress, 2.0);
+
qemu_progress_print(0, 100);
bs = g_malloc0(bs_n * sizeof(BlockDriverState *));
if (compress) {
QEMUOptionParameter *encryption =
get_option_parameter(param, BLOCK_OPT_ENCRYPT);
+ QEMUOptionParameter *preallocation =
+ get_option_parameter(param, BLOCK_OPT_PREALLOC);
if (!drv->bdrv_write_compressed) {
error_report("Compression not supported for this file format");
ret = -1;
goto out;
}
+
+ if (preallocation && preallocation->value.s
+ && strcmp(preallocation->value.s, "off"))
+ {
+ error_report("Compression and preallocation not supported at "
+ "the same time");
+ ret = -1;
+ goto out;
+ }
}
/* Create the new image */
ret = bdrv_read(bs[bs_i], bs_num, buf2, nlow);
if (ret < 0) {
- error_report("error while reading");
+ error_report("error while reading sector %" PRId64 ": %s",
+ bs_num, strerror(-ret));
goto out;
}
if (n < cluster_sectors) {
memset(buf + n * 512, 0, cluster_size - n * 512);
}
- if (is_not_zero(buf, cluster_size)) {
+ if (!buffer_is_zero(buf, cluster_size)) {
ret = bdrv_write_compressed(out_bs, sector_num, buf,
cluster_sectors);
if (ret != 0) {
- error_report("error while compressing sector %" PRId64,
- sector_num);
+ error_report("error while compressing sector %" PRId64
+ ": %s", sector_num, strerror(-ret));
goto out;
}
}
ret = bdrv_read(bs[bs_i], sector_num - bs_offset, buf, n);
if (ret < 0) {
- error_report("error while reading");
+ error_report("error while reading sector %" PRId64 ": %s",
+ sector_num - bs_offset, strerror(-ret));
goto out;
}
/* NOTE: at the same time we convert, we do not write zero
sectors that are entirely 0, since whatever data was
already there is garbage, not 0s. */
if (!has_zero_init || out_baseimg ||
- is_allocated_sectors(buf1, n, &n1)) {
+ is_allocated_sectors_min(buf1, n, &n1, min_sparse)) {
ret = bdrv_write(out_bs, sector_num, buf1, n1);
if (ret < 0) {
- error_report("error while writing");
+ error_report("error while writing sector %" PRId64
+ ": %s", sector_num, strerror(-ret));
goto out;
}
}
int c;
const char *filename, *fmt;
BlockDriverState *bs;
- char fmt_name[128], size_buf[128], dsize_buf[128];
+ char size_buf[128], dsize_buf[128];
uint64_t total_sectors;
int64_t allocated_size;
char backing_filename[1024];
if (!bs) {
return 1;
}
- bdrv_get_format(bs, fmt_name, sizeof(fmt_name));
bdrv_get_geometry(bs, &total_sectors);
get_human_readable_size(size_buf, sizeof(size_buf), total_sectors * 512);
allocated_size = bdrv_get_allocated_file_size(bs);
"file format: %s\n"
"virtual size: %s (%" PRId64 " bytes)\n"
"disk size: %s\n",
- filename, fmt_name, size_buf,
+ filename, bdrv_get_format_name(bs), size_buf,
(total_sectors * 512),
dsize_buf);
if (bdrv_is_encrypted(bs)) {
if (bdi.cluster_size != 0) {
printf("cluster_size: %d\n", bdi.cluster_size);
}
+ if (bdi.is_dirty) {
+ printf("cleanly shut down: no\n");
+ }
}
bdrv_get_backing_filename(bs, backing_filename, sizeof(backing_filename));
if (backing_filename[0] != '\0') {
- path_combine(backing_filename2, sizeof(backing_filename2),
- filename, backing_filename);
- printf("backing file: %s (actual path: %s)\n",
- backing_filename,
- backing_filename2);
+ bdrv_get_full_backing_filename(bs, backing_filename2,
+ sizeof(backing_filename2));
+ printf("backing file: %s", backing_filename);
+ if (strcmp(backing_filename, backing_filename2) != 0) {
+ printf(" (actual path: %s)", backing_filename2);
+ }
+ putchar('\n');
}
dump_snapshots(bs);
bdrv_delete(bs);
*/
if (!unsafe) {
uint64_t num_sectors;
+ uint64_t old_backing_num_sectors;
+ uint64_t new_backing_num_sectors;
uint64_t sector;
int n;
uint8_t * buf_old;
buf_new = qemu_blockalign(bs, IO_BUF_SIZE);
bdrv_get_geometry(bs, &num_sectors);
+ bdrv_get_geometry(bs_old_backing, &old_backing_num_sectors);
+ bdrv_get_geometry(bs_new_backing, &new_backing_num_sectors);
local_progress = (float)100 /
(num_sectors / MIN(num_sectors, IO_BUF_SIZE / 512));
continue;
}
- /* Read old and new backing file */
- ret = bdrv_read(bs_old_backing, sector, buf_old, n);
- if (ret < 0) {
- error_report("error while reading from old backing file");
- goto out;
+ /*
+ * Read old and new backing file and take into consideration that
+ * backing files may be smaller than the COW image.
+ */
+ if (sector >= old_backing_num_sectors) {
+ memset(buf_old, 0, n * BDRV_SECTOR_SIZE);
+ } else {
+ if (sector + n > old_backing_num_sectors) {
+ n = old_backing_num_sectors - sector;
+ }
+
+ ret = bdrv_read(bs_old_backing, sector, buf_old, n);
+ if (ret < 0) {
+ error_report("error while reading from old backing file");
+ goto out;
+ }
}
- ret = bdrv_read(bs_new_backing, sector, buf_new, n);
- if (ret < 0) {
- error_report("error while reading from new backing file");
- goto out;
+
+ if (sector >= new_backing_num_sectors) {
+ memset(buf_new, 0, n * BDRV_SECTOR_SIZE);
+ } else {
+ if (sector + n > new_backing_num_sectors) {
+ n = new_backing_num_sectors - sector;
+ }
+
+ ret = bdrv_read(bs_new_backing, sector, buf_new, n);
+ if (ret < 0) {
+ error_report("error while reading from new backing file");
+ goto out;
+ }
}
/* If they differ, we need to write to the COW file */
printf("Image resized.\n");
break;
case -ENOTSUP:
- error_report("This image format does not support resize");
+ error_report("This image does not support resize");
break;
case -EACCES:
error_report("Image is read-only");
cmdname = argv[1];
argc--; argv++;
+ qemu_init_main_loop();
+
/* find the command */
for(cmd = img_cmds; cmd->name != NULL; cmd++) {
if (!strcmp(cmdname, cmd->name)) {