/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
-uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
+uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
uint8_t *code_gen_ptr;
int phys_ram_size;
typedef struct PhysPageDesc {
/* offset in host memory of the page + io_index in the low 12 bits */
- unsigned long phys_offset;
+ uint32_t phys_offset;
} PhysPageDesc;
typedef struct VirtPageDesc {
/* XXX: for system emulation, it could just be an array */
static PageDesc *l1_map[L1_SIZE];
-static PhysPageDesc *l1_phys_map[L1_SIZE];
+PhysPageDesc **l1_phys_map;
#if !defined(CONFIG_USER_ONLY)
static VirtPageDesc *l1_virt_map[L1_SIZE];
FILE *logfile;
int loglevel;
+/* statistics */
+static int tlb_flush_count;
+static int tb_flush_count;
+static int tb_phys_invalidate_count;
+
static void page_init(void)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
#if !defined(CONFIG_USER_ONLY)
virt_valid_tag = 1;
#endif
+ l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(PhysPageDesc *));
+ memset(l1_phys_map, 0, L1_SIZE * sizeof(PhysPageDesc *));
}
static inline PageDesc *page_find_alloc(unsigned int index)
p = *lp;
if (!p) {
/* allocate if not found */
- p = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
+ p = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
memset(p, 0, sizeof(PhysPageDesc) * L2_SIZE);
*lp = p;
}
{
VirtPageDesc **lp, *p;
+ /* XXX: should not truncate for 64 bit addresses */
+#if TARGET_LONG_BITS > 32
+ index &= (L1_SIZE - 1);
+#endif
lp = &l1_virt_map[index >> L2_BITS];
p = *lp;
if (!p) {
code_gen_ptr = code_gen_buffer;
/* XXX: flush processor icache at this point if cache flush is
expensive */
+ tb_flush_count++;
}
#ifdef DEBUG_TB_CHECK
}
tb_invalidate(tb);
+ tb_phys_invalidate_count++;
}
static inline void set_bits(uint8_t *tab, int start, int len)
target_ulong phys_pc, phys_page2, virt_page2;
int code_gen_size;
- phys_pc = get_phys_addr_code(env, (unsigned long)pc);
- tb = tb_alloc((unsigned long)pc);
+ phys_pc = get_phys_addr_code(env, pc);
+ tb = tb_alloc(pc);
if (!tb) {
/* flush must be done */
tb_flush(env);
/* cannot fail at this point */
- tb = tb_alloc((unsigned long)pc);
+ tb = tb_alloc(pc);
}
tc_ptr = code_gen_ptr;
tb->tc_ptr = tc_ptr;
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
- virt_page2 = ((unsigned long)pc + tb->size - 1) & TARGET_PAGE_MASK;
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
phys_page2 = -1;
- if (((unsigned long)pc & TARGET_PAGE_MASK) != virt_page2) {
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
phys_page2 = get_phys_addr_code(env, virt_page2);
}
tb_link_phys(tb, phys_pc, phys_page2);
/* Allocate a new translation block. Flush the translation buffer if
too many translation blocks or too much generated code. */
-TranslationBlock *tb_alloc(unsigned long pc)
+TranslationBlock *tb_alloc(target_ulong pc)
{
TranslationBlock *tb;
tb_reset_jump_recursive2(tb, 1);
}
+#if defined(TARGET_HAS_ICE)
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
target_ulong phys_addr;
phys_addr = cpu_get_phys_page_debug(env, pc);
tb_invalidate_phys_page_range(phys_addr, phys_addr + 1, 0);
}
+#endif
/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
breakpoint is reached */
int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
{
-#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+#if defined(TARGET_HAS_ICE)
int i;
for(i = 0; i < env->nb_breakpoints; i++) {
/* remove a breakpoint */
int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
{
-#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+#if defined(TARGET_HAS_ICE)
int i;
for(i = 0; i < env->nb_breakpoints; i++) {
if (env->breakpoints[i] == pc)
}
return -1;
found:
- memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
- (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
env->nb_breakpoints--;
+ if (i < env->nb_breakpoints)
+ env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
breakpoint_invalidate(env, pc);
return 0;
CPU loop after each instruction */
void cpu_single_step(CPUState *env, int enabled)
{
-#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+#if defined(TARGET_HAS_ICE)
if (env->singlestep_enabled != enabled) {
env->singlestep_enabled = enabled;
/* must flush all the translated code to avoid inconsistancies */
#if !defined(CONFIG_SOFTMMU)
munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
#endif
+#ifdef USE_KQEMU
+ if (env->kqemu_enabled) {
+ kqemu_flush(env, flush_global);
+ }
+#endif
+ tlb_flush_count++;
}
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
if (addr < MMAP_AREA_END)
munmap((void *)addr, TARGET_PAGE_SIZE);
#endif
+#ifdef USE_KQEMU
+ if (env->kqemu_enabled) {
+ kqemu_flush_page(env, addr);
+ }
+#endif
}
static inline void tlb_protect_code1(CPUTLBEntry *tlb_entry, target_ulong addr)
}
}
-void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end)
+void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end,
+ int dirty_flags)
{
CPUState *env;
unsigned long length, start1;
- int i;
+ int i, mask, len;
+ uint8_t *p;
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
length = end - start;
if (length == 0)
return;
- memset(phys_ram_dirty + (start >> TARGET_PAGE_BITS), 0, length >> TARGET_PAGE_BITS);
+ mask = ~dirty_flags;
+ p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
+ len = length >> TARGET_PAGE_BITS;
+ for(i = 0; i < len; i++)
+ p[i] &= mask;
env = cpu_single_env;
/* we modify the TLB cache so that the dirty bit will be set again
CPUState *env = cpu_single_env;
int i;
- phys_ram_dirty[(addr - (unsigned long)phys_ram_base) >> TARGET_PAGE_BITS] = 1;
+ phys_ram_dirty[(addr - (unsigned long)phys_ram_base) >> TARGET_PAGE_BITS] = 0xff;
addr &= TARGET_PAGE_MASK;
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
(unsigned long)addr, vp->prot);
/* set the dirty bit */
- phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 1;
+ phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
/* flush the code inside */
tb_invalidate_phys_page(vp->phys_addr, pc, puc);
return 1;
#if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 1);
#endif
- stb_raw((uint8_t *)addr, val);
- phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
+ stb_p((uint8_t *)(long)addr, val);
+ phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 0xff;
}
static void code_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
#if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 2);
#endif
- stw_raw((uint8_t *)addr, val);
- phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
+ stw_p((uint8_t *)(long)addr, val);
+ phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 0xff;
}
static void code_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
#if !defined(CONFIG_USER_ONLY)
tb_invalidate_phys_page_fast(phys_addr, 4);
#endif
- stl_raw((uint8_t *)addr, val);
- phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
+ stl_p((uint8_t *)(long)addr, val);
+ phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 0xff;
}
static CPUReadMemoryFunc *code_mem_read[3] = {
static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
- stb_raw((uint8_t *)addr, val);
+ stb_p((uint8_t *)(long)addr, val);
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
}
static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
- stw_raw((uint8_t *)addr, val);
+ stw_p((uint8_t *)(long)addr, val);
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
}
static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
- stl_raw((uint8_t *)addr, val);
+ stl_p((uint8_t *)(long)addr, val);
tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
}
io_mem_nb = 5;
/* alloc dirty bits array */
- phys_ram_dirty = qemu_malloc(phys_ram_size >> TARGET_PAGE_BITS);
+ phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
}
/* mem_read and mem_write are arrays of functions containing the
addr += l;
}
}
+
+/* never used */
+uint32_t ldl_phys(target_phys_addr_t addr)
+{
+ return 0;
+}
+
+void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
+{
+}
+
+void stl_phys(target_phys_addr_t addr, uint32_t val)
+{
+}
+
#else
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
if (l >= 4 && ((addr & 3) == 0)) {
/* 32 bit read access */
- val = ldl_raw(buf);
+ val = ldl_p(buf);
io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
l = 4;
} else if (l >= 2 && ((addr & 1) == 0)) {
/* 16 bit read access */
- val = lduw_raw(buf);
+ val = lduw_p(buf);
io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
l = 2;
} else {
/* 8 bit access */
- val = ldub_raw(buf);
+ val = ldub_p(buf);
io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
l = 1;
}
/* invalidate code */
tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
/* set dirty bit */
- phys_ram_dirty[page >> TARGET_PAGE_BITS] = 1;
+ phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] = 0xff;
}
} else {
if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
if (l >= 4 && ((addr & 3) == 0)) {
/* 32 bit read access */
val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
- stl_raw(buf, val);
+ stl_p(buf, val);
l = 4;
} else if (l >= 2 && ((addr & 1) == 0)) {
/* 16 bit read access */
val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
- stw_raw(buf, val);
+ stw_p(buf, val);
l = 2;
} else {
/* 8 bit access */
val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
- stb_raw(buf, val);
+ stb_p(buf, val);
l = 1;
}
} else {
addr += l;
}
}
+
+/* warning: addr must be aligned */
+uint32_t ldl_phys(target_phys_addr_t addr)
+{
+ int io_index;
+ uint8_t *ptr;
+ uint32_t val;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ (pd & ~TARGET_PAGE_MASK) != IO_MEM_CODE) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ } else {
+ /* RAM case */
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ val = ldl_p(ptr);
+ }
+ return val;
+}
+
+/* warning: addr must be aligned. The ram page is not masked as dirty
+ and the code inside is not invalidated. It is useful if the dirty
+ bits are used to track modified PTEs */
+void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != 0) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ } else {
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ stl_p(ptr, val);
+ }
+}
+
+/* warning: addr must be aligned */
+/* XXX: optimize code invalidation test */
+void stl_phys(target_phys_addr_t addr, uint32_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != 0) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ } else {
+ unsigned long addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* RAM case */
+ ptr = phys_ram_base + addr1;
+ stl_p(ptr, val);
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+ /* set dirty bit */
+ phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] = 0xff;
+ }
+}
+
#endif
/* virtual memory access for debug */
return 0;
}
+void dump_exec_info(FILE *f,
+ int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
+{
+ int i, target_code_size, max_target_code_size;
+ int direct_jmp_count, direct_jmp2_count, cross_page;
+ TranslationBlock *tb;
+
+ target_code_size = 0;
+ max_target_code_size = 0;
+ cross_page = 0;
+ direct_jmp_count = 0;
+ direct_jmp2_count = 0;
+ for(i = 0; i < nb_tbs; i++) {
+ tb = &tbs[i];
+ target_code_size += tb->size;
+ if (tb->size > max_target_code_size)
+ max_target_code_size = tb->size;
+ if (tb->page_addr[1] != -1)
+ cross_page++;
+ if (tb->tb_next_offset[0] != 0xffff) {
+ direct_jmp_count++;
+ if (tb->tb_next_offset[1] != 0xffff) {
+ direct_jmp2_count++;
+ }
+ }
+ }
+ /* XXX: avoid using doubles ? */
+ cpu_fprintf(f, "TB count %d\n", nb_tbs);
+ cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
+ nb_tbs ? target_code_size / nb_tbs : 0,
+ max_target_code_size);
+ cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
+ nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
+ target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
+ cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
+ cross_page,
+ nb_tbs ? (cross_page * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
+ direct_jmp_count,
+ nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
+ direct_jmp2_count,
+ nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
+ cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
+ cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
+}
+
#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _cmmu