* See the COPYING file in the top-level directory.
*
*/
+
+#include "qemu/osdep.h"
+
#include "libqtest.h"
-#include "hw/mc146818rtc_regs.h"
+#include "qemu/timer.h"
+#include "hw/timer/mc146818rtc_regs.h"
-#include <glib.h>
-#include <stdio.h>
-#include <string.h>
-#include <stdlib.h>
-#include <unistd.h>
+#define UIP_HOLD_LENGTH (8 * NANOSECONDS_PER_SECOND / 32768)
static uint8_t base = 0x70;
return (((value >> 4) & 0x0F) * 10) + (value & 0x0F);
}
-static int dec2bcd(int value)
-{
- return ((value / 10) << 4) | (value % 10);
-}
-
static uint8_t cmos_read(uint8_t reg)
{
outb(base + 0, reg);
date->tm_mday = mday;
date->tm_mon = mon - 1;
date->tm_year = base_year + year - 1900;
+#ifndef __sun__
date->tm_gmtoff = 0;
+#endif
ts = mktime(date);
}
static int wiggle = 2;
+static void set_year_20xx(void)
+{
+ /* Set BCD mode */
+ cmos_write(RTC_REG_B, REG_B_24H);
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x11);
+ cmos_write(RTC_CENTURY, 0x20);
+ cmos_write(RTC_MONTH, 0x02);
+ cmos_write(RTC_DAY_OF_MONTH, 0x02);
+ cmos_write(RTC_HOURS, 0x02);
+ cmos_write(RTC_MINUTES, 0x04);
+ cmos_write(RTC_SECONDS, 0x58);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
+
+ if (sizeof(time_t) == 4) {
+ return;
+ }
+
+ /* Set a date in 2080 to ensure there is no year-2038 overflow. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x80);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
+
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x11);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x11);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x20);
+}
+
+static void set_year_1980(void)
+{
+ /* Set BCD mode */
+ cmos_write(RTC_REG_B, REG_B_24H);
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_YEAR, 0x80);
+ cmos_write(RTC_CENTURY, 0x19);
+ cmos_write(RTC_MONTH, 0x02);
+ cmos_write(RTC_DAY_OF_MONTH, 0x02);
+ cmos_write(RTC_HOURS, 0x02);
+ cmos_write(RTC_MINUTES, 0x04);
+ cmos_write(RTC_SECONDS, 0x58);
+ cmos_write(RTC_REG_A, 0x26);
+
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, 0x04);
+ g_assert_cmpint(cmos_read(RTC_SECONDS), >=, 0x58);
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, 0x02);
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, 0x80);
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, 0x19);
+}
+
static void bcd_check_time(void)
{
/* Set BCD mode */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_DM);
+ cmos_write(RTC_REG_B, REG_B_24H);
check_time(wiggle);
}
static void dec_check_time(void)
{
/* Set DEC mode */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);
+ cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
check_time(wiggle);
}
-static void set_alarm_time(struct tm *tm)
-{
- int sec;
-
- sec = tm->tm_sec;
-
- if ((cmos_read(RTC_REG_B) & REG_B_DM) == 0) {
- sec = dec2bcd(sec);
- }
-
- cmos_write(RTC_SECONDS_ALARM, sec);
- cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
- cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
-}
-
static void alarm_time(void)
{
struct tm now;
gmtime_r(&ts, &now);
/* set DEC mode */
- cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_DM);
+ cmos_write(RTC_REG_B, REG_B_24H | REG_B_DM);
g_assert(!get_irq(RTC_ISA_IRQ));
cmos_read(RTC_REG_C);
now.tm_sec = (now.tm_sec + 2) % 60;
- set_alarm_time(&now);
+ cmos_write(RTC_SECONDS_ALARM, now.tm_sec);
+ cmos_write(RTC_MINUTES_ALARM, RTC_ALARM_DONT_CARE);
+ cmos_write(RTC_HOURS_ALARM, RTC_ALARM_DONT_CARE);
cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_AIE);
for (i = 0; i < 2 + wiggle; i++) {
g_assert(cmos_read(RTC_REG_C) == 0);
}
+static void set_time_regs(int h, int m, int s)
+{
+ cmos_write(RTC_HOURS, h);
+ cmos_write(RTC_MINUTES, m);
+ cmos_write(RTC_SECONDS, s);
+}
+
+static void set_time(int mode, int h, int m, int s)
+{
+ cmos_write(RTC_REG_B, mode);
+ cmos_write(RTC_REG_A, 0x76);
+ set_time_regs(h, m, s);
+ cmos_write(RTC_REG_A, 0x26);
+}
+
+static void set_datetime_bcd(int h, int min, int s, int d, int m, int y)
+{
+ cmos_write(RTC_HOURS, h);
+ cmos_write(RTC_MINUTES, min);
+ cmos_write(RTC_SECONDS, s);
+ cmos_write(RTC_YEAR, y & 0xFF);
+ cmos_write(RTC_CENTURY, y >> 8);
+ cmos_write(RTC_MONTH, m);
+ cmos_write(RTC_DAY_OF_MONTH, d);
+}
+
+static void set_datetime_dec(int h, int min, int s, int d, int m, int y)
+{
+ cmos_write(RTC_HOURS, h);
+ cmos_write(RTC_MINUTES, min);
+ cmos_write(RTC_SECONDS, s);
+ cmos_write(RTC_YEAR, y % 100);
+ cmos_write(RTC_CENTURY, y / 100);
+ cmos_write(RTC_MONTH, m);
+ cmos_write(RTC_DAY_OF_MONTH, d);
+}
+
+static void set_datetime(int mode, int h, int min, int s, int d, int m, int y)
+{
+ cmos_write(RTC_REG_B, mode);
+
+ cmos_write(RTC_REG_A, 0x76);
+ if (mode & REG_B_DM) {
+ set_datetime_dec(h, min, s, d, m, y);
+ } else {
+ set_datetime_bcd(h, min, s, d, m, y);
+ }
+ cmos_write(RTC_REG_A, 0x26);
+}
+
+#define assert_time(h, m, s) \
+ do { \
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, m); \
+ g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
+ } while(0)
+
+#define assert_datetime_bcd(h, min, s, d, m, y) \
+ do { \
+ g_assert_cmpint(cmos_read(RTC_HOURS), ==, h); \
+ g_assert_cmpint(cmos_read(RTC_MINUTES), ==, min); \
+ g_assert_cmpint(cmos_read(RTC_SECONDS), ==, s); \
+ g_assert_cmpint(cmos_read(RTC_DAY_OF_MONTH), ==, d); \
+ g_assert_cmpint(cmos_read(RTC_MONTH), ==, m); \
+ g_assert_cmpint(cmos_read(RTC_YEAR), ==, (y & 0xFF)); \
+ g_assert_cmpint(cmos_read(RTC_CENTURY), ==, (y >> 8)); \
+ } while(0)
+
+static void basic_12h_bcd(void)
+{
+ /* set BCD 12 hour mode */
+ set_time(0, 0x81, 0x59, 0x00);
+ clock_step(1000000000LL);
+ assert_time(0x81, 0x59, 0x01);
+ clock_step(59000000000LL);
+ assert_time(0x82, 0x00, 0x00);
+
+ /* test BCD wraparound */
+ set_time(0, 0x09, 0x59, 0x59);
+ clock_step(60000000000LL);
+ assert_time(0x10, 0x00, 0x59);
+
+ /* 12 AM -> 1 AM */
+ set_time(0, 0x12, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x01, 0x00, 0x00);
+
+ /* 12 PM -> 1 PM */
+ set_time(0, 0x92, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x81, 0x00, 0x00);
+
+ /* 11 AM -> 12 PM */
+ set_time(0, 0x11, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x92, 0x00, 0x00);
+ /* TODO: test day wraparound */
+
+ /* 11 PM -> 12 AM */
+ set_time(0, 0x91, 0x59, 0x59);
+ clock_step(1000000000LL);
+ assert_time(0x12, 0x00, 0x00);
+ /* TODO: test day wraparound */
+}
+
+static void basic_12h_dec(void)
+{
+ /* set decimal 12 hour mode */
+ set_time(REG_B_DM, 0x81, 59, 0);
+ clock_step(1000000000LL);
+ assert_time(0x81, 59, 1);
+ clock_step(59000000000LL);
+ assert_time(0x82, 0, 0);
+
+ /* 12 PM -> 1 PM */
+ set_time(REG_B_DM, 0x8c, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x81, 0, 0);
+
+ /* 12 AM -> 1 AM */
+ set_time(REG_B_DM, 0x0c, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x01, 0, 0);
+
+ /* 11 AM -> 12 PM */
+ set_time(REG_B_DM, 0x0b, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x8c, 0, 0);
+
+ /* 11 PM -> 12 AM */
+ set_time(REG_B_DM, 0x8b, 59, 59);
+ clock_step(1000000000LL);
+ assert_time(0x0c, 0, 0);
+ /* TODO: test day wraparound */
+}
+
+static void basic_24h_bcd(void)
+{
+ /* set BCD 24 hour mode */
+ set_time(REG_B_24H, 0x09, 0x59, 0x00);
+ clock_step(1000000000LL);
+ assert_time(0x09, 0x59, 0x01);
+ clock_step(59000000000LL);
+ assert_time(0x10, 0x00, 0x00);
+
+ /* test BCD wraparound */
+ set_time(REG_B_24H, 0x09, 0x59, 0x00);
+ clock_step(60000000000LL);
+ assert_time(0x10, 0x00, 0x00);
+
+ /* TODO: test day wraparound */
+ set_time(REG_B_24H, 0x23, 0x59, 0x00);
+ clock_step(60000000000LL);
+ assert_time(0x00, 0x00, 0x00);
+}
+
+static void basic_24h_dec(void)
+{
+ /* set decimal 24 hour mode */
+ set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
+ clock_step(1000000000LL);
+ assert_time(9, 59, 1);
+ clock_step(59000000000LL);
+ assert_time(10, 0, 0);
+
+ /* test BCD wraparound */
+ set_time(REG_B_24H | REG_B_DM, 9, 59, 0);
+ clock_step(60000000000LL);
+ assert_time(10, 0, 0);
+
+ /* TODO: test day wraparound */
+ set_time(REG_B_24H | REG_B_DM, 23, 59, 0);
+ clock_step(60000000000LL);
+ assert_time(0, 0, 0);
+}
+
+static void am_pm_alarm(void)
+{
+ cmos_write(RTC_MINUTES_ALARM, 0xC0);
+ cmos_write(RTC_SECONDS_ALARM, 0xC0);
+
+ /* set BCD 12 hour mode */
+ cmos_write(RTC_REG_B, 0);
+
+ /* Set time and alarm hour. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_HOURS_ALARM, 0x82);
+ cmos_write(RTC_HOURS, 0x81);
+ cmos_write(RTC_MINUTES, 0x59);
+ cmos_write(RTC_SECONDS, 0x00);
+ cmos_read(RTC_REG_C);
+ cmos_write(RTC_REG_A, 0x26);
+
+ /* Check that alarm triggers when AM/PM is set. */
+ clock_step(60000000000LL);
+ g_assert(cmos_read(RTC_HOURS) == 0x82);
+ g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
+
+ /*
+ * Each of the following two tests takes over 60 seconds due to the time
+ * needed to report the PIT interrupts. Unfortunately, our PIT device
+ * model keeps counting even when GATE=0, so we cannot simply disable
+ * it in main().
+ */
+ if (g_test_quick()) {
+ return;
+ }
+
+ /* set DEC 12 hour mode */
+ cmos_write(RTC_REG_B, REG_B_DM);
+
+ /* Set time and alarm hour. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_HOURS_ALARM, 0x82);
+ cmos_write(RTC_HOURS, 3);
+ cmos_write(RTC_MINUTES, 0);
+ cmos_write(RTC_SECONDS, 0);
+ cmos_read(RTC_REG_C);
+ cmos_write(RTC_REG_A, 0x26);
+
+ /* Check that alarm triggers. */
+ clock_step(3600 * 11 * 1000000000LL);
+ g_assert(cmos_read(RTC_HOURS) == 0x82);
+ g_assert((cmos_read(RTC_REG_C) & REG_C_AF) != 0);
+
+ /* Same as above, with inverted HOURS and HOURS_ALARM. */
+ cmos_write(RTC_REG_A, 0x76);
+ cmos_write(RTC_HOURS_ALARM, 2);
+ cmos_write(RTC_HOURS, 3);
+ cmos_write(RTC_MINUTES, 0);
+ cmos_write(RTC_SECONDS, 0);
+ cmos_read(RTC_REG_C);
+ cmos_write(RTC_REG_A, 0x26);
+
+ /* Check that alarm does not trigger if hours differ only by AM/PM. */
+ clock_step(3600 * 11 * 1000000000LL);
+ g_assert(cmos_read(RTC_HOURS) == 0x82);
+ g_assert((cmos_read(RTC_REG_C) & REG_C_AF) == 0);
+}
+
+/* success if no crash or abort */
+static void fuzz_registers(void)
+{
+ unsigned int i;
+
+ for (i = 0; i < 1000; i++) {
+ uint8_t reg, val;
+
+ reg = (uint8_t)g_test_rand_int_range(0, 16);
+ val = (uint8_t)g_test_rand_int_range(0, 256);
+
+ cmos_write(reg, val);
+ cmos_read(reg);
+ }
+}
+
+static void register_b_set_flag(void)
+{
+ if (cmos_read(RTC_REG_A) & REG_A_UIP) {
+ clock_step(UIP_HOLD_LENGTH + NANOSECONDS_PER_SECOND / 5);
+ }
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+
+ /* Enable binary-coded decimal (BCD) mode and SET flag in Register B*/
+ cmos_write(RTC_REG_B, REG_B_24H | REG_B_SET);
+
+ set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Since SET flag is still enabled, time does not advance. */
+ clock_step(1000000000LL);
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Disable SET flag in Register B */
+ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) & ~REG_B_SET);
+
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Since SET flag is disabled, the clock now advances. */
+ clock_step(1000000000LL);
+ assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
+}
+
+static void divider_reset(void)
+{
+ /* Enable binary-coded decimal (BCD) mode in Register B*/
+ cmos_write(RTC_REG_B, REG_B_24H);
+
+ /* Enter divider reset */
+ cmos_write(RTC_REG_A, 0x76);
+ set_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* Since divider reset flag is still enabled, these are equality checks. */
+ clock_step(1000000000LL);
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* The first update ends 500 ms after divider reset */
+ cmos_write(RTC_REG_A, 0x26);
+ clock_step(500000000LL - UIP_HOLD_LENGTH - 1);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+ assert_datetime_bcd(0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ clock_step(1);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
+ clock_step(UIP_HOLD_LENGTH);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+
+ assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
+}
+
+static void uip_stuck(void)
+{
+ set_datetime(REG_B_24H, 0x02, 0x04, 0x58, 0x02, 0x02, 0x2011);
+
+ /* The first update ends 500 ms after divider reset */
+ (void)cmos_read(RTC_REG_C);
+ clock_step(500000000LL);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+ assert_datetime_bcd(0x02, 0x04, 0x59, 0x02, 0x02, 0x2011);
+
+ /* UF is now set. */
+ cmos_write(RTC_HOURS_ALARM, 0x02);
+ cmos_write(RTC_MINUTES_ALARM, 0xC0);
+ cmos_write(RTC_SECONDS_ALARM, 0xC0);
+
+ /* Because the alarm will fire soon, reading register A will latch UIP. */
+ clock_step(1000000000LL - UIP_HOLD_LENGTH / 2);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, !=, 0);
+
+ /* Move the alarm far away. This must not cause UIP to remain stuck! */
+ cmos_write(RTC_HOURS_ALARM, 0x03);
+ clock_step(UIP_HOLD_LENGTH);
+ g_assert_cmpint(cmos_read(RTC_REG_A) & REG_A_UIP, ==, 0);
+}
+
+#define RTC_PERIOD_CODE1 13 /* 8 Hz */
+#define RTC_PERIOD_CODE2 15 /* 2 Hz */
+
+#define RTC_PERIOD_TEST_NR 50
+
+static uint64_t wait_periodic_interrupt(uint64_t real_time)
+{
+ while (!get_irq(RTC_ISA_IRQ)) {
+ real_time = clock_step_next();
+ }
+
+ g_assert((cmos_read(RTC_REG_C) & REG_C_PF) != 0);
+ return real_time;
+}
+
+static void periodic_timer(void)
+{
+ int i;
+ uint64_t period_clocks, period_time, start_time, real_time;
+
+ /* disable all interrupts. */
+ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) &
+ ~(REG_B_PIE | REG_B_AIE | REG_B_UIE));
+ cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
+ /* enable periodic interrupt after properly configure the period. */
+ cmos_write(RTC_REG_B, cmos_read(RTC_REG_B) | REG_B_PIE);
+
+ start_time = real_time = clock_step_next();
+
+ for (i = 0; i < RTC_PERIOD_TEST_NR; i++) {
+ cmos_write(RTC_REG_A, RTC_PERIOD_CODE1);
+ real_time = wait_periodic_interrupt(real_time);
+ cmos_write(RTC_REG_A, RTC_PERIOD_CODE2);
+ real_time = wait_periodic_interrupt(real_time);
+ }
+
+ period_clocks = periodic_period_to_clock(RTC_PERIOD_CODE1) +
+ periodic_period_to_clock(RTC_PERIOD_CODE2);
+ period_clocks *= RTC_PERIOD_TEST_NR;
+ period_time = periodic_clock_to_ns(period_clocks);
+
+ real_time -= start_time;
+ g_assert_cmpint(ABS((int64_t)(real_time - period_time)), <=,
+ NANOSECONDS_PER_SECOND * 0.5);
+}
+
int main(int argc, char **argv)
{
QTestState *s = NULL;
g_test_init(&argc, &argv, NULL);
- s = qtest_start("-display none -rtc clock=vm");
+ s = qtest_start("-rtc clock=vm");
qtest_irq_intercept_in(s, "ioapic");
- qtest_add_func("/rtc/bcd/check-time", bcd_check_time);
- qtest_add_func("/rtc/dec/check-time", dec_check_time);
- qtest_add_func("/rtc/alarm-time", alarm_time);
+ qtest_add_func("/rtc/check-time/bcd", bcd_check_time);
+ qtest_add_func("/rtc/check-time/dec", dec_check_time);
+ qtest_add_func("/rtc/alarm/interrupt", alarm_time);
+ qtest_add_func("/rtc/alarm/am-pm", am_pm_alarm);
+ qtest_add_func("/rtc/basic/dec-24h", basic_24h_dec);
+ qtest_add_func("/rtc/basic/bcd-24h", basic_24h_bcd);
+ qtest_add_func("/rtc/basic/dec-12h", basic_12h_dec);
+ qtest_add_func("/rtc/basic/bcd-12h", basic_12h_bcd);
+ qtest_add_func("/rtc/set-year/20xx", set_year_20xx);
+ qtest_add_func("/rtc/set-year/1980", set_year_1980);
+ qtest_add_func("/rtc/update/register_b_set_flag", register_b_set_flag);
+ qtest_add_func("/rtc/update/divider-reset", divider_reset);
+ qtest_add_func("/rtc/update/uip-stuck", uip_stuck);
+ qtest_add_func("/rtc/misc/fuzz-registers", fuzz_registers);
+ qtest_add_func("/rtc/periodic/interrupt", periodic_timer);
+
ret = g_test_run();
if (s) {