/*
* i386 emulator main execution loop
*
- * Copyright (c) 2003 Fabrice Bellard
+ * Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
#include "exec.h"
#include "disas.h"
+#if !defined(CONFIG_SOFTMMU)
+#undef EAX
+#undef ECX
+#undef EDX
+#undef EBX
+#undef ESP
+#undef EBP
+#undef ESI
+#undef EDI
+#undef EIP
+#include <signal.h>
+#include <sys/ucontext.h>
+#endif
+
int tb_invalidated_flag;
//#define DEBUG_EXEC
//#define DEBUG_SIGNAL
-#if defined(TARGET_ARM) || defined(TARGET_SPARC)
+#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
+ defined(TARGET_ALPHA)
/* XXX: unify with i386 target */
void cpu_loop_exit(void)
{
longjmp(env->jmp_env, 1);
}
#endif
+#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
+#define reg_T2
+#endif
-/* main execution loop */
-
-int cpu_exec(CPUState *env1)
+/* exit the current TB from a signal handler. The host registers are
+ restored in a state compatible with the CPU emulator
+ */
+void cpu_resume_from_signal(CPUState *env1, void *puc)
{
- int saved_T0, saved_T1, saved_T2;
- CPUState *saved_env;
-#ifdef reg_EAX
- int saved_EAX;
-#endif
-#ifdef reg_ECX
- int saved_ECX;
-#endif
-#ifdef reg_EDX
- int saved_EDX;
+#if !defined(CONFIG_SOFTMMU)
+ struct ucontext *uc = puc;
#endif
-#ifdef reg_EBX
- int saved_EBX;
+
+ env = env1;
+
+ /* XXX: restore cpu registers saved in host registers */
+
+#if !defined(CONFIG_SOFTMMU)
+ if (puc) {
+ /* XXX: use siglongjmp ? */
+ sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
+ }
#endif
-#ifdef reg_ESP
- int saved_ESP;
+ longjmp(env->jmp_env, 1);
+}
+
+
+static TranslationBlock *tb_find_slow(target_ulong pc,
+ target_ulong cs_base,
+ unsigned int flags)
+{
+ TranslationBlock *tb, **ptb1;
+ int code_gen_size;
+ unsigned int h;
+ target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
+ uint8_t *tc_ptr;
+
+ spin_lock(&tb_lock);
+
+ tb_invalidated_flag = 0;
+
+ regs_to_env(); /* XXX: do it just before cpu_gen_code() */
+
+ /* find translated block using physical mappings */
+ phys_pc = get_phys_addr_code(env, pc);
+ phys_page1 = phys_pc & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ h = tb_phys_hash_func(phys_pc);
+ ptb1 = &tb_phys_hash[h];
+ for(;;) {
+ tb = *ptb1;
+ if (!tb)
+ goto not_found;
+ if (tb->pc == pc &&
+ tb->page_addr[0] == phys_page1 &&
+ tb->cs_base == cs_base &&
+ tb->flags == flags) {
+ /* check next page if needed */
+ if (tb->page_addr[1] != -1) {
+ virt_page2 = (pc & TARGET_PAGE_MASK) +
+ TARGET_PAGE_SIZE;
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ if (tb->page_addr[1] == phys_page2)
+ goto found;
+ } else {
+ goto found;
+ }
+ }
+ ptb1 = &tb->phys_hash_next;
+ }
+ not_found:
+ /* if no translated code available, then translate it now */
+ tb = tb_alloc(pc);
+ if (!tb) {
+ /* flush must be done */
+ tb_flush(env);
+ /* cannot fail at this point */
+ tb = tb_alloc(pc);
+ /* don't forget to invalidate previous TB info */
+ tb_invalidated_flag = 1;
+ }
+ tc_ptr = code_gen_ptr;
+ tb->tc_ptr = tc_ptr;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
+ code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ }
+ tb_link_phys(tb, phys_pc, phys_page2);
+
+ found:
+ /* we add the TB in the virtual pc hash table */
+ env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
+ spin_unlock(&tb_lock);
+ return tb;
+}
+
+static inline TranslationBlock *tb_find_fast(void)
+{
+ TranslationBlock *tb;
+ target_ulong cs_base, pc;
+ unsigned int flags;
+
+ /* we record a subset of the CPU state. It will
+ always be the same before a given translated block
+ is executed. */
+#if defined(TARGET_I386)
+ flags = env->hflags;
+ flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ cs_base = env->segs[R_CS].base;
+ pc = cs_base + env->eip;
+#elif defined(TARGET_ARM)
+ flags = env->thumb | (env->vfp.vec_len << 1)
+ | (env->vfp.vec_stride << 4);
+ if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
+ flags |= (1 << 6);
+ if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
+ flags |= (1 << 7);
+ cs_base = 0;
+ pc = env->regs[15];
+#elif defined(TARGET_SPARC)
+#ifdef TARGET_SPARC64
+ // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
+ flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
+ | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
+#else
+ // FPU enable . MMU enabled . MMU no-fault . Supervisor
+ flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
+ | env->psrs;
#endif
-#ifdef reg_EBP
- int saved_EBP;
+ cs_base = env->npc;
+ pc = env->pc;
+#elif defined(TARGET_PPC)
+ flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
+ (msr_se << MSR_SE) | (msr_le << MSR_LE);
+ cs_base = 0;
+ pc = env->nip;
+#elif defined(TARGET_MIPS)
+ flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
+ cs_base = 0;
+ pc = env->PC;
+#elif defined(TARGET_M68K)
+ flags = env->fpcr & M68K_FPCR_PREC;
+ cs_base = 0;
+ pc = env->pc;
+#elif defined(TARGET_SH4)
+ flags = env->sr & (SR_MD | SR_RB);
+ cs_base = 0; /* XXXXX */
+ pc = env->pc;
+#elif defined(TARGET_ALPHA)
+ flags = env->ps;
+ cs_base = 0;
+ pc = env->pc;
+#else
+#error unsupported CPU
#endif
-#ifdef reg_ESI
- int saved_ESI;
+ tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
+ if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
+ tb->flags != flags, 0)) {
+ tb = tb_find_slow(pc, cs_base, flags);
+ /* Note: we do it here to avoid a gcc bug on Mac OS X when
+ doing it in tb_find_slow */
+ if (tb_invalidated_flag) {
+ /* as some TB could have been invalidated because
+ of memory exceptions while generating the code, we
+ must recompute the hash index here */
+ T0 = 0;
+ }
+ }
+ return tb;
+}
+
+
+/* main execution loop */
+
+int cpu_exec(CPUState *env1)
+{
+#define DECLARE_HOST_REGS 1
+#include "hostregs_helper.h"
+#if defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ uint32_t *saved_regwptr;
#endif
-#ifdef reg_EDI
- int saved_EDI;
#endif
-#ifdef __sparc__
- int saved_i7, tmp_T0;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ int saved_i7;
+ target_ulong tmp_T0;
#endif
- int code_gen_size, ret, interrupt_request;
+ int ret, interrupt_request;
void (*gen_func)(void);
- TranslationBlock *tb, **ptb;
- uint8_t *tc_ptr, *cs_base, *pc;
- unsigned int flags;
+ TranslationBlock *tb;
+ uint8_t *tc_ptr;
+
+#if defined(TARGET_I386)
+ /* handle exit of HALTED state */
+ if (env1->hflags & HF_HALTED_MASK) {
+ /* disable halt condition */
+ if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env1->eflags & IF_MASK)) {
+ env1->hflags &= ~HF_HALTED_MASK;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_PPC)
+ if (env1->halted) {
+ if (env1->msr[MSR_EE] &&
+ (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_SPARC)
+ if (env1->halted) {
+ if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env1->psret != 0)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_ARM)
+ if (env1->halted) {
+ /* An interrupt wakes the CPU even if the I and F CPSR bits are
+ set. */
+ if (env1->interrupt_request
+ & (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_MIPS)
+ if (env1->halted) {
+ if (env1->interrupt_request &
+ (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#elif defined(TARGET_ALPHA)
+ if (env1->halted) {
+ if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
+ env1->halted = 0;
+ } else {
+ return EXCP_HALTED;
+ }
+ }
+#endif
+
+ cpu_single_env = env1;
/* first we save global registers */
- saved_T0 = T0;
- saved_T1 = T1;
- saved_T2 = T2;
- saved_env = env;
+#define SAVE_HOST_REGS 1
+#include "hostregs_helper.h"
env = env1;
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
/* we also save i7 because longjmp may not restore it */
asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
#endif
#if defined(TARGET_I386)
-#ifdef reg_EAX
- saved_EAX = EAX;
- EAX = env->regs[R_EAX];
-#endif
-#ifdef reg_ECX
- saved_ECX = ECX;
- ECX = env->regs[R_ECX];
-#endif
-#ifdef reg_EDX
- saved_EDX = EDX;
- EDX = env->regs[R_EDX];
-#endif
-#ifdef reg_EBX
- saved_EBX = EBX;
- EBX = env->regs[R_EBX];
-#endif
-#ifdef reg_ESP
- saved_ESP = ESP;
- ESP = env->regs[R_ESP];
-#endif
-#ifdef reg_EBP
- saved_EBP = EBP;
- EBP = env->regs[R_EBP];
-#endif
-#ifdef reg_ESI
- saved_ESI = ESI;
- ESI = env->regs[R_ESI];
-#endif
-#ifdef reg_EDI
- saved_EDI = EDI;
- EDI = env->regs[R_EDI];
-#endif
-
+ env_to_regs();
/* put eflags in CPU temporary format */
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((env->eflags >> 10) & 1));
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ARM)
- {
- unsigned int psr;
- psr = env->cpsr;
- env->CF = (psr >> 29) & 1;
- env->NZF = (psr & 0xc0000000) ^ 0x40000000;
- env->VF = (psr << 3) & 0x80000000;
- env->cpsr = psr & ~0xf0000000;
- }
#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ saved_regwptr = REGWPTR;
+#endif
#elif defined(TARGET_PPC)
+#elif defined(TARGET_M68K)
+ env->cc_op = CC_OP_FLAGS;
+ env->cc_dest = env->sr & 0xf;
+ env->cc_x = (env->sr >> 4) & 1;
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+ /* XXXXX */
+#elif defined(TARGET_ALPHA)
+ env_to_regs();
#else
#error unsupported target CPU
#endif
/* prepare setjmp context for exception handling */
for(;;) {
if (setjmp(env->jmp_env) == 0) {
+ env->current_tb = NULL;
/* if an exception is pending, we execute it here */
if (env->exception_index >= 0) {
if (env->exception_index >= EXCP_INTERRUPT) {
break;
} else if (env->user_mode_only) {
/* if user mode only, we simulate a fake exception
- which will be hanlded outside the cpu execution
+ which will be handled outside the cpu execution
loop */
#if defined(TARGET_I386)
do_interrupt_user(env->exception_index,
env->exception_is_int,
env->error_code,
env->exception_next_eip, 0);
+ /* successfully delivered */
+ env->old_exception = -1;
#elif defined(TARGET_PPC)
do_interrupt(env);
+#elif defined(TARGET_MIPS)
+ do_interrupt(env);
+#elif defined(TARGET_SPARC)
+ do_interrupt(env->exception_index);
+#elif defined(TARGET_ARM)
+ do_interrupt(env);
+#elif defined(TARGET_SH4)
+ do_interrupt(env);
+#elif defined(TARGET_ALPHA)
+ do_interrupt(env);
#endif
}
env->exception_index = -1;
+ }
+#ifdef USE_KQEMU
+ if (kqemu_is_ok(env) && env->interrupt_request == 0) {
+ int ret;
+ env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+ ret = kqemu_cpu_exec(env);
+ /* put eflags in CPU temporary format */
+ CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ DF = 1 - (2 * ((env->eflags >> 10) & 1));
+ CC_OP = CC_OP_EFLAGS;
+ env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
+ if (ret == 1) {
+ /* exception */
+ longjmp(env->jmp_env, 1);
+ } else if (ret == 2) {
+ /* softmmu execution needed */
+ } else {
+ if (env->interrupt_request != 0) {
+ /* hardware interrupt will be executed just after */
+ } else {
+ /* otherwise, we restart */
+ longjmp(env->jmp_env, 1);
+ }
+ }
}
+#endif
+
T0 = 0; /* force lookup of first TB */
for(;;) {
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
/* g1 can be modified by some libc? functions */
tmp_T0 = T0;
#endif
interrupt_request = env->interrupt_request;
if (__builtin_expect(interrupt_request, 0)) {
+ if (interrupt_request & CPU_INTERRUPT_DEBUG) {
+ env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
+ env->exception_index = EXCP_DEBUG;
+ cpu_loop_exit();
+ }
#if defined(TARGET_I386)
- /* if hardware interrupt pending, we execute it */
- if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ if ((interrupt_request & CPU_INTERRUPT_SMI) &&
+ !(env->hflags & HF_SMM_MASK)) {
+ env->interrupt_request &= ~CPU_INTERRUPT_SMI;
+ do_smm_enter();
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK) &&
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
int intno;
- intno = cpu_x86_get_pic_interrupt(env);
- if (loglevel) {
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ intno = cpu_get_pic_interrupt(env);
+ if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
}
do_interrupt(intno, 0, 0, 0, 1);
- env->interrupt_request &= ~CPU_INTERRUPT_HARD;
/* ensure that no TB jump will be modified as
the program flow was changed */
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
tmp_T0 = 0;
#else
T0 = 0;
#endif
}
#elif defined(TARGET_PPC)
- if ((interrupt_request & CPU_INTERRUPT_HARD)) {
- do_queue_exception(EXCP_EXTERNAL);
- if (check_exception_state(env))
- do_interrupt(env);
- env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+#if 0
+ if ((interrupt_request & CPU_INTERRUPT_RESET)) {
+ cpu_ppc_reset(env);
+ }
+#endif
+ if (interrupt_request & CPU_INTERRUPT_HARD) {
+ ppc_hw_interrupt(env);
+ if (env->pending_interrupts == 0)
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+#elif defined(TARGET_MIPS)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
+ (env->CP0_Status & (1 << CP0St_IE)) &&
+ !(env->CP0_Status & (1 << CP0St_EXL)) &&
+ !(env->CP0_Status & (1 << CP0St_ERL)) &&
+ !(env->hflags & MIPS_HFLAG_DM)) {
+ /* Raise it */
+ env->exception_index = EXCP_EXT_INTERRUPT;
+ env->error_code = 0;
+ do_interrupt(env);
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+#elif defined(TARGET_SPARC)
+ if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (env->psret != 0)) {
+ int pil = env->interrupt_index & 15;
+ int type = env->interrupt_index & 0xf0;
+
+ if (((type == TT_EXTINT) &&
+ (pil == 15 || pil > env->psrpil)) ||
+ type != TT_EXTINT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ do_interrupt(env->interrupt_index);
+ env->interrupt_index = 0;
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
+ }
+ } else if (interrupt_request & CPU_INTERRUPT_TIMER) {
+ //do_interrupt(0, 0, 0, 0, 0);
+ env->interrupt_request &= ~CPU_INTERRUPT_TIMER;
+ } else if (interrupt_request & CPU_INTERRUPT_HALT) {
+ env->interrupt_request &= ~CPU_INTERRUPT_HALT;
+ env->halted = 1;
+ env->exception_index = EXCP_HLT;
+ cpu_loop_exit();
+ }
+#elif defined(TARGET_ARM)
+ if (interrupt_request & CPU_INTERRUPT_FIQ
+ && !(env->uncached_cpsr & CPSR_F)) {
+ env->exception_index = EXCP_FIQ;
+ do_interrupt(env);
+ }
+ if (interrupt_request & CPU_INTERRUPT_HARD
+ && !(env->uncached_cpsr & CPSR_I)) {
+ env->exception_index = EXCP_IRQ;
+ do_interrupt(env);
}
+#elif defined(TARGET_SH4)
+ /* XXXXX */
+#elif defined(TARGET_ALPHA)
+ if (interrupt_request & CPU_INTERRUPT_HARD) {
+ do_interrupt(env);
+ }
+#endif
+ /* Don't use the cached interupt_request value,
+ do_interrupt may have updated the EXITTB flag. */
+ if (env->interrupt_request & CPU_INTERRUPT_EXITTB) {
+ env->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
+ /* ensure that no TB jump will be modified as
+ the program flow was changed */
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
#endif
+ }
if (interrupt_request & CPU_INTERRUPT_EXIT) {
env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
env->exception_index = EXCP_INTERRUPT;
}
}
#ifdef DEBUG_EXEC
- if (loglevel) {
+ if ((loglevel & CPU_LOG_TB_CPU)) {
#if defined(TARGET_I386)
/* restore flags in standard format */
+#ifdef reg_EAX
env->regs[R_EAX] = EAX;
+#endif
+#ifdef reg_EBX
env->regs[R_EBX] = EBX;
+#endif
+#ifdef reg_ECX
env->regs[R_ECX] = ECX;
+#endif
+#ifdef reg_EDX
env->regs[R_EDX] = EDX;
+#endif
+#ifdef reg_ESI
env->regs[R_ESI] = ESI;
+#endif
+#ifdef reg_EDI
env->regs[R_EDI] = EDI;
+#endif
+#ifdef reg_EBP
env->regs[R_EBP] = EBP;
+#endif
+#ifdef reg_ESP
env->regs[R_ESP] = ESP;
+#endif
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
- cpu_x86_dump_state(env, logfile, X86_DUMP_CCOP);
+ cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ARM)
- env->cpsr = compute_cpsr();
- cpu_arm_dump_state(env, logfile, 0);
- env->cpsr &= ~0xf0000000;
+ cpu_dump_state(env, logfile, fprintf, 0);
#elif defined(TARGET_SPARC)
- cpu_sparc_dump_state (env, logfile, 0);
+ REGWPTR = env->regbase + (env->cwp * 16);
+ env->regwptr = REGWPTR;
+ cpu_dump_state(env, logfile, fprintf, 0);
#elif defined(TARGET_PPC)
- cpu_ppc_dump_state(env, logfile, 0);
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_M68K)
+ cpu_m68k_flush_flags(env, env->cc_op);
+ env->cc_op = CC_OP_FLAGS;
+ env->sr = (env->sr & 0xffe0)
+ | env->cc_dest | (env->cc_x << 4);
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_MIPS)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_SH4)
+ cpu_dump_state(env, logfile, fprintf, 0);
+#elif defined(TARGET_ALPHA)
+ cpu_dump_state(env, logfile, fprintf, 0);
#else
#error unsupported target CPU
#endif
}
#endif
- /* we record a subset of the CPU state. It will
- always be the same before a given translated block
- is executed. */
-#if defined(TARGET_I386)
- flags = env->hflags;
- flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
- cs_base = env->segs[R_CS].base;
- pc = cs_base + env->eip;
-#elif defined(TARGET_ARM)
- flags = 0;
- cs_base = 0;
- pc = (uint8_t *)env->regs[15];
-#elif defined(TARGET_SPARC)
- flags = 0;
- cs_base = (uint8_t *)env->npc;
- pc = (uint8_t *) env->pc;
-#elif defined(TARGET_PPC)
- flags = 0;
- cs_base = 0;
- pc = (uint8_t *)env->nip;
-#else
-#error unsupported CPU
-#endif
- tb = tb_find(&ptb, (unsigned long)pc, (unsigned long)cs_base,
- flags);
- if (!tb) {
- TranslationBlock **ptb1;
- unsigned int h;
- target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
-
-
- spin_lock(&tb_lock);
-
- tb_invalidated_flag = 0;
-
- /* find translated block using physical mappings */
- phys_pc = get_phys_addr_code(env, (unsigned long)pc);
- phys_page1 = phys_pc & TARGET_PAGE_MASK;
- phys_page2 = -1;
- h = tb_phys_hash_func(phys_pc);
- ptb1 = &tb_phys_hash[h];
- for(;;) {
- tb = *ptb1;
- if (!tb)
- goto not_found;
- if (tb->pc == (unsigned long)pc &&
- tb->page_addr[0] == phys_page1 &&
- tb->cs_base == (unsigned long)cs_base &&
- tb->flags == flags) {
- /* check next page if needed */
- if (tb->page_addr[1] != -1) {
- virt_page2 = ((unsigned long)pc & TARGET_PAGE_MASK) +
- TARGET_PAGE_SIZE;
- phys_page2 = get_phys_addr_code(env, virt_page2);
- if (tb->page_addr[1] == phys_page2)
- goto found;
- } else {
- goto found;
- }
- }
- ptb1 = &tb->phys_hash_next;
- }
- not_found:
- /* if no translated code available, then translate it now */
- tb = tb_alloc((unsigned long)pc);
- if (!tb) {
- /* flush must be done */
- tb_flush(env);
- /* cannot fail at this point */
- tb = tb_alloc((unsigned long)pc);
- /* don't forget to invalidate previous TB info */
- ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
- T0 = 0;
- }
- tc_ptr = code_gen_ptr;
- tb->tc_ptr = tc_ptr;
- tb->cs_base = (unsigned long)cs_base;
- tb->flags = flags;
- cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
- code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
-
- /* check next page if needed */
- virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
- phys_page2 = -1;
- if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
- phys_page2 = get_phys_addr_code(env, virt_page2);
- }
- tb_link_phys(tb, phys_pc, phys_page2);
-
- found:
- if (tb_invalidated_flag) {
- /* as some TB could have been invalidated because
- of memory exceptions while generating the code, we
- must recompute the hash index here */
- ptb = &tb_hash[tb_hash_func((unsigned long)pc)];
- while (*ptb != NULL)
- ptb = &(*ptb)->hash_next;
- T0 = 0;
- }
- /* we add the TB in the virtual pc hash table */
- *ptb = tb;
- tb->hash_next = NULL;
- tb_link(tb);
- spin_unlock(&tb_lock);
- }
+ tb = tb_find_fast();
#ifdef DEBUG_EXEC
- if (loglevel) {
- fprintf(logfile, "Trace 0x%08lx [0x%08lx] %s\n",
- (long)tb->tc_ptr, (long)tb->pc,
- lookup_symbol((void *)tb->pc));
+ if ((loglevel & CPU_LOG_EXEC)) {
+ fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
+ (long)tb->tc_ptr, tb->pc,
+ lookup_symbol(tb->pc));
}
#endif
-#ifdef __sparc__
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
T0 = tmp_T0;
#endif
- /* see if we can patch the calling TB. */
- if (T0 != 0) {
+ /* see if we can patch the calling TB. When the TB
+ spans two pages, we cannot safely do a direct
+ jump. */
+ {
+ if (T0 != 0 &&
+#if USE_KQEMU
+ (env->kqemu_enabled != 2) &&
+#endif
+ tb->page_addr[1] == -1
+#if defined(TARGET_I386) && defined(USE_CODE_COPY)
+ && (tb->cflags & CF_CODE_COPY) ==
+ (((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
+#endif
+ ) {
spin_lock(&tb_lock);
- tb_add_jump((TranslationBlock *)(T0 & ~3), T0 & 3, tb);
+ tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
+#if defined(USE_CODE_COPY)
+ /* propagates the FP use info */
+ ((TranslationBlock *)(T0 & ~3))->cflags |=
+ (tb->cflags & CF_FP_USED);
+#endif
spin_unlock(&tb_lock);
}
+ }
tc_ptr = tb->tc_ptr;
env->current_tb = tb;
/* execute the generated code */
"mov %%o7,%%i0"
: /* no outputs */
: "r" (gen_func)
- : "i0", "i1", "i2", "i3", "i4", "i5");
+ : "i0", "i1", "i2", "i3", "i4", "i5",
+ "o0", "o1", "o2", "o3", "o4", "o5",
+ "l0", "l1", "l2", "l3", "l4", "l5",
+ "l6", "l7");
#elif defined(__arm__)
asm volatile ("mov pc, %0\n\t"
".global exec_loop\n\t"
: /* no outputs */
: "r" (gen_func)
: "r1", "r2", "r3", "r8", "r9", "r10", "r12", "r14");
+#elif defined(TARGET_I386) && defined(USE_CODE_COPY)
+{
+ if (!(tb->cflags & CF_CODE_COPY)) {
+ if ((tb->cflags & CF_FP_USED) && env->native_fp_regs) {
+ save_native_fp_state(env);
+ }
+ gen_func();
+ } else {
+ if ((tb->cflags & CF_FP_USED) && !env->native_fp_regs) {
+ restore_native_fp_state(env);
+ }
+ /* we work with native eflags */
+ CC_SRC = cc_table[CC_OP].compute_all();
+ CC_OP = CC_OP_EFLAGS;
+ asm(".globl exec_loop\n"
+ "\n"
+ "debug1:\n"
+ " pushl %%ebp\n"
+ " fs movl %10, %9\n"
+ " fs movl %11, %%eax\n"
+ " andl $0x400, %%eax\n"
+ " fs orl %8, %%eax\n"
+ " pushl %%eax\n"
+ " popf\n"
+ " fs movl %%esp, %12\n"
+ " fs movl %0, %%eax\n"
+ " fs movl %1, %%ecx\n"
+ " fs movl %2, %%edx\n"
+ " fs movl %3, %%ebx\n"
+ " fs movl %4, %%esp\n"
+ " fs movl %5, %%ebp\n"
+ " fs movl %6, %%esi\n"
+ " fs movl %7, %%edi\n"
+ " fs jmp *%9\n"
+ "exec_loop:\n"
+ " fs movl %%esp, %4\n"
+ " fs movl %12, %%esp\n"
+ " fs movl %%eax, %0\n"
+ " fs movl %%ecx, %1\n"
+ " fs movl %%edx, %2\n"
+ " fs movl %%ebx, %3\n"
+ " fs movl %%ebp, %5\n"
+ " fs movl %%esi, %6\n"
+ " fs movl %%edi, %7\n"
+ " pushf\n"
+ " popl %%eax\n"
+ " movl %%eax, %%ecx\n"
+ " andl $0x400, %%ecx\n"
+ " shrl $9, %%ecx\n"
+ " andl $0x8d5, %%eax\n"
+ " fs movl %%eax, %8\n"
+ " movl $1, %%eax\n"
+ " subl %%ecx, %%eax\n"
+ " fs movl %%eax, %11\n"
+ " fs movl %9, %%ebx\n" /* get T0 value */
+ " popl %%ebp\n"
+ :
+ : "m" (*(uint8_t *)offsetof(CPUState, regs[0])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[1])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[2])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[3])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[4])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[5])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[6])),
+ "m" (*(uint8_t *)offsetof(CPUState, regs[7])),
+ "m" (*(uint8_t *)offsetof(CPUState, cc_src)),
+ "m" (*(uint8_t *)offsetof(CPUState, tmp0)),
+ "a" (gen_func),
+ "m" (*(uint8_t *)offsetof(CPUState, df)),
+ "m" (*(uint8_t *)offsetof(CPUState, saved_esp))
+ : "%ecx", "%edx"
+ );
+ }
+}
+#elif defined(__ia64)
+ struct fptr {
+ void *ip;
+ void *gp;
+ } fp;
+
+ fp.ip = tc_ptr;
+ fp.gp = code_gen_buffer + 2 * (1 << 20);
+ (*(void (*)(void)) &fp)();
#else
gen_func();
#endif
/* do not allow linking to another block */
T0 = 0;
}
+#endif
+#if defined(USE_KQEMU)
+#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
+ if (kqemu_is_ok(env) &&
+ (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
+ cpu_loop_exit();
+ }
#endif
}
} else {
+ env_to_regs();
}
} /* for(;;) */
#if defined(TARGET_I386)
+#if defined(USE_CODE_COPY)
+ if (env->native_fp_regs) {
+ save_native_fp_state(env);
+ }
+#endif
/* restore flags in standard format */
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
-
- /* restore global registers */
-#ifdef reg_EAX
- EAX = saved_EAX;
-#endif
-#ifdef reg_ECX
- ECX = saved_ECX;
-#endif
-#ifdef reg_EDX
- EDX = saved_EDX;
-#endif
-#ifdef reg_EBX
- EBX = saved_EBX;
-#endif
-#ifdef reg_ESP
- ESP = saved_ESP;
-#endif
-#ifdef reg_EBP
- EBP = saved_EBP;
-#endif
-#ifdef reg_ESI
- ESI = saved_ESI;
-#endif
-#ifdef reg_EDI
- EDI = saved_EDI;
-#endif
#elif defined(TARGET_ARM)
- env->cpsr = compute_cpsr();
+ /* XXX: Save/restore host fpu exception state?. */
#elif defined(TARGET_SPARC)
+#if defined(reg_REGWPTR)
+ REGWPTR = saved_regwptr;
+#endif
#elif defined(TARGET_PPC)
+#elif defined(TARGET_M68K)
+ cpu_m68k_flush_flags(env, env->cc_op);
+ env->cc_op = CC_OP_FLAGS;
+ env->sr = (env->sr & 0xffe0)
+ | env->cc_dest | (env->cc_x << 4);
+#elif defined(TARGET_MIPS)
+#elif defined(TARGET_SH4)
+#elif defined(TARGET_ALPHA)
+ /* XXXXX */
#else
#error unsupported target CPU
#endif
-#ifdef __sparc__
+
+ /* restore global registers */
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
asm volatile ("mov %0, %%i7" : : "r" (saved_i7));
#endif
- T0 = saved_T0;
- T1 = saved_T1;
- T2 = saved_T2;
- env = saved_env;
+#include "hostregs_helper.h"
+
+ /* fail safe : never use cpu_single_env outside cpu_exec() */
+ cpu_single_env = NULL;
return ret;
}
+/* must only be called from the generated code as an exception can be
+ generated */
+void tb_invalidate_page_range(target_ulong start, target_ulong end)
+{
+ /* XXX: cannot enable it yet because it yields to MMU exception
+ where NIP != read address on PowerPC */
+#if 0
+ target_ulong phys_addr;
+ phys_addr = get_phys_addr_code(env, start);
+ tb_invalidate_phys_page_range(phys_addr, phys_addr + end - start, 0);
+#endif
+}
+
#if defined(TARGET_I386) && defined(CONFIG_USER_ONLY)
void cpu_x86_load_seg(CPUX86State *s, int seg_reg, int selector)
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
selector &= 0xffff;
cpu_x86_load_seg_cache(env, seg_reg, selector,
- (uint8_t *)(selector << 4), 0xffff, 0);
+ (selector << 4), 0xffff, 0);
} else {
load_seg(seg_reg, selector);
}
saved_env = env;
env = s;
- helper_fsave(ptr, data32);
+ helper_fsave((target_ulong)ptr, data32);
env = saved_env;
}
saved_env = env;
env = s;
- helper_frstor(ptr, data32);
+ helper_frstor((target_ulong)ptr, data32);
env = saved_env;
}
#endif /* TARGET_I386 */
-#undef EAX
-#undef ECX
-#undef EDX
-#undef EBX
-#undef ESP
-#undef EBP
-#undef ESI
-#undef EDI
-#undef EIP
-#include <signal.h>
-#include <sys/ucontext.h>
+#if !defined(CONFIG_SOFTMMU)
#if defined(TARGET_I386)
write caused the exception and otherwise 0'. 'old_set' is the
signal set which should be restored */
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set)
+ int is_write, sigset_t *old_set,
+ void *puc)
{
TranslationBlock *tb;
int ret;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
+ qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
- if (is_write && page_unprotect(address)) {
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
return 1;
}
+
/* see if it is an MMU fault */
ret = cpu_x86_handle_mmu_fault(env, address, is_write,
((env->hflags & HF_CPL_MASK) == 3), 0);
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
- cpu_restore_state(tb, env, pc);
+ cpu_restore_state(tb, env, pc, puc);
}
if (ret == 1) {
#if 0
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
- raise_exception_err(EXCP0E_PAGE, env->error_code);
+ raise_exception_err(env->exception_index, env->error_code);
} else {
/* activate soft MMU for this block */
env->hflags |= HF_SOFTMMU_MASK;
- sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
+ cpu_resume_from_signal(env, puc);
}
/* never comes here */
return 1;
#elif defined(TARGET_ARM)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set)
+ int is_write, sigset_t *old_set,
+ void *puc)
{
- /* XXX: do more */
- return 0;
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_arm_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
}
#elif defined(TARGET_SPARC)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set)
+ int is_write, sigset_t *old_set,
+ void *puc)
{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
/* XXX: locking issue */
- if (is_write && page_unprotect(address)) {
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
return 1;
}
- return 0;
+ /* see if it is an MMU fault */
+ ret = cpu_sparc_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
}
#elif defined (TARGET_PPC)
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set)
+ int is_write, sigset_t *old_set,
+ void *puc)
{
TranslationBlock *tb;
int ret;
-#if 1
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#endif
#if defined(DEBUG_SIGNAL)
printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
- if (is_write && page_unprotect(address)) {
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
return 1;
}
/* see if it is an MMU fault */
- ret = cpu_ppc_handle_mmu_fault(env, address, is_write | ACCESS_INT, msr_pr, 0);
+ ret = cpu_ppc_handle_mmu_fault(env, address, is_write, msr_pr, 0);
if (ret < 0)
return 0; /* not an MMU fault */
if (ret == 0)
if (tb) {
/* the PC is inside the translated code. It means that we have
a virtual CPU fault */
- cpu_restore_state(tb, env, pc);
+ cpu_restore_state(tb, env, pc, puc);
}
if (ret == 1) {
#if 0
#endif
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- do_queue_exception_err(env->exception_index, env->error_code);
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ do_raise_exception_err(env->exception_index, env->error_code);
} else {
/* activate soft MMU for this block */
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined(TARGET_M68K)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(address, pc, puc)) {
+ return 1;
+ }
+ /* see if it is an MMU fault */
+ ret = cpu_m68k_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_MIPS)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_mips_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+ if (ret == 1) {
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
+ do_raise_exception_err(env->exception_index, env->error_code);
+ } else {
+ /* activate soft MMU for this block */
+ cpu_resume_from_signal(env, puc);
+ }
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_SH4)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_sh4_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
}
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
+ /* never comes here */
+ return 1;
+}
+
+#elif defined (TARGET_ALPHA)
+static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
+ int is_write, sigset_t *old_set,
+ void *puc)
+{
+ TranslationBlock *tb;
+ int ret;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+#if defined(DEBUG_SIGNAL)
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ pc, address, is_write, *(unsigned long *)old_set);
+#endif
+ /* XXX: locking issue */
+ if (is_write && page_unprotect(h2g(address), pc, puc)) {
+ return 1;
+ }
+
+ /* see if it is an MMU fault */
+ ret = cpu_alpha_handle_mmu_fault(env, address, is_write, 1, 0);
+ if (ret < 0)
+ return 0; /* not an MMU fault */
+ if (ret == 0)
+ return 1; /* the MMU fault was handled without causing real CPU fault */
+
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, puc);
+ }
+#if 0
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ env->nip, env->error_code, tb);
+#endif
+ /* we restore the process signal mask as the sigreturn should
+ do it (XXX: use sigsetjmp) */
+ sigprocmask(SIG_SETMASK, old_set, NULL);
+ cpu_loop_exit();
/* never comes here */
return 1;
}
#if defined(__i386__)
-int cpu_signal_handler(int host_signum, struct siginfo *info,
+#if defined(__APPLE__)
+# include <sys/ucontext.h>
+
+# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
+# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
+# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
+#else
+# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
+# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
+# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
+#endif
+
+#if defined(USE_CODE_COPY)
+static void cpu_send_trap(unsigned long pc, int trap,
+ struct ucontext *uc)
+{
+ TranslationBlock *tb;
+
+ if (cpu_single_env)
+ env = cpu_single_env; /* XXX: find a correct solution for multithread */
+ /* now we have a real cpu fault */
+ tb = tb_find_pc(pc);
+ if (tb) {
+ /* the PC is inside the translated code. It means that we have
+ a virtual CPU fault */
+ cpu_restore_state(tb, env, pc, uc);
+ }
+ sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
+ raise_exception_err(trap, env->error_code);
+}
+#endif
+
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
+ siginfo_t *info = pinfo;
struct ucontext *uc = puc;
unsigned long pc;
-
+ int trapno;
+
#ifndef REG_EIP
/* for glibc 2.1 */
#define REG_EIP EIP
#define REG_ERR ERR
#define REG_TRAPNO TRAPNO
#endif
- pc = uc->uc_mcontext.gregs[REG_EIP];
+ pc = EIP_sig(uc);
+ trapno = TRAP_sig(uc);
+#if defined(TARGET_I386) && defined(USE_CODE_COPY)
+ if (trapno == 0x00 || trapno == 0x05) {
+ /* send division by zero or bound exception */
+ cpu_send_trap(pc, trapno, uc);
+ return 1;
+ } else
+#endif
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ trapno == 0xe ?
+ (ERROR_sig(uc) >> 1) & 1 : 0,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__x86_64__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+
+ pc = uc->uc_mcontext.gregs[REG_RIP];
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
(uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
- &uc->uc_sigmask);
+ &uc->uc_sigmask, puc);
}
-#elif defined(__powerpc)
+#elif defined(__powerpc__)
-int cpu_signal_handler(int host_signum, struct siginfo *info,
+/***********************************************************************
+ * signal context platform-specific definitions
+ * From Wine
+ */
+#ifdef linux
+/* All Registers access - only for local access */
+# define REG_sig(reg_name, context) ((context)->uc_mcontext.regs->reg_name)
+/* Gpr Registers access */
+# define GPR_sig(reg_num, context) REG_sig(gpr[reg_num], context)
+# define IAR_sig(context) REG_sig(nip, context) /* Program counter */
+# define MSR_sig(context) REG_sig(msr, context) /* Machine State Register (Supervisor) */
+# define CTR_sig(context) REG_sig(ctr, context) /* Count register */
+# define XER_sig(context) REG_sig(xer, context) /* User's integer exception register */
+# define LR_sig(context) REG_sig(link, context) /* Link register */
+# define CR_sig(context) REG_sig(ccr, context) /* Condition register */
+/* Float Registers access */
+# define FLOAT_sig(reg_num, context) (((double*)((char*)((context)->uc_mcontext.regs+48*4)))[reg_num])
+# define FPSCR_sig(context) (*(int*)((char*)((context)->uc_mcontext.regs+(48+32*2)*4)))
+/* Exception Registers access */
+# define DAR_sig(context) REG_sig(dar, context)
+# define DSISR_sig(context) REG_sig(dsisr, context)
+# define TRAP_sig(context) REG_sig(trap, context)
+#endif /* linux */
+
+#ifdef __APPLE__
+# include <sys/ucontext.h>
+typedef struct ucontext SIGCONTEXT;
+/* All Registers access - only for local access */
+# define REG_sig(reg_name, context) ((context)->uc_mcontext->ss.reg_name)
+# define FLOATREG_sig(reg_name, context) ((context)->uc_mcontext->fs.reg_name)
+# define EXCEPREG_sig(reg_name, context) ((context)->uc_mcontext->es.reg_name)
+# define VECREG_sig(reg_name, context) ((context)->uc_mcontext->vs.reg_name)
+/* Gpr Registers access */
+# define GPR_sig(reg_num, context) REG_sig(r##reg_num, context)
+# define IAR_sig(context) REG_sig(srr0, context) /* Program counter */
+# define MSR_sig(context) REG_sig(srr1, context) /* Machine State Register (Supervisor) */
+# define CTR_sig(context) REG_sig(ctr, context)
+# define XER_sig(context) REG_sig(xer, context) /* Link register */
+# define LR_sig(context) REG_sig(lr, context) /* User's integer exception register */
+# define CR_sig(context) REG_sig(cr, context) /* Condition register */
+/* Float Registers access */
+# define FLOAT_sig(reg_num, context) FLOATREG_sig(fpregs[reg_num], context)
+# define FPSCR_sig(context) ((double)FLOATREG_sig(fpscr, context))
+/* Exception Registers access */
+# define DAR_sig(context) EXCEPREG_sig(dar, context) /* Fault registers for coredump */
+# define DSISR_sig(context) EXCEPREG_sig(dsisr, context)
+# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
+#endif /* __APPLE__ */
+
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
+ siginfo_t *info = pinfo;
struct ucontext *uc = puc;
- struct pt_regs *regs = uc->uc_mcontext.regs;
unsigned long pc;
int is_write;
- pc = regs->nip;
+ pc = IAR_sig(uc);
is_write = 0;
#if 0
/* ppc 4xx case */
- if (regs->dsisr & 0x00800000)
+ if (DSISR_sig(uc) & 0x00800000)
is_write = 1;
#else
- if (regs->trap != 0x400 && (regs->dsisr & 0x02000000))
+ if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
is_write = 1;
#endif
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
- is_write, &uc->uc_sigmask);
+ is_write, &uc->uc_sigmask, puc);
}
#elif defined(__alpha__)
-int cpu_signal_handler(int host_signum, struct siginfo *info,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
+ siginfo_t *info = pinfo;
struct ucontext *uc = puc;
uint32_t *pc = uc->uc_mcontext.sc_pc;
uint32_t insn = *pc;
}
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
- is_write, &uc->uc_sigmask);
+ is_write, &uc->uc_sigmask, puc);
}
#elif defined(__sparc__)
-int cpu_signal_handler(int host_signum, struct siginfo *info,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
+ siginfo_t *info = pinfo;
uint32_t *regs = (uint32_t *)(info + 1);
void *sigmask = (regs + 20);
unsigned long pc;
}
}
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
- is_write, sigmask);
+ is_write, sigmask, NULL);
}
#elif defined(__arm__)
-int cpu_signal_handler(int host_signum, struct siginfo *info,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
+ siginfo_t *info = pinfo;
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
is_write = 0;
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write,
- &uc->uc_sigmask);
+ &uc->uc_sigmask, puc);
}
#elif defined(__mc68000)
-int cpu_signal_handler(int host_signum, struct siginfo *info,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
+ siginfo_t *info = pinfo;
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
is_write = 0;
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write,
- &uc->uc_sigmask);
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__ia64)
+
+#ifndef __ISR_VALID
+ /* This ought to be in <bits/siginfo.h>... */
+# define __ISR_VALID 1
+#endif
+
+int cpu_signal_handler(int host_signum, void *pinfo, void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long ip;
+ int is_write = 0;
+
+ ip = uc->uc_mcontext.sc_ip;
+ switch (host_signum) {
+ case SIGILL:
+ case SIGFPE:
+ case SIGSEGV:
+ case SIGBUS:
+ case SIGTRAP:
+ if (info->si_code && (info->si_segvflags & __ISR_VALID))
+ /* ISR.W (write-access) is bit 33: */
+ is_write = (info->si_isr >> 33) & 1;
+ break;
+
+ default:
+ break;
+ }
+ return handle_cpu_signal(ip, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
+}
+
+#elif defined(__s390__)
+
+int cpu_signal_handler(int host_signum, void *pinfo,
+ void *puc)
+{
+ siginfo_t *info = pinfo;
+ struct ucontext *uc = puc;
+ unsigned long pc;
+ int is_write;
+
+ pc = uc->uc_mcontext.psw.addr;
+ /* XXX: compute is_write */
+ is_write = 0;
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ is_write,
+ &uc->uc_sigmask, puc);
}
#else
#error host CPU specific signal handler needed
#endif
+
+#endif /* !defined(CONFIG_SOFTMMU) */