/*
* defines common to all virtual CPUs
- *
+ *
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
#ifndef CPU_ALL_H
#define CPU_ALL_H
-#if defined(__arm__) || defined(__sparc__)
+#if defined(__arm__) || defined(__sparc__) || defined(__mips__)
#define WORDS_ALIGNED
#endif
-/* some important defines:
- *
+/* some important defines:
+ *
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
* memory accesses.
- *
+ *
* WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
- *
+ *
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
- *
+ *
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
#if TARGET_LONG_SIZE == 4
#define tswapl(s) tswap32(s)
#define tswapls(s) tswap32s((uint32_t *)(s))
+#define bswaptls(s) bswap32s(s)
#else
#define tswapl(s) tswap64(s)
#define tswapls(s) tswap64s((uint64_t *)(s))
+#define bswaptls(s) bswap64s(s)
#endif
-/* NOTE: arm is horrible as double 32 bit words are stored in big endian ! */
+/* NOTE: arm FPA is horrible as double 32 bit words are stored in big
+ endian ! */
typedef union {
- double d;
-#if !defined(WORDS_BIGENDIAN) && !defined(__arm__)
+ float64 d;
+#if defined(WORDS_BIGENDIAN) \
+ || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
struct {
- uint32_t lower;
uint32_t upper;
+ uint32_t lower;
} l;
#else
struct {
- uint32_t upper;
uint32_t lower;
+ uint32_t upper;
} l;
#endif
uint64_t ll;
* type is:
* (empty): integer access
* f : float access
- *
+ *
* sign is:
* (empty): for floats or 32 bit size
* u : unsigned
* w: 16 bits
* l: 32 bits
* q: 64 bits
- *
+ *
* endian is:
* (empty): target cpu endianness or 8 bit access
* r : reversed target cpu endianness (not implemented yet)
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
-static inline int ldub_raw(void *ptr)
+static inline int ldub_p(void *ptr)
{
return *(uint8_t *)ptr;
}
-static inline int ldsb_raw(void *ptr)
+static inline int ldsb_p(void *ptr)
{
return *(int8_t *)ptr;
}
-static inline void stb_raw(void *ptr, int v)
+static inline void stb_p(void *ptr, int v)
{
*(uint8_t *)ptr = v;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
-#if !defined(TARGET_WORDS_BIGENDIAN) && (defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
+#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
-static inline int lduw_raw(void *ptr)
+static inline int lduw_le_p(void *ptr)
{
#ifdef __powerpc__
int val;
#endif
}
-static inline int ldsw_raw(void *ptr)
+static inline int ldsw_le_p(void *ptr)
{
#ifdef __powerpc__
int val;
#endif
}
-static inline int ldl_raw(void *ptr)
+static inline int ldl_le_p(void *ptr)
{
#ifdef __powerpc__
int val;
#endif
}
-static inline uint64_t ldq_raw(void *ptr)
+static inline uint64_t ldq_le_p(void *ptr)
{
uint8_t *p = ptr;
uint32_t v1, v2;
- v1 = ldl_raw(p);
- v2 = ldl_raw(p + 4);
+ v1 = ldl_le_p(p);
+ v2 = ldl_le_p(p + 4);
return v1 | ((uint64_t)v2 << 32);
}
-static inline void stw_raw(void *ptr, int v)
+static inline void stw_le_p(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#endif
}
-static inline void stl_raw(void *ptr, int v)
+static inline void stl_le_p(void *ptr, int v)
{
#ifdef __powerpc__
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#endif
}
-static inline void stq_raw(void *ptr, uint64_t v)
+static inline void stq_le_p(void *ptr, uint64_t v)
{
uint8_t *p = ptr;
- stl_raw(p, (uint32_t)v);
- stl_raw(p + 4, v >> 32);
+ stl_le_p(p, (uint32_t)v);
+ stl_le_p(p + 4, v >> 32);
}
/* float access */
-static inline float ldfl_raw(void *ptr)
+static inline float32 ldfl_le_p(void *ptr)
{
union {
- float f;
+ float32 f;
uint32_t i;
} u;
- u.i = ldl_raw(ptr);
+ u.i = ldl_le_p(ptr);
return u.f;
}
-static inline void stfl_raw(void *ptr, float v)
+static inline void stfl_le_p(void *ptr, float32 v)
{
union {
- float f;
+ float32 f;
uint32_t i;
} u;
u.f = v;
- stl_raw(ptr, u.i);
+ stl_le_p(ptr, u.i);
}
-static inline double ldfq_raw(void *ptr)
+static inline float64 ldfq_le_p(void *ptr)
{
CPU_DoubleU u;
- u.l.lower = ldl_raw(ptr);
- u.l.upper = ldl_raw(ptr + 4);
+ u.l.lower = ldl_le_p(ptr);
+ u.l.upper = ldl_le_p(ptr + 4);
return u.d;
}
-static inline void stfq_raw(void *ptr, double v)
+static inline void stfq_le_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
- stl_raw(ptr, u.l.lower);
- stl_raw(ptr + 4, u.l.upper);
+ stl_le_p(ptr, u.l.lower);
+ stl_le_p(ptr + 4, u.l.upper);
}
-#elif defined(TARGET_WORDS_BIGENDIAN) && (!defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED))
+#else
-static inline int lduw_raw(void *ptr)
+static inline int lduw_le_p(void *ptr)
+{
+ return *(uint16_t *)ptr;
+}
+
+static inline int ldsw_le_p(void *ptr)
+{
+ return *(int16_t *)ptr;
+}
+
+static inline int ldl_le_p(void *ptr)
+{
+ return *(uint32_t *)ptr;
+}
+
+static inline uint64_t ldq_le_p(void *ptr)
+{
+ return *(uint64_t *)ptr;
+}
+
+static inline void stw_le_p(void *ptr, int v)
+{
+ *(uint16_t *)ptr = v;
+}
+
+static inline void stl_le_p(void *ptr, int v)
+{
+ *(uint32_t *)ptr = v;
+}
+
+static inline void stq_le_p(void *ptr, uint64_t v)
+{
+ *(uint64_t *)ptr = v;
+}
+
+/* float access */
+
+static inline float32 ldfl_le_p(void *ptr)
+{
+ return *(float32 *)ptr;
+}
+
+static inline float64 ldfq_le_p(void *ptr)
+{
+ return *(float64 *)ptr;
+}
+
+static inline void stfl_le_p(void *ptr, float32 v)
+{
+ *(float32 *)ptr = v;
+}
+
+static inline void stfq_le_p(void *ptr, float64 v)
+{
+ *(float64 *)ptr = v;
+}
+#endif
+
+#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
+
+static inline int lduw_be_p(void *ptr)
{
#if defined(__i386__)
int val;
#endif
}
-static inline int ldsw_raw(void *ptr)
+static inline int ldsw_be_p(void *ptr)
{
#if defined(__i386__)
int val;
#endif
}
-static inline int ldl_raw(void *ptr)
+static inline int ldl_be_p(void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
#endif
}
-static inline uint64_t ldq_raw(void *ptr)
+static inline uint64_t ldq_be_p(void *ptr)
{
uint32_t a,b;
- a = ldl_raw(ptr);
- b = ldl_raw(ptr+4);
+ a = ldl_be_p(ptr);
+ b = ldl_be_p(ptr+4);
return (((uint64_t)a<<32)|b);
}
-static inline void stw_raw(void *ptr, int v)
+static inline void stw_be_p(void *ptr, int v)
{
#if defined(__i386__)
asm volatile ("xchgb %b0, %h0\n"
#endif
}
-static inline void stl_raw(void *ptr, int v)
+static inline void stl_be_p(void *ptr, int v)
{
#if defined(__i386__) || defined(__x86_64__)
asm volatile ("bswap %0\n"
#endif
}
-static inline void stq_raw(void *ptr, uint64_t v)
+static inline void stq_be_p(void *ptr, uint64_t v)
{
- stl_raw(ptr, v >> 32);
- stl_raw(ptr + 4, v);
+ stl_be_p(ptr, v >> 32);
+ stl_be_p(ptr + 4, v);
}
/* float access */
-static inline float ldfl_raw(void *ptr)
+static inline float32 ldfl_be_p(void *ptr)
{
union {
- float f;
+ float32 f;
uint32_t i;
} u;
- u.i = ldl_raw(ptr);
+ u.i = ldl_be_p(ptr);
return u.f;
}
-static inline void stfl_raw(void *ptr, float v)
+static inline void stfl_be_p(void *ptr, float32 v)
{
union {
- float f;
+ float32 f;
uint32_t i;
} u;
u.f = v;
- stl_raw(ptr, u.i);
+ stl_be_p(ptr, u.i);
}
-static inline double ldfq_raw(void *ptr)
+static inline float64 ldfq_be_p(void *ptr)
{
CPU_DoubleU u;
- u.l.upper = ldl_raw(ptr);
- u.l.lower = ldl_raw(ptr + 4);
+ u.l.upper = ldl_be_p(ptr);
+ u.l.lower = ldl_be_p(ptr + 4);
return u.d;
}
-static inline void stfq_raw(void *ptr, double v)
+static inline void stfq_be_p(void *ptr, float64 v)
{
CPU_DoubleU u;
u.d = v;
- stl_raw(ptr, u.l.upper);
- stl_raw(ptr + 4, u.l.lower);
+ stl_be_p(ptr, u.l.upper);
+ stl_be_p(ptr + 4, u.l.lower);
}
#else
-static inline int lduw_raw(void *ptr)
+static inline int lduw_be_p(void *ptr)
{
return *(uint16_t *)ptr;
}
-static inline int ldsw_raw(void *ptr)
+static inline int ldsw_be_p(void *ptr)
{
return *(int16_t *)ptr;
}
-static inline int ldl_raw(void *ptr)
+static inline int ldl_be_p(void *ptr)
{
return *(uint32_t *)ptr;
}
-static inline uint64_t ldq_raw(void *ptr)
+static inline uint64_t ldq_be_p(void *ptr)
{
return *(uint64_t *)ptr;
}
-static inline void stw_raw(void *ptr, int v)
+static inline void stw_be_p(void *ptr, int v)
{
*(uint16_t *)ptr = v;
}
-static inline void stl_raw(void *ptr, int v)
+static inline void stl_be_p(void *ptr, int v)
{
*(uint32_t *)ptr = v;
}
-static inline void stq_raw(void *ptr, uint64_t v)
+static inline void stq_be_p(void *ptr, uint64_t v)
{
*(uint64_t *)ptr = v;
}
/* float access */
-static inline float ldfl_raw(void *ptr)
+static inline float32 ldfl_be_p(void *ptr)
{
- return *(float *)ptr;
+ return *(float32 *)ptr;
}
-static inline double ldfq_raw(void *ptr)
+static inline float64 ldfq_be_p(void *ptr)
{
- return *(double *)ptr;
+ return *(float64 *)ptr;
}
-static inline void stfl_raw(void *ptr, float v)
+static inline void stfl_be_p(void *ptr, float32 v)
{
- *(float *)ptr = v;
+ *(float32 *)ptr = v;
}
-static inline void stfq_raw(void *ptr, double v)
+static inline void stfq_be_p(void *ptr, float64 v)
{
- *(double *)ptr = v;
+ *(float64 *)ptr = v;
}
+
+#endif
+
+/* target CPU memory access functions */
+#if defined(TARGET_WORDS_BIGENDIAN)
+#define lduw_p(p) lduw_be_p(p)
+#define ldsw_p(p) ldsw_be_p(p)
+#define ldl_p(p) ldl_be_p(p)
+#define ldq_p(p) ldq_be_p(p)
+#define ldfl_p(p) ldfl_be_p(p)
+#define ldfq_p(p) ldfq_be_p(p)
+#define stw_p(p, v) stw_be_p(p, v)
+#define stl_p(p, v) stl_be_p(p, v)
+#define stq_p(p, v) stq_be_p(p, v)
+#define stfl_p(p, v) stfl_be_p(p, v)
+#define stfq_p(p, v) stfq_be_p(p, v)
+#else
+#define lduw_p(p) lduw_le_p(p)
+#define ldsw_p(p) ldsw_le_p(p)
+#define ldl_p(p) ldl_le_p(p)
+#define ldq_p(p) ldq_le_p(p)
+#define ldfl_p(p) ldfl_le_p(p)
+#define ldfq_p(p) ldfq_le_p(p)
+#define stw_p(p, v) stw_le_p(p, v)
+#define stl_p(p, v) stl_le_p(p, v)
+#define stq_p(p, v) stq_le_p(p, v)
+#define stfl_p(p, v) stfl_le_p(p, v)
+#define stfq_p(p, v) stfq_le_p(p, v)
#endif
/* MMU memory access macros */
-#if defined(CONFIG_USER_ONLY)
+#if defined(CONFIG_USER_ONLY)
+/* On some host systems the guest address space is reserved on the host.
+ * This allows the guest address space to be offset to a convenient location.
+ */
+//#define GUEST_BASE 0x20000000
+#define GUEST_BASE 0
+
+/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
+#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
+#define h2g(x) ((target_ulong)(x - GUEST_BASE))
+
+#define saddr(x) g2h(x)
+#define laddr(x) g2h(x)
+
+#else /* !CONFIG_USER_ONLY */
+/* NOTE: we use double casts if pointers and target_ulong have
+ different sizes */
+#define saddr(x) (uint8_t *)(long)(x)
+#define laddr(x) (uint8_t *)(long)(x)
+#endif
+
+#define ldub_raw(p) ldub_p(laddr((p)))
+#define ldsb_raw(p) ldsb_p(laddr((p)))
+#define lduw_raw(p) lduw_p(laddr((p)))
+#define ldsw_raw(p) ldsw_p(laddr((p)))
+#define ldl_raw(p) ldl_p(laddr((p)))
+#define ldq_raw(p) ldq_p(laddr((p)))
+#define ldfl_raw(p) ldfl_p(laddr((p)))
+#define ldfq_raw(p) ldfq_p(laddr((p)))
+#define stb_raw(p, v) stb_p(saddr((p)), v)
+#define stw_raw(p, v) stw_p(saddr((p)), v)
+#define stl_raw(p, v) stl_p(saddr((p)), v)
+#define stq_raw(p, v) stq_p(saddr((p)), v)
+#define stfl_raw(p, v) stfl_p(saddr((p)), v)
+#define stfq_raw(p, v) stfq_p(saddr((p)), v)
+
+
+#if defined(CONFIG_USER_ONLY)
/* if user mode, no other memory access functions */
#define ldub(p) ldub_raw(p)
#define lduw_code(p) lduw_raw(p)
#define ldsw_code(p) ldsw_raw(p)
#define ldl_code(p) ldl_raw(p)
+#define ldq_code(p) ldq_raw(p)
#define ldub_kernel(p) ldub_raw(p)
#define ldsb_kernel(p) ldsb_raw(p)
#define lduw_kernel(p) lduw_raw(p)
#define ldsw_kernel(p) ldsw_raw(p)
#define ldl_kernel(p) ldl_raw(p)
+#define ldq_kernel(p) ldq_raw(p)
#define ldfl_kernel(p) ldfl_raw(p)
#define ldfq_kernel(p) ldfq_raw(p)
#define stb_kernel(p, v) stb_raw(p, v)
#define TARGET_PAGE_MASK ~(TARGET_PAGE_SIZE - 1)
#define TARGET_PAGE_ALIGN(addr) (((addr) + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK)
-extern unsigned long real_host_page_size;
-extern unsigned long host_page_bits;
-extern unsigned long host_page_size;
-extern unsigned long host_page_mask;
+/* ??? These should be the larger of unsigned long and target_ulong. */
+extern unsigned long qemu_real_host_page_size;
+extern unsigned long qemu_host_page_bits;
+extern unsigned long qemu_host_page_size;
+extern unsigned long qemu_host_page_mask;
-#define HOST_PAGE_ALIGN(addr) (((addr) + host_page_size - 1) & host_page_mask)
+#define HOST_PAGE_ALIGN(addr) (((addr) + qemu_host_page_size - 1) & qemu_host_page_mask)
/* same as PROT_xxx */
#define PAGE_READ 0x0001
#define PAGE_VALID 0x0008
/* original state of the write flag (used when tracking self-modifying
code */
-#define PAGE_WRITE_ORG 0x0010
+#define PAGE_WRITE_ORG 0x0010
void page_dump(FILE *f);
-int page_get_flags(unsigned long address);
-void page_set_flags(unsigned long start, unsigned long end, int flags);
-void page_unprotect_range(uint8_t *data, unsigned long data_size);
-
-#define SINGLE_CPU_DEFINES
-#ifdef SINGLE_CPU_DEFINES
-
-#if defined(TARGET_I386)
-
-#define CPUState CPUX86State
-#define cpu_init cpu_x86_init
-#define cpu_exec cpu_x86_exec
-#define cpu_gen_code cpu_x86_gen_code
-#define cpu_signal_handler cpu_x86_signal_handler
-#define cpu_dump_state cpu_x86_dump_state
-
-#elif defined(TARGET_ARM)
-
-#define CPUState CPUARMState
-#define cpu_init cpu_arm_init
-#define cpu_exec cpu_arm_exec
-#define cpu_gen_code cpu_arm_gen_code
-#define cpu_signal_handler cpu_arm_signal_handler
-#define cpu_dump_state cpu_arm_dump_state
-
-#elif defined(TARGET_SPARC)
-
-#define CPUState CPUSPARCState
-#define cpu_init cpu_sparc_init
-#define cpu_exec cpu_sparc_exec
-#define cpu_gen_code cpu_sparc_gen_code
-#define cpu_signal_handler cpu_sparc_signal_handler
-#define cpu_dump_state cpu_sparc_dump_state
-
-#elif defined(TARGET_PPC)
-
-#define CPUState CPUPPCState
-#define cpu_init cpu_ppc_init
-#define cpu_exec cpu_ppc_exec
-#define cpu_gen_code cpu_ppc_gen_code
-#define cpu_signal_handler cpu_ppc_signal_handler
-#define cpu_dump_state cpu_ppc_dump_state
-
-#else
-
-#error unsupported target CPU
-
-#endif
-
-#endif /* SINGLE_CPU_DEFINES */
-
-void cpu_abort(CPUState *env, const char *fmt, ...);
+int page_get_flags(target_ulong address);
+void page_set_flags(target_ulong start, target_ulong end, int flags);
+void page_unprotect_range(target_ulong data, target_ulong data_size);
+
+CPUState *cpu_copy(CPUState *env);
+
+void cpu_dump_state(CPUState *env, FILE *f,
+ int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
+ int flags);
+void cpu_dump_statistics (CPUState *env, FILE *f,
+ int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
+ int flags);
+
+void cpu_abort(CPUState *env, const char *fmt, ...)
+ __attribute__ ((__format__ (__printf__, 2, 3)))
+ __attribute__ ((__noreturn__));
+extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
extern int code_copy_enabled;
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
+#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
+#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
+#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
+#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
+#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
+
void cpu_interrupt(CPUState *s, int mask);
void cpu_reset_interrupt(CPUState *env, int mask);
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
+int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
void cpu_single_step(CPUState *env, int enabled);
+void cpu_reset(CPUState *s);
/* Return the physical page corresponding to a virtual one. Use it
only for debugging because no protection checks are done. Return -1
if no page found. */
-target_ulong cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
+target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
-#define CPU_LOG_TB_OUT_ASM (1 << 0)
-#define CPU_LOG_TB_IN_ASM (1 << 1)
+#define CPU_LOG_TB_OUT_ASM (1 << 0)
+#define CPU_LOG_TB_IN_ASM (1 << 1)
#define CPU_LOG_TB_OP (1 << 2)
#define CPU_LOG_TB_OP_OPT (1 << 3)
#define CPU_LOG_INT (1 << 4)
#define CPU_LOG_EXEC (1 << 5)
#define CPU_LOG_PCALL (1 << 6)
#define CPU_LOG_IOPORT (1 << 7)
+#define CPU_LOG_TB_CPU (1 << 8)
/* define log items */
typedef struct CPULogItem {
extern uint8_t *phys_ram_dirty;
/* physical memory access */
-#define IO_MEM_NB_ENTRIES 256
#define TLB_INVALID_MASK (1 << 3)
#define IO_MEM_SHIFT 4
+#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
-#define IO_MEM_CODE (3 << IO_MEM_SHIFT) /* used internally, never use directly */
#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
+/* acts like a ROM when read and like a device when written. As an
+ exception, the write memory callback gets the ram offset instead of
+ the physical address */
+#define IO_MEM_ROMD (1)
+#define IO_MEM_SUBPAGE (2)
-typedef void CPUWriteMemoryFunc(target_phys_addr_t addr, uint32_t value);
-typedef uint32_t CPUReadMemoryFunc(target_phys_addr_t addr);
+typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
+typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
-void cpu_register_physical_memory(target_phys_addr_t start_addr,
+void cpu_register_physical_memory(target_phys_addr_t start_addr,
unsigned long size,
unsigned long phys_offset);
+uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr);
+ram_addr_t qemu_ram_alloc(unsigned int size);
+void qemu_ram_free(ram_addr_t addr);
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
- CPUWriteMemoryFunc **mem_write);
+ CPUWriteMemoryFunc **mem_write,
+ void *opaque);
+CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
+CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write);
-static inline void cpu_physical_memory_read(target_phys_addr_t addr,
+static inline void cpu_physical_memory_read(target_phys_addr_t addr,
uint8_t *buf, int len)
{
cpu_physical_memory_rw(addr, buf, len, 0);
}
-static inline void cpu_physical_memory_write(target_phys_addr_t addr,
+static inline void cpu_physical_memory_write(target_phys_addr_t addr,
const uint8_t *buf, int len)
{
cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
-
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+uint32_t ldub_phys(target_phys_addr_t addr);
+uint32_t lduw_phys(target_phys_addr_t addr);
+uint32_t ldl_phys(target_phys_addr_t addr);
+uint64_t ldq_phys(target_phys_addr_t addr);
+void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
+void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
+void stb_phys(target_phys_addr_t addr, uint32_t val);
+void stw_phys(target_phys_addr_t addr, uint32_t val);
+void stl_phys(target_phys_addr_t addr, uint32_t val);
+void stq_phys(target_phys_addr_t addr, uint64_t val);
+
+void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+ const uint8_t *buf, int len);
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write);
+#define VGA_DIRTY_FLAG 0x01
+#define CODE_DIRTY_FLAG 0x02
+
/* read dirty bit (return 0 or 1) */
-static inline int cpu_physical_memory_is_dirty(target_ulong addr)
+static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS];
+ return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
-static inline void cpu_physical_memory_set_dirty(target_ulong addr)
+static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
+ int dirty_flags)
{
- phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 1;
+ return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
}
-void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end);
+static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
+{
+ phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
+}
+
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
+ int dirty_flags);
+void cpu_tlb_update_dirty(CPUState *env);
+
+void dump_exec_info(FILE *f,
+ int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
+
+/*******************************************/
+/* host CPU ticks (if available) */
+
+#if defined(__powerpc__)
+
+static inline uint32_t get_tbl(void)
+{
+ uint32_t tbl;
+ asm volatile("mftb %0" : "=r" (tbl));
+ return tbl;
+}
+
+static inline uint32_t get_tbu(void)
+{
+ uint32_t tbl;
+ asm volatile("mftbu %0" : "=r" (tbl));
+ return tbl;
+}
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+ uint32_t l, h, h1;
+ /* NOTE: we test if wrapping has occurred */
+ do {
+ h = get_tbu();
+ l = get_tbl();
+ h1 = get_tbu();
+ } while (h != h1);
+ return ((int64_t)h << 32) | l;
+}
+
+#elif defined(__i386__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+ int64_t val;
+ asm volatile ("rdtsc" : "=A" (val));
+ return val;
+}
+
+#elif defined(__x86_64__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+ uint32_t low,high;
+ int64_t val;
+ asm volatile("rdtsc" : "=a" (low), "=d" (high));
+ val = high;
+ val <<= 32;
+ val |= low;
+ return val;
+}
+
+#elif defined(__ia64)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+ int64_t val;
+ asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
+ return val;
+}
+
+#elif defined(__s390__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+ int64_t val;
+ asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
+ return val;
+}
+
+#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
+
+static inline int64_t cpu_get_real_ticks (void)
+{
+#if defined(_LP64)
+ uint64_t rval;
+ asm volatile("rd %%tick,%0" : "=r"(rval));
+ return rval;
+#else
+ union {
+ uint64_t i64;
+ struct {
+ uint32_t high;
+ uint32_t low;
+ } i32;
+ } rval;
+ asm volatile("rd %%tick,%1; srlx %1,32,%0"
+ : "=r"(rval.i32.high), "=r"(rval.i32.low));
+ return rval.i64;
+#endif
+}
+
+#elif defined(__mips__)
+
+static inline int64_t cpu_get_real_ticks(void)
+{
+#if __mips_isa_rev >= 2
+ uint32_t count;
+ static uint32_t cyc_per_count = 0;
+
+ if (!cyc_per_count)
+ __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
+
+ __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
+ return (int64_t)(count * cyc_per_count);
+#else
+ /* FIXME */
+ static int64_t ticks = 0;
+ return ticks++;
+#endif
+}
+
+#else
+/* The host CPU doesn't have an easily accessible cycle counter.
+ Just return a monotonically increasing value. This will be
+ totally wrong, but hopefully better than nothing. */
+static inline int64_t cpu_get_real_ticks (void)
+{
+ static int64_t ticks = 0;
+ return ticks++;
+}
+#endif
+
+/* profiling */
+#ifdef CONFIG_PROFILER
+static inline int64_t profile_getclock(void)
+{
+ return cpu_get_real_ticks();
+}
+
+extern int64_t kqemu_time, kqemu_time_start;
+extern int64_t qemu_time, qemu_time_start;
+extern int64_t tlb_flush_time;
+extern int64_t kqemu_exec_count;
+extern int64_t dev_time;
+extern int64_t kqemu_ret_int_count;
+extern int64_t kqemu_ret_excp_count;
+extern int64_t kqemu_ret_intr_count;
+
+#endif
#endif /* CPU_ALL_H */