/*
* i386 emulator main execution loop
- *
+ *
* Copyright (c) 2003-2005 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
//#define DEBUG_EXEC
//#define DEBUG_SIGNAL
-#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_M68K) || \
- defined(TARGET_ALPHA)
-/* XXX: unify with i386 target */
void cpu_loop_exit(void)
{
+ /* NOTE: the register at this point must be saved by hand because
+ longjmp restore them */
+ regs_to_env();
longjmp(env->jmp_env, 1);
}
-#endif
+
#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
#define reg_T2
#endif
/* exit the current TB from a signal handler. The host registers are
restored in a state compatible with the CPU emulator
*/
-void cpu_resume_from_signal(CPUState *env1, void *puc)
+void cpu_resume_from_signal(CPUState *env1, void *puc)
{
#if !defined(CONFIG_SOFTMMU)
struct ucontext *uc = puc;
static TranslationBlock *tb_find_slow(target_ulong pc,
target_ulong cs_base,
- unsigned int flags)
+ uint64_t flags)
{
TranslationBlock *tb, **ptb1;
int code_gen_size;
unsigned int h;
target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
uint8_t *tc_ptr;
-
+
spin_lock(&tb_lock);
tb_invalidated_flag = 0;
-
+
regs_to_env(); /* XXX: do it just before cpu_gen_code() */
-
+
/* find translated block using physical mappings */
phys_pc = get_phys_addr_code(env, pc);
phys_page1 = phys_pc & TARGET_PAGE_MASK;
tb = *ptb1;
if (!tb)
goto not_found;
- if (tb->pc == pc &&
+ if (tb->pc == pc &&
tb->page_addr[0] == phys_page1 &&
- tb->cs_base == cs_base &&
+ tb->cs_base == cs_base &&
tb->flags == flags) {
/* check next page if needed */
if (tb->page_addr[1] != -1) {
- virt_page2 = (pc & TARGET_PAGE_MASK) +
+ virt_page2 = (pc & TARGET_PAGE_MASK) +
TARGET_PAGE_SIZE;
phys_page2 = get_phys_addr_code(env, virt_page2);
if (tb->page_addr[1] == phys_page2)
tb->flags = flags;
cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
-
+
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
phys_page2 = -1;
phys_page2 = get_phys_addr_code(env, virt_page2);
}
tb_link_phys(tb, phys_pc, phys_page2);
-
+
found:
/* we add the TB in the virtual pc hash table */
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
{
TranslationBlock *tb;
target_ulong cs_base, pc;
- unsigned int flags;
+ uint64_t flags;
/* we record a subset of the CPU state. It will
always be the same before a given translated block
#if defined(TARGET_I386)
flags = env->hflags;
flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ flags |= env->intercept;
cs_base = env->segs[R_CS].base;
pc = cs_base + env->eip;
#elif defined(TARGET_ARM)
flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
| (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
#else
- // FPU enable . MMU enabled . MMU no-fault . Supervisor
- flags = (env->psref << 3) | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
+ // FPU enable . MMU Boot . MMU enabled . MMU no-fault . Supervisor
+ flags = (env->psref << 4) | (((env->mmuregs[0] & MMU_BM) >> 14) << 3)
+ | ((env->mmuregs[0] & (MMU_E | MMU_NF)) << 1)
| env->psrs;
#endif
cs_base = env->npc;
pc = env->pc;
#elif defined(TARGET_PPC)
- flags = (msr_pr << MSR_PR) | (msr_fp << MSR_FP) |
- (msr_se << MSR_SE) | (msr_le << MSR_LE);
+ flags = env->hflags;
cs_base = 0;
pc = env->nip;
#elif defined(TARGET_MIPS)
flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
cs_base = 0;
- pc = env->PC;
+ pc = env->PC[env->current_tc];
#elif defined(TARGET_M68K)
flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
| (env->sr & SR_S) /* Bit 13 */
TranslationBlock *tb;
uint8_t *tc_ptr;
-#if defined(TARGET_I386)
- /* handle exit of HALTED state */
- if (env1->hflags & HF_HALTED_MASK) {
- /* disable halt condition */
- if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
- (env1->eflags & IF_MASK)) {
- env1->hflags &= ~HF_HALTED_MASK;
- } else {
- return EXCP_HALTED;
- }
- }
-#elif defined(TARGET_PPC)
- if (env1->halted) {
- if (env1->msr[MSR_EE] &&
- (env1->interrupt_request & CPU_INTERRUPT_HARD)) {
- env1->halted = 0;
- } else {
- return EXCP_HALTED;
- }
- }
-#elif defined(TARGET_SPARC)
- if (env1->halted) {
- if ((env1->interrupt_request & CPU_INTERRUPT_HARD) &&
- (env1->psret != 0)) {
- env1->halted = 0;
- } else {
- return EXCP_HALTED;
- }
- }
-#elif defined(TARGET_ARM)
- if (env1->halted) {
- /* An interrupt wakes the CPU even if the I and F CPSR bits are
- set. We use EXITTB to silently wake CPU without causing an
- actual interrupt. */
- if (env1->interrupt_request &
- (CPU_INTERRUPT_FIQ | CPU_INTERRUPT_HARD | CPU_INTERRUPT_EXITTB)) {
- env1->halted = 0;
- } else {
- return EXCP_HALTED;
- }
- }
-#elif defined(TARGET_MIPS)
- if (env1->halted) {
- if (env1->interrupt_request &
- (CPU_INTERRUPT_HARD | CPU_INTERRUPT_TIMER)) {
- env1->halted = 0;
- } else {
- return EXCP_HALTED;
- }
- }
-#elif defined(TARGET_ALPHA) || defined(TARGET_M68K)
- if (env1->halted) {
- if (env1->interrupt_request & CPU_INTERRUPT_HARD) {
- env1->halted = 0;
- } else {
- return EXCP_HALTED;
- }
- }
-#endif
+ if (cpu_halted(env1) == EXCP_HALTED)
+ return EXCP_HALTED;
- cpu_single_env = env1;
+ cpu_single_env = env1;
/* first we save global registers */
#define SAVE_HOST_REGS 1
asm volatile ("mov %%i7, %0" : "=r" (saved_i7));
#endif
-#if defined(TARGET_I386)
env_to_regs();
+#if defined(TARGET_I386)
/* put eflags in CPU temporary format */
CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
DF = 1 - (2 * ((env->eflags >> 10) & 1));
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
-#elif defined(TARGET_ARM)
#elif defined(TARGET_SPARC)
#if defined(reg_REGWPTR)
saved_regwptr = REGWPTR;
#endif
-#elif defined(TARGET_PPC)
#elif defined(TARGET_M68K)
env->cc_op = CC_OP_FLAGS;
env->cc_dest = env->sr & 0xf;
env->cc_x = (env->sr >> 4) & 1;
+#elif defined(TARGET_ALPHA)
+#elif defined(TARGET_ARM)
+#elif defined(TARGET_PPC)
#elif defined(TARGET_MIPS)
#elif defined(TARGET_SH4)
/* XXXXX */
-#elif defined(TARGET_ALPHA)
- env_to_regs();
#else
#error unsupported target CPU
#endif
which will be handled outside the cpu execution
loop */
#if defined(TARGET_I386)
- do_interrupt_user(env->exception_index,
- env->exception_is_int,
- env->error_code,
+ do_interrupt_user(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
env->exception_next_eip);
#endif
ret = env->exception_index;
/* simulate a real cpu exception. On i386, it can
trigger new exceptions, but we do not handle
double or triple faults yet. */
- do_interrupt(env->exception_index,
- env->exception_is_int,
- env->error_code,
+ do_interrupt(env->exception_index,
+ env->exception_is_int,
+ env->error_code,
env->exception_next_eip, 0);
/* successfully delivered */
env->old_exception = -1;
#endif
}
env->exception_index = -1;
- }
+ }
#ifdef USE_KQEMU
if (kqemu_is_ok(env) && env->interrupt_request == 0) {
int ret;
T0 = 0; /* force lookup of first TB */
for(;;) {
#if defined(__sparc__) && !defined(HOST_SOLARIS)
- /* g1 can be modified by some libc? functions */
+ /* g1 can be modified by some libc? functions */
tmp_T0 = T0;
-#endif
+#endif
interrupt_request = env->interrupt_request;
- if (__builtin_expect(interrupt_request, 0)) {
+ if (__builtin_expect(interrupt_request, 0)
+#if defined(TARGET_I386)
+ && env->hflags & HF_GIF_MASK
+#endif
+ ) {
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
env->exception_index = EXCP_DEBUG;
#if defined(TARGET_I386)
if ((interrupt_request & CPU_INTERRUPT_SMI) &&
!(env->hflags & HF_SMM_MASK)) {
+ svm_check_intercept(SVM_EXIT_SMI);
env->interrupt_request &= ~CPU_INTERRUPT_SMI;
do_smm_enter();
#if defined(__sparc__) && !defined(HOST_SOLARIS)
T0 = 0;
#endif
} else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
- (env->eflags & IF_MASK) &&
+ (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
!(env->hflags & HF_INHIBIT_IRQ_MASK)) {
int intno;
- env->interrupt_request &= ~CPU_INTERRUPT_HARD;
+ svm_check_intercept(SVM_EXIT_INTR);
+ env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
intno = cpu_get_pic_interrupt(env);
if (loglevel & CPU_LOG_TB_IN_ASM) {
fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
tmp_T0 = 0;
#else
T0 = 0;
+#endif
+#if !defined(CONFIG_USER_ONLY)
+ } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
+ (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
+ int intno;
+ /* FIXME: this should respect TPR */
+ env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
+ svm_check_intercept(SVM_EXIT_VINTR);
+ intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
+ if (loglevel & CPU_LOG_TB_IN_ASM)
+ fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
+ do_interrupt(intno, 0, 0, -1, 1);
+ stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
+ ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
+#if defined(__sparc__) && !defined(HOST_SOLARIS)
+ tmp_T0 = 0;
+#else
+ T0 = 0;
+#endif
#endif
}
#elif defined(TARGET_PPC)
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
do_interrupt(env->interrupt_index);
env->interrupt_index = 0;
+#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
+ cpu_check_irqs(env);
+#endif
#if defined(__sparc__) && !defined(HOST_SOLARIS)
tmp_T0 = 0;
#else
}
#ifdef DEBUG_EXEC
if ((loglevel & CPU_LOG_TB_CPU)) {
-#if defined(TARGET_I386)
/* restore flags in standard format */
-#ifdef reg_EAX
- env->regs[R_EAX] = EAX;
-#endif
-#ifdef reg_EBX
- env->regs[R_EBX] = EBX;
-#endif
-#ifdef reg_ECX
- env->regs[R_ECX] = ECX;
-#endif
-#ifdef reg_EDX
- env->regs[R_EDX] = EDX;
-#endif
-#ifdef reg_ESI
- env->regs[R_ESI] = ESI;
-#endif
-#ifdef reg_EDI
- env->regs[R_EDI] = EDI;
-#endif
-#ifdef reg_EBP
- env->regs[R_EBP] = EBP;
-#endif
-#ifdef reg_ESP
- env->regs[R_ESP] = ESP;
-#endif
+ regs_to_env();
+#if defined(TARGET_I386)
env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ALPHA)
cpu_dump_state(env, logfile, fprintf, 0);
#else
-#error unsupported target CPU
+#error unsupported target CPU
#endif
}
#endif
#endif
#if defined(__sparc__) && !defined(HOST_SOLARIS)
T0 = tmp_T0;
-#endif
+#endif
/* see if we can patch the calling TB. When the TB
spans two pages, we cannot safely do a direct
jump. */
#endif
tb->page_addr[1] == -1
#if defined(TARGET_I386) && defined(USE_CODE_COPY)
- && (tb->cflags & CF_CODE_COPY) ==
+ && (tb->cflags & CF_CODE_COPY) ==
(((TranslationBlock *)(T0 & ~3))->cflags & CF_CODE_COPY)
#endif
) {
tb_add_jump((TranslationBlock *)(long)(T0 & ~3), T0 & 3, tb);
#if defined(USE_CODE_COPY)
/* propagates the FP use info */
- ((TranslationBlock *)(T0 & ~3))->cflags |=
+ ((TranslationBlock *)(T0 & ~3))->cflags |=
(tb->cflags & CF_FP_USED);
#endif
spin_unlock(&tb_lock);
__asm__ __volatile__("call %0\n\t"
"mov %%o7,%%i0"
: /* no outputs */
- : "r" (gen_func)
+ : "r" (gen_func)
: "i0", "i1", "i2", "i3", "i4", "i5",
"o0", "o1", "o2", "o3", "o4", "o5",
"l0", "l1", "l2", "l3", "l4", "l5",
cpu_loop_exit();
}
#endif
- }
+ } /* for(;;) */
} else {
env_to_regs();
}
#include "hostregs_helper.h"
/* fail safe : never use cpu_single_env outside cpu_exec() */
- cpu_single_env = NULL;
+ cpu_single_env = NULL;
return ret;
}
env = s;
if (!(env->cr[0] & CR0_PE_MASK) || (env->eflags & VM_MASK)) {
selector &= 0xffff;
- cpu_x86_load_seg_cache(env, seg_reg, selector,
+ cpu_x86_load_seg_cache(env, seg_reg, selector,
(selector << 4), 0xffff, 0);
} else {
load_seg(seg_reg, selector);
saved_env = env;
env = s;
-
+
helper_fsave((target_ulong)ptr, data32);
env = saved_env;
saved_env = env;
env = s;
-
+
helper_frstor((target_ulong)ptr, data32);
env = saved_env;
write caused the exception and otherwise 0'. 'old_set' is the
signal set which should be restored */
static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
+ int is_write, sigset_t *old_set,
void *puc)
{
TranslationBlock *tb;
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ qemu_printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
}
/* see if it is an MMU fault */
- ret = cpu_x86_handle_mmu_fault(env, address, is_write,
+ ret = cpu_x86_handle_mmu_fault(env, address, is_write,
((env->hflags & HF_CPL_MASK) == 3), 0);
if (ret < 0)
return 0; /* not an MMU fault */
}
if (ret == 1) {
#if 0
- printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
+ printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
env->eip, env->cr[2], env->error_code);
#endif
/* we restore the process signal mask as the sigreturn should
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
{
TranslationBlock *tb;
int ret;
-
+
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
}
if (ret == 1) {
#if 0
- printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
env->nip, env->error_code, tb);
#endif
/* we restore the process signal mask as the sigreturn should
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
{
TranslationBlock *tb;
int ret;
-
+
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
}
if (ret == 1) {
#if 0
- printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
+ printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
env->PC, env->error_code, tb);
#endif
/* we restore the process signal mask as the sigreturn should
{
TranslationBlock *tb;
int ret;
-
+
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
cpu_restore_state(tb, env, pc, puc);
}
#if 0
- printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
env->nip, env->error_code, tb);
#endif
/* we restore the process signal mask as the sigreturn should
{
TranslationBlock *tb;
int ret;
-
+
if (cpu_single_env)
env = cpu_single_env; /* XXX: find a correct solution for multithread */
#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
+ printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
pc, address, is_write, *(unsigned long *)old_set);
#endif
/* XXX: locking issue */
cpu_restore_state(tb, env, pc, puc);
}
#if 0
- printf("PF exception: NIP=0x%08x error=0x%x %p\n",
+ printf("PF exception: NIP=0x%08x error=0x%x %p\n",
env->nip, env->error_code, tb);
#endif
/* we restore the process signal mask as the sigreturn should
#endif
#if defined(USE_CODE_COPY)
-static void cpu_send_trap(unsigned long pc, int trap,
+static void cpu_send_trap(unsigned long pc, int trap,
struct ucontext *uc)
{
TranslationBlock *tb;
}
#endif
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
return 1;
} else
#endif
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
- trapno == 0xe ?
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ trapno == 0xe ?
(ERROR_sig(uc) >> 1) & 1 : 0,
&uc->uc_sigmask, puc);
}
unsigned long pc;
pc = uc->uc_mcontext.gregs[REG_RIP];
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
- uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
(uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
&uc->uc_sigmask, puc);
}
# define TRAP_sig(context) EXCEPREG_sig(exception, context) /* number of powerpc exception taken */
#endif /* __APPLE__ */
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
if (TRAP_sig(uc) != 0x400 && (DSISR_sig(uc) & 0x02000000))
is_write = 1;
#endif
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, &uc->uc_sigmask, puc);
}
#elif defined(__alpha__)
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
is_write = 1;
}
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, &uc->uc_sigmask, puc);
}
#elif defined(__sparc__)
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
unsigned long pc;
int is_write;
uint32_t insn;
-
+
/* XXX: is there a standard glibc define ? */
pc = regs[1];
/* XXX: need kernel patch to get write flag faster */
break;
}
}
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, sigmask, NULL);
}
#elif defined(__arm__)
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
-
+
pc = uc->uc_mcontext.gregs[R15];
/* XXX: compute is_write */
is_write = 0;
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write,
&uc->uc_sigmask, puc);
}
#elif defined(__mc68000)
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
-
+
pc = uc->uc_mcontext.gregs[16];
/* XXX: compute is_write */
is_write = 0;
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write,
&uc->uc_sigmask, puc);
}
#elif defined(__s390__)
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
struct ucontext *uc = puc;
unsigned long pc;
int is_write;
-
+
pc = uc->uc_mcontext.psw.addr;
/* XXX: compute is_write */
is_write = 0;
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, &uc->uc_sigmask, puc);
}
#elif defined(__mips__)
-int cpu_signal_handler(int host_signum, void *pinfo,
+int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
struct ucontext *uc = puc;
greg_t pc = uc->uc_mcontext.pc;
int is_write;
-
+
/* XXX: compute is_write */
is_write = 0;
- return handle_cpu_signal(pc, (unsigned long)info->si_addr,
+ return handle_cpu_signal(pc, (unsigned long)info->si_addr,
is_write, &uc->uc_sigmask, puc);
}