* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
-#ifdef _WIN32
-#include <windows.h>
-#else
+#ifndef _WIN32
#include <sys/types.h>
#include <sys/mman.h>
#endif
#include "hw/xen/xen.h"
#include "qemu/timer.h"
#include "qemu/config-file.h"
+#include "qemu/error-report.h"
#include "exec/memory.h"
#include "sysemu/dma.h"
#include "exec/address-spaces.h"
#include "translate-all.h"
#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
+#include "qemu/cache-utils.h"
+
+#include "qemu/range.h"
//#define DEBUG_SUBPAGE
#if !defined(CONFIG_USER_ONLY)
-static int in_migration;
+static bool in_migration;
RAMList ram_list = { .blocks = QTAILQ_HEAD_INITIALIZER(ram_list.blocks) };
#endif
-CPUState *first_cpu;
+struct CPUTailQ cpus = QTAILQ_HEAD_INITIALIZER(cpus);
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
DEFINE_TLS(CPUState *, current_cpu);
typedef struct PhysPageEntry PhysPageEntry;
struct PhysPageEntry {
- uint16_t is_leaf : 1;
- /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
- uint16_t ptr : 15;
+ /* How many bits skip to next level (in units of L2_SIZE). 0 for a leaf. */
+ uint32_t skip : 6;
+ /* index into phys_sections (!skip) or phys_map_nodes (skip) */
+ uint32_t ptr : 26;
};
-typedef PhysPageEntry Node[L2_SIZE];
+#define PHYS_MAP_NODE_NIL (((uint32_t)~0) >> 6)
+
+/* Size of the L2 (and L3, etc) page tables. */
+#define ADDR_SPACE_BITS 64
+
+#define P_L2_BITS 9
+#define P_L2_SIZE (1 << P_L2_BITS)
+
+#define P_L2_LEVELS (((ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / P_L2_BITS) + 1)
+
+typedef PhysPageEntry Node[P_L2_SIZE];
+
+typedef struct PhysPageMap {
+ unsigned sections_nb;
+ unsigned sections_nb_alloc;
+ unsigned nodes_nb;
+ unsigned nodes_nb_alloc;
+ Node *nodes;
+ MemoryRegionSection *sections;
+} PhysPageMap;
struct AddressSpaceDispatch {
/* This is a multi-level map on the physical address space.
* The bottom level has pointers to MemoryRegionSections.
*/
PhysPageEntry phys_map;
- Node *nodes;
- MemoryRegionSection *sections;
+ PhysPageMap map;
AddressSpace *as;
};
#define PHYS_SECTION_ROM 2
#define PHYS_SECTION_WATCH 3
-typedef struct PhysPageMap {
- unsigned sections_nb;
- unsigned sections_nb_alloc;
- unsigned nodes_nb;
- unsigned nodes_nb_alloc;
- Node *nodes;
- MemoryRegionSection *sections;
-} PhysPageMap;
-
-static PhysPageMap *prev_map;
-static PhysPageMap next_map;
-
-#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
-
static void io_mem_init(void);
static void memory_map_init(void);
-static void *qemu_safe_ram_ptr(ram_addr_t addr);
+static void tcg_commit(MemoryListener *listener);
static MemoryRegion io_mem_watch;
#endif
#if !defined(CONFIG_USER_ONLY)
-static void phys_map_node_reserve(unsigned nodes)
+static void phys_map_node_reserve(PhysPageMap *map, unsigned nodes)
{
- if (next_map.nodes_nb + nodes > next_map.nodes_nb_alloc) {
- next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc * 2,
- 16);
- next_map.nodes_nb_alloc = MAX(next_map.nodes_nb_alloc,
- next_map.nodes_nb + nodes);
- next_map.nodes = g_renew(Node, next_map.nodes,
- next_map.nodes_nb_alloc);
+ if (map->nodes_nb + nodes > map->nodes_nb_alloc) {
+ map->nodes_nb_alloc = MAX(map->nodes_nb_alloc * 2, 16);
+ map->nodes_nb_alloc = MAX(map->nodes_nb_alloc, map->nodes_nb + nodes);
+ map->nodes = g_renew(Node, map->nodes, map->nodes_nb_alloc);
}
}
-static uint16_t phys_map_node_alloc(void)
+static uint32_t phys_map_node_alloc(PhysPageMap *map)
{
unsigned i;
- uint16_t ret;
+ uint32_t ret;
- ret = next_map.nodes_nb++;
+ ret = map->nodes_nb++;
assert(ret != PHYS_MAP_NODE_NIL);
- assert(ret != next_map.nodes_nb_alloc);
- for (i = 0; i < L2_SIZE; ++i) {
- next_map.nodes[ret][i].is_leaf = 0;
- next_map.nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
+ assert(ret != map->nodes_nb_alloc);
+ for (i = 0; i < P_L2_SIZE; ++i) {
+ map->nodes[ret][i].skip = 1;
+ map->nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
}
return ret;
}
-static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
- hwaddr *nb, uint16_t leaf,
+static void phys_page_set_level(PhysPageMap *map, PhysPageEntry *lp,
+ hwaddr *index, hwaddr *nb, uint16_t leaf,
int level)
{
PhysPageEntry *p;
int i;
- hwaddr step = (hwaddr)1 << (level * L2_BITS);
+ hwaddr step = (hwaddr)1 << (level * P_L2_BITS);
- if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
- lp->ptr = phys_map_node_alloc();
- p = next_map.nodes[lp->ptr];
+ if (lp->skip && lp->ptr == PHYS_MAP_NODE_NIL) {
+ lp->ptr = phys_map_node_alloc(map);
+ p = map->nodes[lp->ptr];
if (level == 0) {
- for (i = 0; i < L2_SIZE; i++) {
- p[i].is_leaf = 1;
+ for (i = 0; i < P_L2_SIZE; i++) {
+ p[i].skip = 0;
p[i].ptr = PHYS_SECTION_UNASSIGNED;
}
}
} else {
- p = next_map.nodes[lp->ptr];
+ p = map->nodes[lp->ptr];
}
- lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
+ lp = &p[(*index >> (level * P_L2_BITS)) & (P_L2_SIZE - 1)];
- while (*nb && lp < &p[L2_SIZE]) {
+ while (*nb && lp < &p[P_L2_SIZE]) {
if ((*index & (step - 1)) == 0 && *nb >= step) {
- lp->is_leaf = true;
+ lp->skip = 0;
lp->ptr = leaf;
*index += step;
*nb -= step;
} else {
- phys_page_set_level(lp, index, nb, leaf, level - 1);
+ phys_page_set_level(map, lp, index, nb, leaf, level - 1);
}
++lp;
}
uint16_t leaf)
{
/* Wildly overreserve - it doesn't matter much. */
- phys_map_node_reserve(3 * P_L2_LEVELS);
+ phys_map_node_reserve(&d->map, 3 * P_L2_LEVELS);
+
+ phys_page_set_level(&d->map, &d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
+}
+
+/* Compact a non leaf page entry. Simply detect that the entry has a single child,
+ * and update our entry so we can skip it and go directly to the destination.
+ */
+static void phys_page_compact(PhysPageEntry *lp, Node *nodes, unsigned long *compacted)
+{
+ unsigned valid_ptr = P_L2_SIZE;
+ int valid = 0;
+ PhysPageEntry *p;
+ int i;
+
+ if (lp->ptr == PHYS_MAP_NODE_NIL) {
+ return;
+ }
+
+ p = nodes[lp->ptr];
+ for (i = 0; i < P_L2_SIZE; i++) {
+ if (p[i].ptr == PHYS_MAP_NODE_NIL) {
+ continue;
+ }
- phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
+ valid_ptr = i;
+ valid++;
+ if (p[i].skip) {
+ phys_page_compact(&p[i], nodes, compacted);
+ }
+ }
+
+ /* We can only compress if there's only one child. */
+ if (valid != 1) {
+ return;
+ }
+
+ assert(valid_ptr < P_L2_SIZE);
+
+ /* Don't compress if it won't fit in the # of bits we have. */
+ if (lp->skip + p[valid_ptr].skip >= (1 << 3)) {
+ return;
+ }
+
+ lp->ptr = p[valid_ptr].ptr;
+ if (!p[valid_ptr].skip) {
+ /* If our only child is a leaf, make this a leaf. */
+ /* By design, we should have made this node a leaf to begin with so we
+ * should never reach here.
+ * But since it's so simple to handle this, let's do it just in case we
+ * change this rule.
+ */
+ lp->skip = 0;
+ } else {
+ lp->skip += p[valid_ptr].skip;
+ }
+}
+
+static void phys_page_compact_all(AddressSpaceDispatch *d, int nodes_nb)
+{
+ DECLARE_BITMAP(compacted, nodes_nb);
+
+ if (d->phys_map.skip) {
+ phys_page_compact(&d->phys_map, d->map.nodes, compacted);
+ }
}
-static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr index,
+static MemoryRegionSection *phys_page_find(PhysPageEntry lp, hwaddr addr,
Node *nodes, MemoryRegionSection *sections)
{
PhysPageEntry *p;
+ hwaddr index = addr >> TARGET_PAGE_BITS;
int i;
- for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
+ for (i = P_L2_LEVELS; lp.skip && (i -= lp.skip) >= 0;) {
if (lp.ptr == PHYS_MAP_NODE_NIL) {
return §ions[PHYS_SECTION_UNASSIGNED];
}
p = nodes[lp.ptr];
- lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
+ lp = p[(index >> (i * P_L2_BITS)) & (P_L2_SIZE - 1)];
+ }
+
+ if (sections[lp.ptr].size.hi ||
+ range_covers_byte(sections[lp.ptr].offset_within_address_space,
+ sections[lp.ptr].size.lo, addr)) {
+ return §ions[lp.ptr];
+ } else {
+ return §ions[PHYS_SECTION_UNASSIGNED];
}
- return §ions[lp.ptr];
}
bool memory_region_is_unassigned(MemoryRegion *mr)
MemoryRegionSection *section;
subpage_t *subpage;
- section = phys_page_find(d->phys_map, addr >> TARGET_PAGE_BITS,
- d->nodes, d->sections);
+ section = phys_page_find(d->phys_map, addr, d->map.nodes, d->map.sections);
if (resolve_subpage && section->mr->subpage) {
subpage = container_of(section->mr, subpage_t, iomem);
- section = &d->sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
+ section = &d->map.sections[subpage->sub_section[SUBPAGE_IDX(addr)]];
}
return section;
}
return section;
}
+static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
+{
+ if (memory_region_is_ram(mr)) {
+ return !(is_write && mr->readonly);
+ }
+ if (memory_region_is_romd(mr)) {
+ return !is_write;
+ }
+
+ return false;
+}
+
MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
hwaddr *xlat, hwaddr *plen,
bool is_write)
as = iotlb.target_as;
}
+ if (xen_enabled() && memory_access_is_direct(mr, is_write)) {
+ hwaddr page = ((addr & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE) - addr;
+ len = MIN(page, len);
+ }
+
*plen = len;
*xlat = addr;
return mr;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
cpu->interrupt_request &= ~0x01;
- tlb_flush(cpu->env_ptr, 1);
+ tlb_flush(cpu, 1);
return 0;
}
.name = "cpu_common",
.version_id = 1,
.minimum_version_id = 1,
- .minimum_version_id_old = 1,
.post_load = cpu_common_post_load,
- .fields = (VMStateField []) {
+ .fields = (VMStateField[]) {
VMSTATE_UINT32(halted, CPUState),
VMSTATE_UINT32(interrupt_request, CPUState),
VMSTATE_END_OF_LIST()
CPUState *qemu_get_cpu(int index)
{
- CPUState *cpu = first_cpu;
+ CPUState *cpu;
- while (cpu) {
+ CPU_FOREACH(cpu) {
if (cpu->cpu_index == index) {
- break;
+ return cpu;
}
- cpu = cpu->next_cpu;
}
- return cpu;
+ return NULL;
}
-void qemu_for_each_cpu(void (*func)(CPUState *cpu, void *data), void *data)
+#if !defined(CONFIG_USER_ONLY)
+void tcg_cpu_address_space_init(CPUState *cpu, AddressSpace *as)
{
- CPUState *cpu;
+ /* We only support one address space per cpu at the moment. */
+ assert(cpu->as == as);
- cpu = first_cpu;
- while (cpu) {
- func(cpu, data);
- cpu = cpu->next_cpu;
+ if (cpu->tcg_as_listener) {
+ memory_listener_unregister(cpu->tcg_as_listener);
+ } else {
+ cpu->tcg_as_listener = g_new0(MemoryListener, 1);
}
+ cpu->tcg_as_listener->commit = tcg_commit;
+ memory_listener_register(cpu->tcg_as_listener, as);
}
+#endif
void cpu_exec_init(CPUArchState *env)
{
CPUState *cpu = ENV_GET_CPU(env);
CPUClass *cc = CPU_GET_CLASS(cpu);
- CPUState **pcpu;
+ CPUState *some_cpu;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
cpu_list_lock();
#endif
- cpu->next_cpu = NULL;
- pcpu = &first_cpu;
cpu_index = 0;
- while (*pcpu != NULL) {
- pcpu = &(*pcpu)->next_cpu;
+ CPU_FOREACH(some_cpu) {
cpu_index++;
}
cpu->cpu_index = cpu_index;
cpu->numa_node = 0;
- QTAILQ_INIT(&env->breakpoints);
- QTAILQ_INIT(&env->watchpoints);
+ QTAILQ_INIT(&cpu->breakpoints);
+ QTAILQ_INIT(&cpu->watchpoints);
#ifndef CONFIG_USER_ONLY
+ cpu->as = &address_space_memory;
cpu->thread_id = qemu_get_thread_id();
#endif
- *pcpu = cpu;
+ QTAILQ_INSERT_TAIL(&cpus, cpu, node);
#if defined(CONFIG_USER_ONLY)
cpu_list_unlock();
#endif
#else
static void breakpoint_invalidate(CPUState *cpu, target_ulong pc)
{
- tb_invalidate_phys_addr(cpu_get_phys_page_debug(cpu, pc) |
- (pc & ~TARGET_PAGE_MASK));
+ hwaddr phys = cpu_get_phys_page_debug(cpu, pc);
+ if (phys != -1) {
+ tb_invalidate_phys_addr(cpu->as,
+ phys | (pc & ~TARGET_PAGE_MASK));
+ }
}
#endif
#endif /* TARGET_HAS_ICE */
#if defined(CONFIG_USER_ONLY)
-void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
+void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
{
}
-int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
int flags, CPUWatchpoint **watchpoint)
{
return -ENOSYS;
}
#else
/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
int flags, CPUWatchpoint **watchpoint)
{
- target_ulong len_mask = ~(len - 1);
+ vaddr len_mask = ~(len - 1);
CPUWatchpoint *wp;
/* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
if ((len & (len - 1)) || (addr & ~len_mask) ||
len == 0 || len > TARGET_PAGE_SIZE) {
- fprintf(stderr, "qemu: tried to set invalid watchpoint at "
- TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
+ error_report("tried to set invalid watchpoint at %"
+ VADDR_PRIx ", len=%" VADDR_PRIu, addr, len);
return -EINVAL;
}
wp = g_malloc(sizeof(*wp));
wp->flags = flags;
/* keep all GDB-injected watchpoints in front */
- if (flags & BP_GDB)
- QTAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
- else
- QTAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
+ if (flags & BP_GDB) {
+ QTAILQ_INSERT_HEAD(&cpu->watchpoints, wp, entry);
+ } else {
+ QTAILQ_INSERT_TAIL(&cpu->watchpoints, wp, entry);
+ }
- tlb_flush_page(env, addr);
+ tlb_flush_page(cpu, addr);
if (watchpoint)
*watchpoint = wp;
}
/* Remove a specific watchpoint. */
-int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, vaddr len,
int flags)
{
- target_ulong len_mask = ~(len - 1);
+ vaddr len_mask = ~(len - 1);
CPUWatchpoint *wp;
- QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
if (addr == wp->vaddr && len_mask == wp->len_mask
&& flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
- cpu_watchpoint_remove_by_ref(env, wp);
+ cpu_watchpoint_remove_by_ref(cpu, wp);
return 0;
}
}
}
/* Remove a specific watchpoint by reference. */
-void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
+void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint)
{
- QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
+ QTAILQ_REMOVE(&cpu->watchpoints, watchpoint, entry);
- tlb_flush_page(env, watchpoint->vaddr);
+ tlb_flush_page(cpu, watchpoint->vaddr);
g_free(watchpoint);
}
/* Remove all matching watchpoints. */
-void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
+void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
{
CPUWatchpoint *wp, *next;
- QTAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
- if (wp->flags & mask)
- cpu_watchpoint_remove_by_ref(env, wp);
+ QTAILQ_FOREACH_SAFE(wp, &cpu->watchpoints, entry, next) {
+ if (wp->flags & mask) {
+ cpu_watchpoint_remove_by_ref(cpu, wp);
+ }
}
}
#endif
/* Add a breakpoint. */
-int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
+int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
CPUBreakpoint **breakpoint)
{
#if defined(TARGET_HAS_ICE)
/* keep all GDB-injected breakpoints in front */
if (flags & BP_GDB) {
- QTAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
+ QTAILQ_INSERT_HEAD(&cpu->breakpoints, bp, entry);
} else {
- QTAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
+ QTAILQ_INSERT_TAIL(&cpu->breakpoints, bp, entry);
}
- breakpoint_invalidate(ENV_GET_CPU(env), pc);
+ breakpoint_invalidate(cpu, pc);
if (breakpoint) {
*breakpoint = bp;
}
/* Remove a specific breakpoint. */
-int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
+int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
- QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
+ QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
if (bp->pc == pc && bp->flags == flags) {
- cpu_breakpoint_remove_by_ref(env, bp);
+ cpu_breakpoint_remove_by_ref(cpu, bp);
return 0;
}
}
}
/* Remove a specific breakpoint by reference. */
-void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
+void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint)
{
#if defined(TARGET_HAS_ICE)
- QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
+ QTAILQ_REMOVE(&cpu->breakpoints, breakpoint, entry);
- breakpoint_invalidate(ENV_GET_CPU(env), breakpoint->pc);
+ breakpoint_invalidate(cpu, breakpoint->pc);
g_free(breakpoint);
#endif
}
/* Remove all matching breakpoints. */
-void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
+void cpu_breakpoint_remove_all(CPUState *cpu, int mask)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp, *next;
- QTAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
- if (bp->flags & mask)
- cpu_breakpoint_remove_by_ref(env, bp);
+ QTAILQ_FOREACH_SAFE(bp, &cpu->breakpoints, entry, next) {
+ if (bp->flags & mask) {
+ cpu_breakpoint_remove_by_ref(cpu, bp);
+ }
}
#endif
}
#endif
}
-void cpu_abort(CPUArchState *env, const char *fmt, ...)
+void cpu_abort(CPUState *cpu, const char *fmt, ...)
{
- CPUState *cpu = ENV_GET_CPU(env);
va_list ap;
va_list ap2;
abort();
}
-CPUArchState *cpu_copy(CPUArchState *env)
+#if !defined(CONFIG_USER_ONLY)
+static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
{
- CPUArchState *new_env = cpu_init(env->cpu_model_str);
-#if defined(TARGET_HAS_ICE)
- CPUBreakpoint *bp;
- CPUWatchpoint *wp;
-#endif
-
- /* Reset non arch specific state */
- cpu_reset(ENV_GET_CPU(new_env));
-
- /* Copy arch specific state into the new CPU */
- memcpy(new_env, env, sizeof(CPUArchState));
+ RAMBlock *block;
- /* Clone all break/watchpoints.
- Note: Once we support ptrace with hw-debug register access, make sure
- BP_CPU break/watchpoints are handled correctly on clone. */
- QTAILQ_INIT(&env->breakpoints);
- QTAILQ_INIT(&env->watchpoints);
-#if defined(TARGET_HAS_ICE)
- QTAILQ_FOREACH(bp, &env->breakpoints, entry) {
- cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
+ /* The list is protected by the iothread lock here. */
+ block = ram_list.mru_block;
+ if (block && addr - block->offset < block->length) {
+ goto found;
}
- QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
- cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
- wp->flags, NULL);
+ QTAILQ_FOREACH(block, &ram_list.blocks, next) {
+ if (addr - block->offset < block->length) {
+ goto found;
+ }
}
-#endif
- return new_env;
-}
-
-#if !defined(CONFIG_USER_ONLY)
-static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
- uintptr_t length)
-{
- uintptr_t start1;
-
- /* we modify the TLB cache so that the dirty bit will be set again
- when accessing the range */
- start1 = (uintptr_t)qemu_safe_ram_ptr(start);
- /* Check that we don't span multiple blocks - this breaks the
- address comparisons below. */
- if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
- != (end - 1) - start) {
- abort();
- }
- cpu_tlb_reset_dirty_all(start1, length);
+ fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
+ abort();
+found:
+ ram_list.mru_block = block;
+ return block;
}
-/* Note: start and end must be within the same ram block. */
-void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
- int dirty_flags)
+static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t length)
{
- uintptr_t length;
+ ram_addr_t start1;
+ RAMBlock *block;
+ ram_addr_t end;
+ end = TARGET_PAGE_ALIGN(start + length);
start &= TARGET_PAGE_MASK;
- end = TARGET_PAGE_ALIGN(end);
- length = end - start;
+ block = qemu_get_ram_block(start);
+ assert(block == qemu_get_ram_block(end - 1));
+ start1 = (uintptr_t)block->host + (start - block->offset);
+ cpu_tlb_reset_dirty_all(start1, length);
+}
+
+/* Note: start and end must be within the same ram block. */
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
+ unsigned client)
+{
if (length == 0)
return;
- cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
+ cpu_physical_memory_clear_dirty_range(start, length, client);
if (tcg_enabled()) {
- tlb_reset_dirty_range_all(start, end, length);
+ tlb_reset_dirty_range_all(start, length);
}
}
-static int cpu_physical_memory_set_dirty_tracking(int enable)
+static void cpu_physical_memory_set_dirty_tracking(bool enable)
{
- int ret = 0;
in_migration = enable;
- return ret;
}
-hwaddr memory_region_section_get_iotlb(CPUArchState *env,
+hwaddr memory_region_section_get_iotlb(CPUState *cpu,
MemoryRegionSection *section,
target_ulong vaddr,
hwaddr paddr, hwaddr xlat,
iotlb |= PHYS_SECTION_ROM;
}
} else {
- iotlb = section - address_space_memory.dispatch->sections;
+ iotlb = section - section->address_space->dispatch->map.sections;
iotlb += xlat;
}
/* Make accesses to pages with watchpoints go via the
watchpoint trap routines. */
- QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
/* Avoid trapping reads of pages with a write breakpoint. */
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
uint16_t section);
static subpage_t *subpage_init(AddressSpace *as, hwaddr base);
-static uint16_t phys_section_add(MemoryRegionSection *section)
+static void *(*phys_mem_alloc)(size_t size) = qemu_anon_ram_alloc;
+
+/*
+ * Set a custom physical guest memory alloator.
+ * Accelerators with unusual needs may need this. Hopefully, we can
+ * get rid of it eventually.
+ */
+void phys_mem_set_alloc(void *(*alloc)(size_t))
+{
+ phys_mem_alloc = alloc;
+}
+
+static uint16_t phys_section_add(PhysPageMap *map,
+ MemoryRegionSection *section)
{
/* The physical section number is ORed with a page-aligned
* pointer to produce the iotlb entries. Thus it should
* never overflow into the page-aligned value.
*/
- assert(next_map.sections_nb < TARGET_PAGE_SIZE);
+ assert(map->sections_nb < TARGET_PAGE_SIZE);
- if (next_map.sections_nb == next_map.sections_nb_alloc) {
- next_map.sections_nb_alloc = MAX(next_map.sections_nb_alloc * 2,
- 16);
- next_map.sections = g_renew(MemoryRegionSection, next_map.sections,
- next_map.sections_nb_alloc);
+ if (map->sections_nb == map->sections_nb_alloc) {
+ map->sections_nb_alloc = MAX(map->sections_nb_alloc * 2, 16);
+ map->sections = g_renew(MemoryRegionSection, map->sections,
+ map->sections_nb_alloc);
}
- next_map.sections[next_map.sections_nb] = *section;
+ map->sections[map->sections_nb] = *section;
memory_region_ref(section->mr);
- return next_map.sections_nb++;
+ return map->sections_nb++;
}
static void phys_section_destroy(MemoryRegion *mr)
}
g_free(map->sections);
g_free(map->nodes);
- g_free(map);
}
static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
subpage_t *subpage;
hwaddr base = section->offset_within_address_space
& TARGET_PAGE_MASK;
- MemoryRegionSection *existing = phys_page_find(d->phys_map, base >> TARGET_PAGE_BITS,
- next_map.nodes, next_map.sections);
+ MemoryRegionSection *existing = phys_page_find(d->phys_map, base,
+ d->map.nodes, d->map.sections);
MemoryRegionSection subsection = {
.offset_within_address_space = base,
.size = int128_make64(TARGET_PAGE_SIZE),
if (!(existing->mr->subpage)) {
subpage = subpage_init(d->as, base);
+ subsection.address_space = d->as;
subsection.mr = &subpage->iomem;
phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
- phys_section_add(&subsection));
+ phys_section_add(&d->map, &subsection));
} else {
subpage = container_of(existing->mr, subpage_t, iomem);
}
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
end = start + int128_get64(section->size) - 1;
- subpage_register(subpage, start, end, phys_section_add(section));
+ subpage_register(subpage, start, end,
+ phys_section_add(&d->map, section));
}
MemoryRegionSection *section)
{
hwaddr start_addr = section->offset_within_address_space;
- uint16_t section_index = phys_section_add(section);
+ uint16_t section_index = phys_section_add(&d->map, section);
uint64_t num_pages = int128_get64(int128_rshift(section->size,
TARGET_PAGE_BITS));
now = remain;
if (int128_lt(remain.size, page_size)) {
register_subpage(d, &now);
- } else if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
+ } else if (remain.offset_within_address_space & ~TARGET_PAGE_MASK) {
now.size = page_size;
register_subpage(d, &now);
} else {
qemu_mutex_unlock(&ram_list.mutex);
}
-#if defined(__linux__) && !defined(TARGET_S390X)
+#ifdef __linux__
#include <sys/vfs.h>
return fs.f_bsize;
}
+static sigjmp_buf sigjump;
+
+static void sigbus_handler(int signal)
+{
+ siglongjmp(sigjump, 1);
+}
+
static void *file_ram_alloc(RAMBlock *block,
ram_addr_t memory,
const char *path)
char *c;
void *area;
int fd;
-#ifdef MAP_POPULATE
- int flags;
-#endif
unsigned long hpagesize;
hpagesize = gethugepagesize(path);
if (!hpagesize) {
- return NULL;
+ goto error;
}
if (memory < hpagesize) {
if (kvm_enabled() && !kvm_has_sync_mmu()) {
fprintf(stderr, "host lacks kvm mmu notifiers, -mem-path unsupported\n");
- return NULL;
+ goto error;
}
/* Make name safe to use with mkstemp by replacing '/' with '_'. */
if (fd < 0) {
perror("unable to create backing store for hugepages");
g_free(filename);
- return NULL;
+ goto error;
}
unlink(filename);
g_free(filename);
if (ftruncate(fd, memory))
perror("ftruncate");
-#ifdef MAP_POPULATE
- /* NB: MAP_POPULATE won't exhaustively alloc all phys pages in the case
- * MAP_PRIVATE is requested. For mem_prealloc we mmap as MAP_SHARED
- * to sidestep this quirk.
- */
- flags = mem_prealloc ? MAP_POPULATE | MAP_SHARED : MAP_PRIVATE;
- area = mmap(0, memory, PROT_READ | PROT_WRITE, flags, fd, 0);
-#else
area = mmap(0, memory, PROT_READ | PROT_WRITE, MAP_PRIVATE, fd, 0);
-#endif
if (area == MAP_FAILED) {
perror("file_ram_alloc: can't mmap RAM pages");
close(fd);
- return (NULL);
+ goto error;
}
+
+ if (mem_prealloc) {
+ int ret, i;
+ struct sigaction act, oldact;
+ sigset_t set, oldset;
+
+ memset(&act, 0, sizeof(act));
+ act.sa_handler = &sigbus_handler;
+ act.sa_flags = 0;
+
+ ret = sigaction(SIGBUS, &act, &oldact);
+ if (ret) {
+ perror("file_ram_alloc: failed to install signal handler");
+ exit(1);
+ }
+
+ /* unblock SIGBUS */
+ sigemptyset(&set);
+ sigaddset(&set, SIGBUS);
+ pthread_sigmask(SIG_UNBLOCK, &set, &oldset);
+
+ if (sigsetjmp(sigjump, 1)) {
+ fprintf(stderr, "file_ram_alloc: failed to preallocate pages\n");
+ exit(1);
+ }
+
+ /* MAP_POPULATE silently ignores failures */
+ for (i = 0; i < (memory/hpagesize); i++) {
+ memset(area + (hpagesize*i), 0, 1);
+ }
+
+ ret = sigaction(SIGBUS, &oldact, NULL);
+ if (ret) {
+ perror("file_ram_alloc: failed to reinstall signal handler");
+ exit(1);
+ }
+
+ pthread_sigmask(SIG_SETMASK, &oldset, NULL);
+ }
+
block->fd = fd;
return area;
+
+error:
+ if (mem_prealloc) {
+ exit(1);
+ }
+ return NULL;
+}
+#else
+static void *file_ram_alloc(RAMBlock *block,
+ ram_addr_t memory,
+ const char *path)
+{
+ fprintf(stderr, "-mem-path not supported on this host\n");
+ exit(1);
}
#endif
}
}
-void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
+static RAMBlock *find_ram_block(ram_addr_t addr)
{
- RAMBlock *new_block, *block;
+ RAMBlock *block;
- new_block = NULL;
QTAILQ_FOREACH(block, &ram_list.blocks, next) {
if (block->offset == addr) {
- new_block = block;
- break;
+ return block;
}
}
+
+ return NULL;
+}
+
+void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
+{
+ RAMBlock *new_block = find_ram_block(addr);
+ RAMBlock *block;
+
assert(new_block);
assert(!new_block->idstr[0]);
qemu_mutex_unlock_ramlist();
}
+void qemu_ram_unset_idstr(ram_addr_t addr)
+{
+ RAMBlock *block = find_ram_block(addr);
+
+ if (block) {
+ memset(block->idstr, 0, sizeof(block->idstr));
+ }
+}
+
static int memory_try_enable_merging(void *addr, size_t len)
{
if (!qemu_opt_get_bool(qemu_get_machine_opts(), "mem-merge", true)) {
MemoryRegion *mr)
{
RAMBlock *block, *new_block;
+ ram_addr_t old_ram_size, new_ram_size;
+
+ old_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
size = TARGET_PAGE_ALIGN(size);
new_block = g_malloc0(sizeof(*new_block));
+ new_block->fd = -1;
/* This assumes the iothread lock is taken here too. */
qemu_mutex_lock_ramlist();
if (host) {
new_block->host = host;
new_block->flags |= RAM_PREALLOC_MASK;
+ } else if (xen_enabled()) {
+ if (mem_path) {
+ fprintf(stderr, "-mem-path not supported with Xen\n");
+ exit(1);
+ }
+ xen_ram_alloc(new_block->offset, size, mr);
} else {
if (mem_path) {
-#if defined (__linux__) && !defined(TARGET_S390X)
+ if (phys_mem_alloc != qemu_anon_ram_alloc) {
+ /*
+ * file_ram_alloc() needs to allocate just like
+ * phys_mem_alloc, but we haven't bothered to provide
+ * a hook there.
+ */
+ fprintf(stderr,
+ "-mem-path not supported with this accelerator\n");
+ exit(1);
+ }
new_block->host = file_ram_alloc(new_block, size, mem_path);
+ }
+ if (!new_block->host) {
+ new_block->host = phys_mem_alloc(size);
if (!new_block->host) {
- new_block->host = qemu_anon_ram_alloc(size);
- memory_try_enable_merging(new_block->host, size);
- }
-#else
- fprintf(stderr, "-mem-path option unsupported\n");
- exit(1);
-#endif
- } else {
- if (xen_enabled()) {
- xen_ram_alloc(new_block->offset, size, mr);
- } else if (kvm_enabled()) {
- /* some s390/kvm configurations have special constraints */
- new_block->host = kvm_ram_alloc(size);
- } else {
- new_block->host = qemu_anon_ram_alloc(size);
+ fprintf(stderr, "Cannot set up guest memory '%s': %s\n",
+ new_block->mr->name, strerror(errno));
+ exit(1);
}
memory_try_enable_merging(new_block->host, size);
}
ram_list.version++;
qemu_mutex_unlock_ramlist();
- ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
- last_ram_offset() >> TARGET_PAGE_BITS);
- memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
- 0, size >> TARGET_PAGE_BITS);
- cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
+ new_ram_size = last_ram_offset() >> TARGET_PAGE_BITS;
+
+ if (new_ram_size > old_ram_size) {
+ int i;
+ for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
+ ram_list.dirty_memory[i] =
+ bitmap_zero_extend(ram_list.dirty_memory[i],
+ old_ram_size, new_ram_size);
+ }
+ }
+ cpu_physical_memory_set_dirty_range(new_block->offset, size);
qemu_ram_setup_dump(new_block->host, size);
qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
+ qemu_madvise(new_block->host, size, QEMU_MADV_DONTFORK);
if (kvm_enabled())
kvm_setup_guest_memory(new_block->host, size);
ram_list.version++;
if (block->flags & RAM_PREALLOC_MASK) {
;
- } else if (mem_path) {
-#if defined (__linux__) && !defined(TARGET_S390X)
- if (block->fd) {
- munmap(block->host, block->length);
- close(block->fd);
- } else {
- qemu_anon_ram_free(block->host, block->length);
- }
-#else
- abort();
+ } else if (xen_enabled()) {
+ xen_invalidate_map_cache_entry(block->host);
+#ifndef _WIN32
+ } else if (block->fd >= 0) {
+ munmap(block->host, block->length);
+ close(block->fd);
#endif
} else {
- if (xen_enabled()) {
- xen_invalidate_map_cache_entry(block->host);
- } else {
- qemu_anon_ram_free(block->host, block->length);
- }
+ qemu_anon_ram_free(block->host, block->length);
}
g_free(block);
break;
vaddr = block->host + offset;
if (block->flags & RAM_PREALLOC_MASK) {
;
+ } else if (xen_enabled()) {
+ abort();
} else {
flags = MAP_FIXED;
munmap(vaddr, length);
- if (mem_path) {
-#if defined(__linux__) && !defined(TARGET_S390X)
- if (block->fd) {
+ if (block->fd >= 0) {
#ifdef MAP_POPULATE
- flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
- MAP_PRIVATE;
+ flags |= mem_prealloc ? MAP_POPULATE | MAP_SHARED :
+ MAP_PRIVATE;
#else
- flags |= MAP_PRIVATE;
-#endif
- area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
- flags, block->fd, offset);
- } else {
- flags |= MAP_PRIVATE | MAP_ANONYMOUS;
- area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
- flags, -1, 0);
- }
-#else
- abort();
+ flags |= MAP_PRIVATE;
#endif
+ area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
+ flags, block->fd, offset);
} else {
-#if defined(TARGET_S390X) && defined(CONFIG_KVM)
- flags |= MAP_SHARED | MAP_ANONYMOUS;
- area = mmap(vaddr, length, PROT_EXEC|PROT_READ|PROT_WRITE,
- flags, -1, 0);
-#else
+ /*
+ * Remap needs to match alloc. Accelerators that
+ * set phys_mem_alloc never remap. If they did,
+ * we'd need a remap hook here.
+ */
+ assert(phys_mem_alloc == qemu_anon_ram_alloc);
+
flags |= MAP_PRIVATE | MAP_ANONYMOUS;
area = mmap(vaddr, length, PROT_READ | PROT_WRITE,
flags, -1, 0);
-#endif
}
if (area != vaddr) {
fprintf(stderr, "Could not remap addr: "
}
#endif /* !_WIN32 */
-static RAMBlock *qemu_get_ram_block(ram_addr_t addr)
-{
- RAMBlock *block;
-
- /* The list is protected by the iothread lock here. */
- block = ram_list.mru_block;
- if (block && addr - block->offset < block->length) {
- goto found;
- }
- QTAILQ_FOREACH(block, &ram_list.blocks, next) {
- if (addr - block->offset < block->length) {
- goto found;
- }
- }
-
- fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
- abort();
-
-found:
- ram_list.mru_block = block;
- return block;
-}
-
/* Return a host pointer to ram allocated with qemu_ram_alloc.
With the exception of the softmmu code in this file, this should
only be used for local memory (e.g. video ram) that the device owns,
return block->host + (addr - block->offset);
}
-/* Return a host pointer to ram allocated with qemu_ram_alloc. Same as
- * qemu_get_ram_ptr but do not touch ram_list.mru_block.
- *
- * ??? Is this still necessary?
- */
-static void *qemu_safe_ram_ptr(ram_addr_t addr)
-{
- RAMBlock *block;
-
- /* The list is protected by the iothread lock here. */
- QTAILQ_FOREACH(block, &ram_list.blocks, next) {
- if (addr - block->offset < block->length) {
- if (xen_enabled()) {
- /* We need to check if the requested address is in the RAM
- * because we don't want to map the entire memory in QEMU.
- * In that case just map until the end of the page.
- */
- if (block->offset == 0) {
- return xen_map_cache(addr, 0, 0);
- } else if (block->host == NULL) {
- block->host =
- xen_map_cache(block->offset, block->length, 1);
- }
- }
- return block->host + (addr - block->offset);
- }
- }
-
- fprintf(stderr, "Bad ram offset %" PRIx64 "\n", (uint64_t)addr);
- abort();
-
- return NULL;
-}
-
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
* but takes a size argument */
static void *qemu_ram_ptr_length(ram_addr_t addr, hwaddr *size)
static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
uint64_t val, unsigned size)
{
- int dirty_flags;
- dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
- if (!(dirty_flags & CODE_DIRTY_FLAG)) {
+ if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
tb_invalidate_phys_page_fast(ram_addr, size);
- dirty_flags = cpu_physical_memory_get_dirty_flags(ram_addr);
}
switch (size) {
case 1:
default:
abort();
}
- dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
- cpu_physical_memory_set_dirty_flags(ram_addr, dirty_flags);
+ cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_MIGRATION);
+ cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_VGA);
/* we remove the notdirty callback only if the code has been
flushed */
- if (dirty_flags == 0xff) {
+ if (!cpu_physical_memory_is_clean(ram_addr)) {
CPUArchState *env = current_cpu->env_ptr;
- tlb_set_dirty(env, env->mem_io_vaddr);
+ tlb_set_dirty(env, current_cpu->mem_io_vaddr);
}
}
/* Generate a debug exception if a watchpoint has been hit. */
static void check_watchpoint(int offset, int len_mask, int flags)
{
- CPUArchState *env = current_cpu->env_ptr;
+ CPUState *cpu = current_cpu;
+ CPUArchState *env = cpu->env_ptr;
target_ulong pc, cs_base;
target_ulong vaddr;
CPUWatchpoint *wp;
int cpu_flags;
- if (env->watchpoint_hit) {
+ if (cpu->watchpoint_hit) {
/* We re-entered the check after replacing the TB. Now raise
* the debug interrupt so that is will trigger after the
* current instruction. */
- cpu_interrupt(ENV_GET_CPU(env), CPU_INTERRUPT_DEBUG);
+ cpu_interrupt(cpu, CPU_INTERRUPT_DEBUG);
return;
}
- vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
- QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
+ vaddr = (cpu->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
+ QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
if ((vaddr == (wp->vaddr & len_mask) ||
(vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
wp->flags |= BP_WATCHPOINT_HIT;
- if (!env->watchpoint_hit) {
- env->watchpoint_hit = wp;
- tb_check_watchpoint(env);
+ if (!cpu->watchpoint_hit) {
+ cpu->watchpoint_hit = wp;
+ tb_check_watchpoint(cpu);
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
- env->exception_index = EXCP_DEBUG;
- cpu_loop_exit(env);
+ cpu->exception_index = EXCP_DEBUG;
+ cpu_loop_exit(cpu);
} else {
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
- tb_gen_code(env, pc, cs_base, cpu_flags, 1);
- cpu_resume_from_signal(env, NULL);
+ tb_gen_code(cpu, pc, cs_base, cpu_flags, 1);
+ cpu_resume_from_signal(cpu, NULL);
}
}
} else {
{
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
switch (size) {
- case 1: return ldub_phys(addr);
- case 2: return lduw_phys(addr);
- case 4: return ldl_phys(addr);
+ case 1: return ldub_phys(&address_space_memory, addr);
+ case 2: return lduw_phys(&address_space_memory, addr);
+ case 4: return ldl_phys(&address_space_memory, addr);
default: abort();
}
}
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
switch (size) {
case 1:
- stb_phys(addr, val);
+ stb_phys(&address_space_memory, addr, val);
break;
case 2:
- stw_phys(addr, val);
+ stw_phys(&address_space_memory, addr, val);
break;
case 4:
- stl_phys(addr, val);
+ stl_phys(&address_space_memory, addr, val);
break;
default: abort();
}
uint8_t buf[4];
#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p len %d addr " TARGET_FMT_plx "\n", __func__,
+ printf("%s: subpage %p len %u addr " TARGET_FMT_plx "\n", __func__,
subpage, len, addr);
#endif
address_space_read(subpage->as, addr + subpage->base, buf, len);
uint8_t buf[4];
#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p len %d addr " TARGET_FMT_plx
+ printf("%s: subpage %p len %u addr " TARGET_FMT_plx
" value %"PRIx64"\n",
__func__, subpage, len, addr, value);
#endif
}
static bool subpage_accepts(void *opaque, hwaddr addr,
- unsigned size, bool is_write)
+ unsigned len, bool is_write)
{
subpage_t *subpage = opaque;
#if defined(DEBUG_SUBPAGE)
- printf("%s: subpage %p %c len %d addr " TARGET_FMT_plx "\n",
+ printf("%s: subpage %p %c len %u addr " TARGET_FMT_plx "\n",
__func__, subpage, is_write ? 'w' : 'r', len, addr);
#endif
return address_space_access_valid(subpage->as, addr + subpage->base,
- size, is_write);
+ len, is_write);
}
static const MemoryRegionOps subpage_ops = {
idx = SUBPAGE_IDX(start);
eidx = SUBPAGE_IDX(end);
#if defined(DEBUG_SUBPAGE)
- printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
- mmio, start, end, idx, eidx, memory);
+ printf("%s: %p start %08x end %08x idx %08x eidx %08x section %d\n",
+ __func__, mmio, start, end, idx, eidx, section);
#endif
for (; idx <= eidx; idx++) {
mmio->sub_section[idx] = section;
"subpage", TARGET_PAGE_SIZE);
mmio->iomem.subpage = true;
#if defined(DEBUG_SUBPAGE)
- printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
- mmio, base, TARGET_PAGE_SIZE, subpage_memory);
+ printf("%s: %p base " TARGET_FMT_plx " len %08x\n", __func__,
+ mmio, base, TARGET_PAGE_SIZE);
#endif
subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, PHYS_SECTION_UNASSIGNED);
return mmio;
}
-static uint16_t dummy_section(MemoryRegion *mr)
+static uint16_t dummy_section(PhysPageMap *map, AddressSpace *as,
+ MemoryRegion *mr)
{
+ assert(as);
MemoryRegionSection section = {
+ .address_space = as,
.mr = mr,
.offset_within_address_space = 0,
.offset_within_region = 0,
.size = int128_2_64(),
};
- return phys_section_add(§ion);
+ return phys_section_add(map, §ion);
}
-MemoryRegion *iotlb_to_region(hwaddr index)
+MemoryRegion *iotlb_to_region(AddressSpace *as, hwaddr index)
{
- return address_space_memory.dispatch->sections[index & ~TARGET_PAGE_MASK].mr;
+ return as->dispatch->map.sections[index & ~TARGET_PAGE_MASK].mr;
}
static void io_mem_init(void)
static void mem_begin(MemoryListener *listener)
{
AddressSpace *as = container_of(listener, AddressSpace, dispatch_listener);
- AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
+ AddressSpaceDispatch *d = g_new0(AddressSpaceDispatch, 1);
+ uint16_t n;
+
+ n = dummy_section(&d->map, as, &io_mem_unassigned);
+ assert(n == PHYS_SECTION_UNASSIGNED);
+ n = dummy_section(&d->map, as, &io_mem_notdirty);
+ assert(n == PHYS_SECTION_NOTDIRTY);
+ n = dummy_section(&d->map, as, &io_mem_rom);
+ assert(n == PHYS_SECTION_ROM);
+ n = dummy_section(&d->map, as, &io_mem_watch);
+ assert(n == PHYS_SECTION_WATCH);
- d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
+ d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .skip = 1 };
d->as = as;
as->next_dispatch = d;
}
AddressSpaceDispatch *cur = as->dispatch;
AddressSpaceDispatch *next = as->next_dispatch;
- next->nodes = next_map.nodes;
- next->sections = next_map.sections;
+ phys_page_compact_all(next, next->map.nodes_nb);
as->dispatch = next;
- g_free(cur);
-}
-
-static void core_begin(MemoryListener *listener)
-{
- uint16_t n;
-
- prev_map = g_new(PhysPageMap, 1);
- *prev_map = next_map;
- memset(&next_map, 0, sizeof(next_map));
- n = dummy_section(&io_mem_unassigned);
- assert(n == PHYS_SECTION_UNASSIGNED);
- n = dummy_section(&io_mem_notdirty);
- assert(n == PHYS_SECTION_NOTDIRTY);
- n = dummy_section(&io_mem_rom);
- assert(n == PHYS_SECTION_ROM);
- n = dummy_section(&io_mem_watch);
- assert(n == PHYS_SECTION_WATCH);
-}
-
-/* This listener's commit run after the other AddressSpaceDispatch listeners'.
- * All AddressSpaceDispatch instances have switched to the next map.
- */
-static void core_commit(MemoryListener *listener)
-{
- phys_sections_free(prev_map);
+ if (cur) {
+ phys_sections_free(&cur->map);
+ g_free(cur);
+ }
}
static void tcg_commit(MemoryListener *listener)
/* since each CPU stores ram addresses in its TLB cache, we must
reset the modified entries */
/* XXX: slow ! */
- for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
- CPUArchState *env = cpu->env_ptr;
-
- tlb_flush(env, 1);
+ CPU_FOREACH(cpu) {
+ /* FIXME: Disentangle the cpu.h circular files deps so we can
+ directly get the right CPU from listener. */
+ if (cpu->tcg_as_listener != listener) {
+ continue;
+ }
+ tlb_flush(cpu, 1);
}
}
static void core_log_global_start(MemoryListener *listener)
{
- cpu_physical_memory_set_dirty_tracking(1);
+ cpu_physical_memory_set_dirty_tracking(true);
}
static void core_log_global_stop(MemoryListener *listener)
{
- cpu_physical_memory_set_dirty_tracking(0);
+ cpu_physical_memory_set_dirty_tracking(false);
}
static MemoryListener core_memory_listener = {
- .begin = core_begin,
- .commit = core_commit,
.log_global_start = core_log_global_start,
.log_global_stop = core_log_global_stop,
.priority = 1,
};
-static MemoryListener tcg_memory_listener = {
- .commit = tcg_commit,
-};
-
void address_space_init_dispatch(AddressSpace *as)
{
as->dispatch = NULL;
static void memory_map_init(void)
{
system_memory = g_malloc(sizeof(*system_memory));
- memory_region_init(system_memory, NULL, "system", INT64_MAX);
+
+ memory_region_init(system_memory, NULL, "system", UINT64_MAX);
address_space_init(&address_space_memory, system_memory, "memory");
system_io = g_malloc(sizeof(*system_io));
- memory_region_init(system_io, NULL, "io", 65536);
+ memory_region_init_io(system_io, NULL, &unassigned_io_ops, NULL, "io",
+ 65536);
address_space_init(&address_space_io, system_io, "I/O");
memory_listener_register(&core_memory_listener, &address_space_memory);
- memory_listener_register(&tcg_memory_listener, &address_space_memory);
}
MemoryRegion *get_system_memory(void)
static void invalidate_and_set_dirty(hwaddr addr,
hwaddr length)
{
- if (!cpu_physical_memory_is_dirty(addr)) {
+ if (cpu_physical_memory_is_clean(addr)) {
/* invalidate code */
tb_invalidate_phys_page_range(addr, addr + length, 0);
/* set dirty bit */
- cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
+ cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_VGA);
+ cpu_physical_memory_set_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
}
xen_modified_memory(addr, length);
}
-static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
-{
- if (memory_region_is_ram(mr)) {
- return !(is_write && mr->readonly);
- }
- if (memory_region_is_romd(mr)) {
- return !is_write;
- }
-
- return false;
-}
-
static int memory_access_size(MemoryRegion *mr, unsigned l, hwaddr addr)
{
unsigned access_size_max = mr->ops->valid.max_access_size;
if (l > access_size_max) {
l = access_size_max;
}
+ if (l & (l - 1)) {
+ l = 1 << (qemu_fls(l) - 1);
+ }
return l;
}
address_space_rw(&address_space_memory, addr, buf, len, is_write);
}
-/* used for ROM loading : can write in RAM and ROM */
-void cpu_physical_memory_write_rom(hwaddr addr,
- const uint8_t *buf, int len)
+enum write_rom_type {
+ WRITE_DATA,
+ FLUSH_CACHE,
+};
+
+static inline void cpu_physical_memory_write_rom_internal(AddressSpace *as,
+ hwaddr addr, const uint8_t *buf, int len, enum write_rom_type type)
{
hwaddr l;
uint8_t *ptr;
while (len > 0) {
l = len;
- mr = address_space_translate(&address_space_memory,
- addr, &addr1, &l, true);
+ mr = address_space_translate(as, addr, &addr1, &l, true);
if (!(memory_region_is_ram(mr) ||
memory_region_is_romd(mr))) {
addr1 += memory_region_get_ram_addr(mr);
/* ROM/RAM case */
ptr = qemu_get_ram_ptr(addr1);
- memcpy(ptr, buf, l);
- invalidate_and_set_dirty(addr1, l);
+ switch (type) {
+ case WRITE_DATA:
+ memcpy(ptr, buf, l);
+ invalidate_and_set_dirty(addr1, l);
+ break;
+ case FLUSH_CACHE:
+ flush_icache_range((uintptr_t)ptr, (uintptr_t)ptr + l);
+ break;
+ }
}
len -= l;
buf += l;
}
}
+/* used for ROM loading : can write in RAM and ROM */
+void cpu_physical_memory_write_rom(AddressSpace *as, hwaddr addr,
+ const uint8_t *buf, int len)
+{
+ cpu_physical_memory_write_rom_internal(as, addr, buf, len, WRITE_DATA);
+}
+
+void cpu_flush_icache_range(hwaddr start, int len)
+{
+ /*
+ * This function should do the same thing as an icache flush that was
+ * triggered from within the guest. For TCG we are always cache coherent,
+ * so there is no need to flush anything. For KVM / Xen we need to flush
+ * the host's instruction cache at least.
+ */
+ if (tcg_enabled()) {
+ return;
+ }
+
+ cpu_physical_memory_write_rom_internal(&address_space_memory,
+ start, NULL, len, FLUSH_CACHE);
+}
+
typedef struct {
MemoryRegion *mr;
void *buffer;
if (bounce.buffer) {
return NULL;
}
- bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
+ /* Avoid unbounded allocations */
+ l = MIN(l, TARGET_PAGE_SIZE);
+ bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, l);
bounce.addr = addr;
bounce.len = l;
}
/* warning: addr must be aligned */
-static inline uint32_t ldl_phys_internal(hwaddr addr,
+static inline uint32_t ldl_phys_internal(AddressSpace *as, hwaddr addr,
enum device_endian endian)
{
uint8_t *ptr;
hwaddr l = 4;
hwaddr addr1;
- mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
- false);
+ mr = address_space_translate(as, addr, &addr1, &l, false);
if (l < 4 || !memory_access_is_direct(mr, false)) {
/* I/O case */
io_mem_read(mr, addr1, &val, 4);
return val;
}
-uint32_t ldl_phys(hwaddr addr)
+uint32_t ldl_phys(AddressSpace *as, hwaddr addr)
{
- return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
+ return ldl_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
}
-uint32_t ldl_le_phys(hwaddr addr)
+uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr)
{
- return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
+ return ldl_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
}
-uint32_t ldl_be_phys(hwaddr addr)
+uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr)
{
- return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
+ return ldl_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
}
/* warning: addr must be aligned */
-static inline uint64_t ldq_phys_internal(hwaddr addr,
+static inline uint64_t ldq_phys_internal(AddressSpace *as, hwaddr addr,
enum device_endian endian)
{
uint8_t *ptr;
hwaddr l = 8;
hwaddr addr1;
- mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ mr = address_space_translate(as, addr, &addr1, &l,
false);
if (l < 8 || !memory_access_is_direct(mr, false)) {
/* I/O case */
return val;
}
-uint64_t ldq_phys(hwaddr addr)
+uint64_t ldq_phys(AddressSpace *as, hwaddr addr)
{
- return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
+ return ldq_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
}
-uint64_t ldq_le_phys(hwaddr addr)
+uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr)
{
- return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
+ return ldq_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
}
-uint64_t ldq_be_phys(hwaddr addr)
+uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr)
{
- return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
+ return ldq_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
}
/* XXX: optimize */
-uint32_t ldub_phys(hwaddr addr)
+uint32_t ldub_phys(AddressSpace *as, hwaddr addr)
{
uint8_t val;
- cpu_physical_memory_read(addr, &val, 1);
+ address_space_rw(as, addr, &val, 1, 0);
return val;
}
/* warning: addr must be aligned */
-static inline uint32_t lduw_phys_internal(hwaddr addr,
+static inline uint32_t lduw_phys_internal(AddressSpace *as, hwaddr addr,
enum device_endian endian)
{
uint8_t *ptr;
hwaddr l = 2;
hwaddr addr1;
- mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ mr = address_space_translate(as, addr, &addr1, &l,
false);
if (l < 2 || !memory_access_is_direct(mr, false)) {
/* I/O case */
return val;
}
-uint32_t lduw_phys(hwaddr addr)
+uint32_t lduw_phys(AddressSpace *as, hwaddr addr)
{
- return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
+ return lduw_phys_internal(as, addr, DEVICE_NATIVE_ENDIAN);
}
-uint32_t lduw_le_phys(hwaddr addr)
+uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr)
{
- return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
+ return lduw_phys_internal(as, addr, DEVICE_LITTLE_ENDIAN);
}
-uint32_t lduw_be_phys(hwaddr addr)
+uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr)
{
- return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
+ return lduw_phys_internal(as, addr, DEVICE_BIG_ENDIAN);
}
/* warning: addr must be aligned. The ram page is not masked as dirty
and the code inside is not invalidated. It is useful if the dirty
bits are used to track modified PTEs */
-void stl_phys_notdirty(hwaddr addr, uint32_t val)
+void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
{
uint8_t *ptr;
MemoryRegion *mr;
hwaddr l = 4;
hwaddr addr1;
- mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ mr = address_space_translate(as, addr, &addr1, &l,
true);
if (l < 4 || !memory_access_is_direct(mr, true)) {
io_mem_write(mr, addr1, val, 4);
stl_p(ptr, val);
if (unlikely(in_migration)) {
- if (!cpu_physical_memory_is_dirty(addr1)) {
+ if (cpu_physical_memory_is_clean(addr1)) {
/* invalidate code */
tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
/* set dirty bit */
- cpu_physical_memory_set_dirty_flags(
- addr1, (0xff & ~CODE_DIRTY_FLAG));
+ cpu_physical_memory_set_dirty_flag(addr1,
+ DIRTY_MEMORY_MIGRATION);
+ cpu_physical_memory_set_dirty_flag(addr1, DIRTY_MEMORY_VGA);
}
}
}
}
/* warning: addr must be aligned */
-static inline void stl_phys_internal(hwaddr addr, uint32_t val,
+static inline void stl_phys_internal(AddressSpace *as,
+ hwaddr addr, uint32_t val,
enum device_endian endian)
{
uint8_t *ptr;
hwaddr l = 4;
hwaddr addr1;
- mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
+ mr = address_space_translate(as, addr, &addr1, &l,
true);
if (l < 4 || !memory_access_is_direct(mr, true)) {
#if defined(TARGET_WORDS_BIGENDIAN)
}
}
-void stl_phys(hwaddr addr, uint32_t val)
+void stl_phys(AddressSpace *as, hwaddr addr, uint32_t val)
{
- stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
+ stl_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
}
-void stl_le_phys(hwaddr addr, uint32_t val)
+void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
{
- stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
+ stl_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
}
-void stl_be_phys(hwaddr addr, uint32_t val)
+void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
{
- stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
+ stl_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
}
/* XXX: optimize */
-void stb_phys(hwaddr addr, uint32_t val)
+void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val)
{
uint8_t v = val;
- cpu_physical_memory_write(addr, &v, 1);
+ address_space_rw(as, addr, &v, 1, 1);
}
/* warning: addr must be aligned */
-static inline void stw_phys_internal(hwaddr addr, uint32_t val,
+static inline void stw_phys_internal(AddressSpace *as,
+ hwaddr addr, uint32_t val,
enum device_endian endian)
{
uint8_t *ptr;
hwaddr l = 2;
hwaddr addr1;
- mr = address_space_translate(&address_space_memory, addr, &addr1, &l,
- true);
+ mr = address_space_translate(as, addr, &addr1, &l, true);
if (l < 2 || !memory_access_is_direct(mr, true)) {
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
}
}
-void stw_phys(hwaddr addr, uint32_t val)
+void stw_phys(AddressSpace *as, hwaddr addr, uint32_t val)
{
- stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
+ stw_phys_internal(as, addr, val, DEVICE_NATIVE_ENDIAN);
}
-void stw_le_phys(hwaddr addr, uint32_t val)
+void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val)
{
- stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
+ stw_phys_internal(as, addr, val, DEVICE_LITTLE_ENDIAN);
}
-void stw_be_phys(hwaddr addr, uint32_t val)
+void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val)
{
- stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
+ stw_phys_internal(as, addr, val, DEVICE_BIG_ENDIAN);
}
/* XXX: optimize */
-void stq_phys(hwaddr addr, uint64_t val)
+void stq_phys(AddressSpace *as, hwaddr addr, uint64_t val)
{
val = tswap64(val);
- cpu_physical_memory_write(addr, &val, 8);
+ address_space_rw(as, addr, (void *) &val, 8, 1);
}
-void stq_le_phys(hwaddr addr, uint64_t val)
+void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val)
{
val = cpu_to_le64(val);
- cpu_physical_memory_write(addr, &val, 8);
+ address_space_rw(as, addr, (void *) &val, 8, 1);
}
-void stq_be_phys(hwaddr addr, uint64_t val)
+void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val)
{
val = cpu_to_be64(val);
- cpu_physical_memory_write(addr, &val, 8);
+ address_space_rw(as, addr, (void *) &val, 8, 1);
}
/* virtual memory access for debug (includes writing to ROM) */
if (l > len)
l = len;
phys_addr += (addr & ~TARGET_PAGE_MASK);
- if (is_write)
- cpu_physical_memory_write_rom(phys_addr, buf, l);
- else
- cpu_physical_memory_rw(phys_addr, buf, l, is_write);
+ if (is_write) {
+ cpu_physical_memory_write_rom(cpu->as, phys_addr, buf, l);
+ } else {
+ address_space_rw(cpu->as, phys_addr, buf, l, 0);
+ }
len -= l;
buf += l;
addr += l;