/*
* QEMU float support
*
- * Derived from SoftFloat.
+ * The code in this source file is derived from release 2a of the SoftFloat
+ * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
+ * some later contributions) are provided under that license, as detailed below.
+ * It has subsequently been modified by contributors to the QEMU Project,
+ * so some portions are provided under:
+ * the SoftFloat-2a license
+ * the BSD license
+ * GPL-v2-or-later
+ *
+ * Any future contributions to this file after December 1st 2014 will be
+ * taken to be licensed under the Softfloat-2a license unless specifically
+ * indicated otherwise.
*/
/*
===============================================================================
*/
-#if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
-#define SNAN_BIT_IS_ONE 1
-#else
-#define SNAN_BIT_IS_ONE 0
-#endif
+/* BSD licensing:
+ * Copyright (c) 2006, Fabrice Bellard
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * 1. Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ *
+ * 2. Redistributions in binary form must reproduce the above copyright notice,
+ * this list of conditions and the following disclaimer in the documentation
+ * and/or other materials provided with the distribution.
+ *
+ * 3. Neither the name of the copyright holder nor the names of its contributors
+ * may be used to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
+ * THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/* Portions of this work are licensed under the terms of the GNU GPL,
+ * version 2 or later. See the COPYING file in the top-level directory.
+ */
-#if defined(TARGET_XTENSA)
/* Define for architectures which deviate from IEEE in not supporting
* signaling NaNs (so all NaNs are treated as quiet).
*/
+#if defined(TARGET_XTENSA)
#define NO_SIGNALING_NANS 1
#endif
+/* Define how the architecture discriminates signaling NaNs.
+ * This done with the most significant bit of the fraction.
+ * In IEEE 754-1985 this was implementation defined, but in IEEE 754-2008
+ * the msb must be zero. MIPS is (so far) unique in supporting both the
+ * 2008 revision and backward compatibility with their original choice.
+ * Thus for MIPS we must make the choice at runtime.
+ */
+static inline flag snan_bit_is_one(float_status *status)
+{
+#if defined(TARGET_MIPS)
+ return status->snan_bit_is_one;
+#elif defined(TARGET_HPPA) || defined(TARGET_UNICORE32) || defined(TARGET_SH4)
+ return 1;
+#else
+ return 0;
+#endif
+}
+
/*----------------------------------------------------------------------------
-| The pattern for a default generated half-precision NaN.
+| For the deconstructed floating-point with fraction FRAC, return true
+| if the fraction represents a signalling NaN; otherwise false.
*----------------------------------------------------------------------------*/
-#if defined(TARGET_ARM)
-const float16 float16_default_nan = const_float16(0x7E00);
-#elif SNAN_BIT_IS_ONE
-const float16 float16_default_nan = const_float16(0x7DFF);
+
+static bool parts_is_snan_frac(uint64_t frac, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ return false;
#else
-const float16 float16_default_nan = const_float16(0xFE00);
+ flag msb = extract64(frac, DECOMPOSED_BINARY_POINT - 1, 1);
+ return msb == snan_bit_is_one(status);
#endif
+}
/*----------------------------------------------------------------------------
-| The pattern for a default generated single-precision NaN.
+| The pattern for a default generated deconstructed floating-point NaN.
*----------------------------------------------------------------------------*/
-#if defined(TARGET_SPARC)
-const float32 float32_default_nan = const_float32(0x7FFFFFFF);
-#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA) || \
- defined(TARGET_XTENSA)
-const float32 float32_default_nan = const_float32(0x7FC00000);
-#elif SNAN_BIT_IS_ONE
-const float32 float32_default_nan = const_float32(0x7FBFFFFF);
+
+static FloatParts parts_default_nan(float_status *status)
+{
+ bool sign = 0;
+ uint64_t frac;
+
+#if defined(TARGET_SPARC) || defined(TARGET_M68K)
+ /* !snan_bit_is_one, set all bits */
+ frac = (1ULL << DECOMPOSED_BINARY_POINT) - 1;
+#elif defined(TARGET_I386) || defined(TARGET_X86_64) \
+ || defined(TARGET_MICROBLAZE)
+ /* !snan_bit_is_one, set sign and msb */
+ frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
+ sign = 1;
+#elif defined(TARGET_HPPA)
+ /* snan_bit_is_one, set msb-1. */
+ frac = 1ULL << (DECOMPOSED_BINARY_POINT - 2);
#else
-const float32 float32_default_nan = const_float32(0xFFC00000);
+ /* This case is true for Alpha, ARM, MIPS, OpenRISC, PPC, RISC-V,
+ * S390, SH4, TriCore, and Xtensa. I cannot find documentation
+ * for Unicore32; the choice from the original commit is unchanged.
+ * Our other supported targets, CRIS, LM32, Moxie, Nios2, and Tile,
+ * do not have floating-point.
+ */
+ if (snan_bit_is_one(status)) {
+ /* set all bits other than msb */
+ frac = (1ULL << (DECOMPOSED_BINARY_POINT - 1)) - 1;
+ } else {
+ /* set msb */
+ frac = 1ULL << (DECOMPOSED_BINARY_POINT - 1);
+ }
#endif
+ return (FloatParts) {
+ .cls = float_class_qnan,
+ .sign = sign,
+ .exp = INT_MAX,
+ .frac = frac
+ };
+}
+
/*----------------------------------------------------------------------------
-| The pattern for a default generated double-precision NaN.
+| Returns a quiet NaN from a signalling NaN for the deconstructed
+| floating-point parts.
*----------------------------------------------------------------------------*/
-#if defined(TARGET_SPARC)
-const float64 float64_default_nan = const_float64(LIT64( 0x7FFFFFFFFFFFFFFF ));
-#elif defined(TARGET_PPC) || defined(TARGET_ARM) || defined(TARGET_ALPHA)
-const float64 float64_default_nan = const_float64(LIT64( 0x7FF8000000000000 ));
-#elif SNAN_BIT_IS_ONE
-const float64 float64_default_nan = const_float64(LIT64( 0x7FF7FFFFFFFFFFFF ));
+
+static FloatParts parts_silence_nan(FloatParts a, float_status *status)
+{
+#ifdef NO_SIGNALING_NANS
+ g_assert_not_reached();
+#elif defined(TARGET_HPPA)
+ a.frac &= ~(1ULL << (DECOMPOSED_BINARY_POINT - 1));
+ a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 2);
#else
-const float64 float64_default_nan = const_float64(LIT64( 0xFFF8000000000000 ));
+ if (snan_bit_is_one(status)) {
+ return parts_default_nan(status);
+ } else {
+ a.frac |= 1ULL << (DECOMPOSED_BINARY_POINT - 1);
+ }
#endif
+ a.cls = float_class_qnan;
+ return a;
+}
/*----------------------------------------------------------------------------
| The pattern for a default generated extended double-precision NaN.
*----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define floatx80_default_nan_high 0x7FFF
-#define floatx80_default_nan_low LIT64( 0xBFFFFFFFFFFFFFFF )
+floatx80 floatx80_default_nan(float_status *status)
+{
+ floatx80 r;
+
+ /* None of the targets that have snan_bit_is_one use floatx80. */
+ assert(!snan_bit_is_one(status));
+#if defined(TARGET_M68K)
+ r.low = LIT64(0xFFFFFFFFFFFFFFFF);
+ r.high = 0x7FFF;
#else
-#define floatx80_default_nan_high 0xFFFF
-#define floatx80_default_nan_low LIT64( 0xC000000000000000 )
+ /* X86 */
+ r.low = LIT64(0xC000000000000000);
+ r.high = 0xFFFF;
#endif
-
-const floatx80 floatx80_default_nan
- = make_floatx80_init(floatx80_default_nan_high, floatx80_default_nan_low);
+ return r;
+}
/*----------------------------------------------------------------------------
-| The pattern for a default generated quadruple-precision NaN. The `high' and
-| `low' values hold the most- and least-significant bits, respectively.
+| The pattern for a default generated extended double-precision inf.
*----------------------------------------------------------------------------*/
-#if SNAN_BIT_IS_ONE
-#define float128_default_nan_high LIT64( 0x7FFF7FFFFFFFFFFF )
-#define float128_default_nan_low LIT64( 0xFFFFFFFFFFFFFFFF )
+
+#define floatx80_infinity_high 0x7FFF
+#if defined(TARGET_M68K)
+#define floatx80_infinity_low LIT64(0x0000000000000000)
#else
-#define float128_default_nan_high LIT64( 0xFFFF800000000000 )
-#define float128_default_nan_low LIT64( 0x0000000000000000 )
+#define floatx80_infinity_low LIT64(0x8000000000000000)
#endif
-const float128 float128_default_nan
- = make_float128_init(float128_default_nan_high, float128_default_nan_low);
+const floatx80 floatx80_infinity
+ = make_floatx80_init(floatx80_infinity_high, floatx80_infinity_low);
/*----------------------------------------------------------------------------
| Raises the exceptions specified by `flags'. Floating-point traps can be
| should be simply `float_exception_flags |= flags;'.
*----------------------------------------------------------------------------*/
-void float_raise( int8 flags STATUS_PARAM )
+void float_raise(uint8_t flags, float_status *status)
{
- STATUS(float_exception_flags) |= flags;
+ status->float_exception_flags |= flags;
}
/*----------------------------------------------------------------------------
uint64_t high, low;
} commonNaNT;
-#ifdef NO_SIGNALING_NANS
-int float16_is_quiet_nan(float16 a_)
-{
- return float16_is_any_nan(a_);
-}
-
-int float16_is_signaling_nan(float16 a_)
-{
- return 0;
-}
-#else
/*----------------------------------------------------------------------------
| Returns 1 if the half-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float16_is_quiet_nan(float16 a_)
+int float16_is_quiet_nan(float16 a_, float_status *status)
{
- uint16_t a = float16_val(a_);
-#if SNAN_BIT_IS_ONE
- return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
+#ifdef NO_SIGNALING_NANS
+ return float16_is_any_nan(a_);
#else
- return ((a & ~0x8000) >= 0x7c80);
+ uint16_t a = float16_val(a_);
+ if (snan_bit_is_one(status)) {
+ return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
+ } else {
+ return ((a & ~0x8000) >= 0x7C80);
+ }
#endif
}
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float16_is_signaling_nan(float16 a_)
+int float16_is_signaling_nan(float16 a_, float_status *status)
{
- uint16_t a = float16_val(a_);
-#if SNAN_BIT_IS_ONE
- return ((a & ~0x8000) >= 0x7c80);
-#else
- return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the half-precision floating point value `a' is a
-| signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-float16 float16_maybe_silence_nan(float16 a_)
-{
- if (float16_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- return float16_default_nan;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
+#ifdef NO_SIGNALING_NANS
+ return 0;
#else
- uint16_t a = float16_val(a_);
- a |= (1 << 9);
- return make_float16(a);
-#endif
- }
- return a_;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the half-precision floating-point NaN
-| `a' to the canonical NaN format. If `a' is a signaling NaN, the invalid
-| exception is raised.
-*----------------------------------------------------------------------------*/
-
-static commonNaNT float16ToCommonNaN( float16 a STATUS_PARAM )
-{
- commonNaNT z;
-
- if ( float16_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
- z.sign = float16_val(a) >> 15;
- z.low = 0;
- z.high = ((uint64_t) float16_val(a))<<54;
- return z;
-}
-
-/*----------------------------------------------------------------------------
-| Returns the result of converting the canonical NaN `a' to the half-
-| precision floating-point format.
-*----------------------------------------------------------------------------*/
-
-static float16 commonNaNToFloat16(commonNaNT a STATUS_PARAM)
-{
- uint16_t mantissa = a.high>>54;
-
- if (STATUS(default_nan_mode)) {
- return float16_default_nan;
- }
-
- if (mantissa) {
- return make_float16(((((uint16_t) a.sign) << 15)
- | (0x1F << 10) | mantissa));
+ uint16_t a = float16_val(a_);
+ if (snan_bit_is_one(status)) {
+ return ((a & ~0x8000) >= 0x7C80);
} else {
- return float16_default_nan;
+ return (((a >> 9) & 0x3F) == 0x3E) && (a & 0x1FF);
}
+#endif
}
-#ifdef NO_SIGNALING_NANS
-int float32_is_quiet_nan(float32 a_)
-{
- return float32_is_any_nan(a_);
-}
-
-int float32_is_signaling_nan(float32 a_)
-{
- return 0;
-}
-#else
/*----------------------------------------------------------------------------
| Returns 1 if the single-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float32_is_quiet_nan( float32 a_ )
+int float32_is_quiet_nan(float32 a_, float_status *status)
{
- uint32_t a = float32_val(a_);
-#if SNAN_BIT_IS_ONE
- return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
+#ifdef NO_SIGNALING_NANS
+ return float32_is_any_nan(a_);
#else
- return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
+ uint32_t a = float32_val(a_);
+ if (snan_bit_is_one(status)) {
+ return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
+ } else {
+ return ((uint32_t)(a << 1) >= 0xFF800000);
+ }
#endif
}
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float32_is_signaling_nan( float32 a_ )
-{
- uint32_t a = float32_val(a_);
-#if SNAN_BIT_IS_ONE
- return ( 0xFF800000 <= (uint32_t) ( a<<1 ) );
-#else
- return ( ( ( a>>22 ) & 0x1FF ) == 0x1FE ) && ( a & 0x003FFFFF );
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the single-precision floating point value `a' is a
-| signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-
-float32 float32_maybe_silence_nan( float32 a_ )
+int float32_is_signaling_nan(float32 a_, float_status *status)
{
- if (float32_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- return float32_default_nan;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
+#ifdef NO_SIGNALING_NANS
+ return 0;
#else
- uint32_t a = float32_val(a_);
- a |= (1 << 22);
- return make_float32(a);
-#endif
+ uint32_t a = float32_val(a_);
+ if (snan_bit_is_one(status)) {
+ return ((uint32_t)(a << 1) >= 0xFF800000);
+ } else {
+ return (((a >> 22) & 0x1FF) == 0x1FE) && (a & 0x003FFFFF);
}
- return a_;
+#endif
}
/*----------------------------------------------------------------------------
| exception is raised.
*----------------------------------------------------------------------------*/
-static commonNaNT float32ToCommonNaN( float32 a STATUS_PARAM )
+static commonNaNT float32ToCommonNaN(float32 a, float_status *status)
{
commonNaNT z;
- if ( float32_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR );
- z.sign = float32_val(a)>>31;
+ if (float32_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ z.sign = float32_val(a) >> 31;
z.low = 0;
- z.high = ( (uint64_t) float32_val(a) )<<41;
+ z.high = ((uint64_t)float32_val(a)) << 41;
return z;
}
| precision floating-point format.
*----------------------------------------------------------------------------*/
-static float32 commonNaNToFloat32( commonNaNT a STATUS_PARAM)
+static float32 commonNaNToFloat32(commonNaNT a, float_status *status)
{
- uint32_t mantissa = a.high>>41;
+ uint32_t mantissa = a.high >> 41;
- if ( STATUS(default_nan_mode) ) {
- return float32_default_nan;
+ if (status->default_nan_mode) {
+ return float32_default_nan(status);
}
- if ( mantissa )
+ if (mantissa) {
return make_float32(
- ( ( (uint32_t) a.sign )<<31 ) | 0x7F800000 | ( a.high>>41 ) );
- else
- return float32_default_nan;
+ (((uint32_t)a.sign) << 31) | 0x7F800000 | (a.high >> 41));
+ } else {
+ return float32_default_nan(status);
+ }
}
/*----------------------------------------------------------------------------
| The routine is passed various bits of information about the
| two NaNs and should return 0 to select NaN a and 1 for NaN b.
| Note that signalling NaNs are always squashed to quiet NaNs
-| by the caller, by calling floatXX_maybe_silence_nan() before
+| by the caller, by calling floatXX_silence_nan() before
| returning them.
|
| aIsLargerSignificand is only valid if both a and b are NaNs
| tie-break rule.
*----------------------------------------------------------------------------*/
-#if defined(TARGET_ARM)
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
+static int pickNaN(FloatClass a_cls, FloatClass b_cls,
+ flag aIsLargerSignificand)
{
- /* ARM mandated NaN propagation rules: take the first of:
+#if defined(TARGET_ARM) || defined(TARGET_MIPS) || defined(TARGET_HPPA)
+ /* ARM mandated NaN propagation rules (see FPProcessNaNs()), take
+ * the first of:
* 1. A if it is signaling
* 2. B if it is signaling
* 3. A (quiet)
* 4. B (quiet)
* A signaling NaN is always quietened before returning it.
*/
- if (aIsSNaN) {
- return 0;
- } else if (bIsSNaN) {
- return 1;
- } else if (aIsQNaN) {
- return 0;
- } else {
- return 1;
- }
-}
-#elif defined(TARGET_MIPS)
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
-{
/* According to MIPS specifications, if one of the two operands is
* a sNaN, a new qNaN has to be generated. This is done in
- * floatXX_maybe_silence_nan(). For qNaN inputs the specifications
+ * floatXX_silence_nan(). For qNaN inputs the specifications
* says: "When possible, this QNaN result is one of the operand QNaN
* values." In practice it seems that most implementations choose
* the first operand if both operands are qNaN. In short this gives
* 4. B (quiet)
* A signaling NaN is always silenced before returning it.
*/
- if (aIsSNaN) {
+ if (is_snan(a_cls)) {
return 0;
- } else if (bIsSNaN) {
+ } else if (is_snan(b_cls)) {
return 1;
- } else if (aIsQNaN) {
+ } else if (is_qnan(a_cls)) {
return 0;
} else {
return 1;
}
-}
-#elif defined(TARGET_PPC) || defined(TARGET_XTENSA)
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
-{
+#elif defined(TARGET_PPC) || defined(TARGET_XTENSA) || defined(TARGET_M68K)
/* PowerPC propagation rules:
* 1. A if it sNaN or qNaN
* 2. B if it sNaN or qNaN
* A signaling NaN is always silenced before returning it.
*/
- if (aIsSNaN || aIsQNaN) {
+ /* M68000 FAMILY PROGRAMMER'S REFERENCE MANUAL
+ * 3.4 FLOATING-POINT INSTRUCTION DETAILS
+ * If either operand, but not both operands, of an operation is a
+ * nonsignaling NaN, then that NaN is returned as the result. If both
+ * operands are nonsignaling NaNs, then the destination operand
+ * nonsignaling NaN is returned as the result.
+ * If either operand to an operation is a signaling NaN (SNaN), then the
+ * SNaN bit is set in the FPSR EXC byte. If the SNaN exception enable bit
+ * is set in the FPCR ENABLE byte, then the exception is taken and the
+ * destination is not modified. If the SNaN exception enable bit is not
+ * set, setting the SNaN bit in the operand to a one converts the SNaN to
+ * a nonsignaling NaN. The operation then continues as described in the
+ * preceding paragraph for nonsignaling NaNs.
+ */
+ if (is_nan(a_cls)) {
return 0;
} else {
return 1;
}
-}
#else
-static int pickNaN(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag aIsLargerSignificand)
-{
/* This implements x87 NaN propagation rules:
* SNaN + QNaN => return the QNaN
* two SNaNs => return the one with the larger significand, silenced
* If we get down to comparing significands and they are the same,
* return the NaN with the positive sign bit (if any).
*/
- if (aIsSNaN) {
- if (bIsSNaN) {
+ if (is_snan(a_cls)) {
+ if (is_snan(b_cls)) {
return aIsLargerSignificand ? 0 : 1;
}
- return bIsQNaN ? 1 : 0;
- }
- else if (aIsQNaN) {
- if (bIsSNaN || !bIsQNaN)
+ return is_qnan(b_cls) ? 1 : 0;
+ } else if (is_qnan(a_cls)) {
+ if (is_snan(b_cls) || !is_qnan(b_cls)) {
return 0;
- else {
+ } else {
return aIsLargerSignificand ? 0 : 1;
}
} else {
return 1;
}
-}
#endif
+}
/*----------------------------------------------------------------------------
| Select which NaN to propagate for a three-input operation.
| information.
| Return values : 0 : a; 1 : b; 2 : c; 3 : default-NaN
*----------------------------------------------------------------------------*/
-#if defined(TARGET_ARM)
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
+static int pickNaNMulAdd(FloatClass a_cls, FloatClass b_cls, FloatClass c_cls,
+ bool infzero, float_status *status)
{
+#if defined(TARGET_ARM)
/* For ARM, the (inf,zero,qnan) case sets InvalidOp and returns
* the default NaN
*/
- if (infzero && cIsQNaN) {
- float_raise(float_flag_invalid STATUS_VAR);
+ if (infzero && is_qnan(c_cls)) {
+ float_raise(float_flag_invalid, status);
return 3;
}
/* This looks different from the ARM ARM pseudocode, because the ARM ARM
* puts the operands to a fused mac operation (a*b)+c in the order c,a,b.
*/
- if (cIsSNaN) {
+ if (is_snan(c_cls)) {
return 2;
- } else if (aIsSNaN) {
+ } else if (is_snan(a_cls)) {
return 0;
- } else if (bIsSNaN) {
+ } else if (is_snan(b_cls)) {
return 1;
- } else if (cIsQNaN) {
+ } else if (is_qnan(c_cls)) {
return 2;
- } else if (aIsQNaN) {
+ } else if (is_qnan(a_cls)) {
return 0;
} else {
return 1;
}
-}
#elif defined(TARGET_MIPS)
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
-{
/* For MIPS, the (inf,zero,qnan) case sets InvalidOp and returns
* the default NaN
*/
if (infzero) {
- float_raise(float_flag_invalid STATUS_VAR);
+ float_raise(float_flag_invalid, status);
return 3;
}
- /* Prefer sNaN over qNaN, in the a, b, c order. */
- if (aIsSNaN) {
- return 0;
- } else if (bIsSNaN) {
- return 1;
- } else if (cIsSNaN) {
- return 2;
- } else if (aIsQNaN) {
- return 0;
- } else if (bIsQNaN) {
- return 1;
+ if (snan_bit_is_one(status)) {
+ /* Prefer sNaN over qNaN, in the a, b, c order. */
+ if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_snan(c_cls)) {
+ return 2;
+ } else if (is_qnan(a_cls)) {
+ return 0;
+ } else if (is_qnan(b_cls)) {
+ return 1;
+ } else {
+ return 2;
+ }
} else {
- return 2;
+ /* Prefer sNaN over qNaN, in the c, a, b order. */
+ if (is_snan(c_cls)) {
+ return 2;
+ } else if (is_snan(a_cls)) {
+ return 0;
+ } else if (is_snan(b_cls)) {
+ return 1;
+ } else if (is_qnan(c_cls)) {
+ return 2;
+ } else if (is_qnan(a_cls)) {
+ return 0;
+ } else {
+ return 1;
+ }
}
-}
#elif defined(TARGET_PPC)
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
-{
/* For PPC, the (inf,zero,qnan) case sets InvalidOp, but we prefer
* to return an input NaN if we have one (ie c) rather than generating
* a default NaN
*/
if (infzero) {
- float_raise(float_flag_invalid STATUS_VAR);
+ float_raise(float_flag_invalid, status);
return 2;
}
/* If fRA is a NaN return it; otherwise if fRB is a NaN return it;
* otherwise return fRC. Note that muladd on PPC is (fRA * fRC) + frB
*/
- if (aIsSNaN || aIsQNaN) {
+ if (is_nan(a_cls)) {
return 0;
- } else if (cIsSNaN || cIsQNaN) {
+ } else if (is_nan(c_cls)) {
return 2;
} else {
return 1;
}
-}
#else
-/* A default implementation: prefer a to b to c.
- * This is unlikely to actually match any real implementation.
- */
-static int pickNaNMulAdd(flag aIsQNaN, flag aIsSNaN, flag bIsQNaN, flag bIsSNaN,
- flag cIsQNaN, flag cIsSNaN, flag infzero STATUS_PARAM)
-{
- if (aIsSNaN || aIsQNaN) {
+ /* A default implementation: prefer a to b to c.
+ * This is unlikely to actually match any real implementation.
+ */
+ if (is_nan(a_cls)) {
return 0;
- } else if (bIsSNaN || bIsQNaN) {
+ } else if (is_nan(b_cls)) {
return 1;
} else {
return 2;
}
-}
#endif
+}
/*----------------------------------------------------------------------------
| Takes two single-precision floating-point values `a' and `b', one of which
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
-static float32 propagateFloat32NaN( float32 a, float32 b STATUS_PARAM)
+static float32 propagateFloat32NaN(float32 a, float32 b, float_status *status)
{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
flag aIsLargerSignificand;
uint32_t av, bv;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!float32_is_any_nan(a)
+ ? float_class_normal
+ : float32_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!float32_is_any_nan(b)
+ ? float_class_normal
+ : float32_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
- aIsQuietNaN = float32_is_quiet_nan( a );
- aIsSignalingNaN = float32_is_signaling_nan( a );
- bIsQuietNaN = float32_is_quiet_nan( b );
- bIsSignalingNaN = float32_is_signaling_nan( b );
av = float32_val(a);
bv = float32_val(b);
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
- if ( STATUS(default_nan_mode) )
- return float32_default_nan;
+ if (status->default_nan_mode) {
+ return float32_default_nan(status);
+ }
- if ((uint32_t)(av<<1) < (uint32_t)(bv<<1)) {
+ if ((uint32_t)(av << 1) < (uint32_t)(bv << 1)) {
aIsLargerSignificand = 0;
- } else if ((uint32_t)(bv<<1) < (uint32_t)(av<<1)) {
+ } else if ((uint32_t)(bv << 1) < (uint32_t)(av << 1)) {
aIsLargerSignificand = 1;
} else {
aIsLargerSignificand = (av < bv) ? 1 : 0;
}
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return float32_maybe_silence_nan(b);
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return float32_silence_nan(b, status);
+ }
+ return b;
} else {
- return float32_maybe_silence_nan(a);
+ if (is_snan(a_cls)) {
+ return float32_silence_nan(a, status);
+ }
+ return a;
}
}
/*----------------------------------------------------------------------------
-| Takes three single-precision floating-point values `a', `b' and `c', one of
-| which is a NaN, and returns the appropriate NaN result. If any of `a',
-| `b' or `c' is a signaling NaN, the invalid exception is raised.
-| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
-| obviously c is a NaN, and whether to propagate c or some other NaN is
-| implementation defined).
+| Returns 1 if the double-precision floating-point value `a' is a quiet
+| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-static float32 propagateFloat32MulAddNaN(float32 a, float32 b,
- float32 c, flag infzero STATUS_PARAM)
+int float64_is_quiet_nan(float64 a_, float_status *status)
{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN;
- int which;
-
- aIsQuietNaN = float32_is_quiet_nan(a);
- aIsSignalingNaN = float32_is_signaling_nan(a);
- bIsQuietNaN = float32_is_quiet_nan(b);
- bIsSignalingNaN = float32_is_signaling_nan(b);
- cIsQuietNaN = float32_is_quiet_nan(c);
- cIsSignalingNaN = float32_is_signaling_nan(c);
-
- if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
- float_raise(float_flag_invalid STATUS_VAR);
- }
-
- which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
- bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
-
- if (STATUS(default_nan_mode)) {
- /* Note that this check is after pickNaNMulAdd so that function
- * has an opportunity to set the Invalid flag.
- */
- return float32_default_nan;
- }
-
- switch (which) {
- case 0:
- return float32_maybe_silence_nan(a);
- case 1:
- return float32_maybe_silence_nan(b);
- case 2:
- return float32_maybe_silence_nan(c);
- case 3:
- default:
- return float32_default_nan;
- }
-}
-
#ifdef NO_SIGNALING_NANS
-int float64_is_quiet_nan(float64 a_)
-{
return float64_is_any_nan(a_);
-}
-
-int float64_is_signaling_nan(float64 a_)
-{
- return 0;
-}
#else
-/*----------------------------------------------------------------------------
-| Returns 1 if the double-precision floating-point value `a' is a quiet
-| NaN; otherwise returns 0.
-*----------------------------------------------------------------------------*/
-
-int float64_is_quiet_nan( float64 a_ )
-{
uint64_t a = float64_val(a_);
-#if SNAN_BIT_IS_ONE
- return
- ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
- && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
-#else
- return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
+ if (snan_bit_is_one(status)) {
+ return (((a >> 51) & 0xFFF) == 0xFFE)
+ && (a & 0x0007FFFFFFFFFFFFULL);
+ } else {
+ return ((a << 1) >= 0xFFF0000000000000ULL);
+ }
#endif
}
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float64_is_signaling_nan( float64 a_ )
-{
- uint64_t a = float64_val(a_);
-#if SNAN_BIT_IS_ONE
- return ( LIT64( 0xFFF0000000000000 ) <= (uint64_t) ( a<<1 ) );
-#else
- return
- ( ( ( a>>51 ) & 0xFFF ) == 0xFFE )
- && ( a & LIT64( 0x0007FFFFFFFFFFFF ) );
-#endif
-}
-#endif
-
-/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the double-precision floating point value `a' is a
-| signaling NaN; otherwise returns `a'.
-*----------------------------------------------------------------------------*/
-
-float64 float64_maybe_silence_nan( float64 a_ )
+int float64_is_signaling_nan(float64 a_, float_status *status)
{
- if (float64_is_signaling_nan(a_)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- return float64_default_nan;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
+#ifdef NO_SIGNALING_NANS
+ return 0;
#else
- uint64_t a = float64_val(a_);
- a |= LIT64( 0x0008000000000000 );
- return make_float64(a);
-#endif
+ uint64_t a = float64_val(a_);
+ if (snan_bit_is_one(status)) {
+ return ((a << 1) >= 0xFFF0000000000000ULL);
+ } else {
+ return (((a >> 51) & 0xFFF) == 0xFFE)
+ && (a & LIT64(0x0007FFFFFFFFFFFF));
}
- return a_;
+#endif
}
/*----------------------------------------------------------------------------
| exception is raised.
*----------------------------------------------------------------------------*/
-static commonNaNT float64ToCommonNaN( float64 a STATUS_PARAM)
+static commonNaNT float64ToCommonNaN(float64 a, float_status *status)
{
commonNaNT z;
- if ( float64_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
- z.sign = float64_val(a)>>63;
+ if (float64_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ z.sign = float64_val(a) >> 63;
z.low = 0;
- z.high = float64_val(a)<<12;
+ z.high = float64_val(a) << 12;
return z;
}
| precision floating-point format.
*----------------------------------------------------------------------------*/
-static float64 commonNaNToFloat64( commonNaNT a STATUS_PARAM)
+static float64 commonNaNToFloat64(commonNaNT a, float_status *status)
{
- uint64_t mantissa = a.high>>12;
+ uint64_t mantissa = a.high >> 12;
- if ( STATUS(default_nan_mode) ) {
- return float64_default_nan;
+ if (status->default_nan_mode) {
+ return float64_default_nan(status);
}
- if ( mantissa )
+ if (mantissa) {
return make_float64(
- ( ( (uint64_t) a.sign )<<63 )
- | LIT64( 0x7FF0000000000000 )
- | ( a.high>>12 ));
- else
- return float64_default_nan;
+ (((uint64_t) a.sign) << 63)
+ | LIT64(0x7FF0000000000000)
+ | (a.high >> 12));
+ } else {
+ return float64_default_nan(status);
+ }
}
/*----------------------------------------------------------------------------
| signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
-static float64 propagateFloat64NaN( float64 a, float64 b STATUS_PARAM)
+static float64 propagateFloat64NaN(float64 a, float64 b, float_status *status)
{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
flag aIsLargerSignificand;
uint64_t av, bv;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!float64_is_any_nan(a)
+ ? float_class_normal
+ : float64_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!float64_is_any_nan(b)
+ ? float_class_normal
+ : float64_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
- aIsQuietNaN = float64_is_quiet_nan( a );
- aIsSignalingNaN = float64_is_signaling_nan( a );
- bIsQuietNaN = float64_is_quiet_nan( b );
- bIsSignalingNaN = float64_is_signaling_nan( b );
av = float64_val(a);
bv = float64_val(b);
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
- if ( STATUS(default_nan_mode) )
- return float64_default_nan;
+ if (status->default_nan_mode) {
+ return float64_default_nan(status);
+ }
- if ((uint64_t)(av<<1) < (uint64_t)(bv<<1)) {
+ if ((uint64_t)(av << 1) < (uint64_t)(bv << 1)) {
aIsLargerSignificand = 0;
- } else if ((uint64_t)(bv<<1) < (uint64_t)(av<<1)) {
+ } else if ((uint64_t)(bv << 1) < (uint64_t)(av << 1)) {
aIsLargerSignificand = 1;
} else {
aIsLargerSignificand = (av < bv) ? 1 : 0;
}
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return float64_maybe_silence_nan(b);
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return float64_silence_nan(b, status);
+ }
+ return b;
} else {
- return float64_maybe_silence_nan(a);
- }
-}
-
-/*----------------------------------------------------------------------------
-| Takes three double-precision floating-point values `a', `b' and `c', one of
-| which is a NaN, and returns the appropriate NaN result. If any of `a',
-| `b' or `c' is a signaling NaN, the invalid exception is raised.
-| The input infzero indicates whether a*b was 0*inf or inf*0 (in which case
-| obviously c is a NaN, and whether to propagate c or some other NaN is
-| implementation defined).
-*----------------------------------------------------------------------------*/
-
-static float64 propagateFloat64MulAddNaN(float64 a, float64 b,
- float64 c, flag infzero STATUS_PARAM)
-{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN;
- int which;
-
- aIsQuietNaN = float64_is_quiet_nan(a);
- aIsSignalingNaN = float64_is_signaling_nan(a);
- bIsQuietNaN = float64_is_quiet_nan(b);
- bIsSignalingNaN = float64_is_signaling_nan(b);
- cIsQuietNaN = float64_is_quiet_nan(c);
- cIsSignalingNaN = float64_is_signaling_nan(c);
-
- if (aIsSignalingNaN | bIsSignalingNaN | cIsSignalingNaN) {
- float_raise(float_flag_invalid STATUS_VAR);
- }
-
- which = pickNaNMulAdd(aIsQuietNaN, aIsSignalingNaN,
- bIsQuietNaN, bIsSignalingNaN,
- cIsQuietNaN, cIsSignalingNaN, infzero STATUS_VAR);
-
- if (STATUS(default_nan_mode)) {
- /* Note that this check is after pickNaNMulAdd so that function
- * has an opportunity to set the Invalid flag.
- */
- return float64_default_nan;
- }
-
- switch (which) {
- case 0:
- return float64_maybe_silence_nan(a);
- case 1:
- return float64_maybe_silence_nan(b);
- case 2:
- return float64_maybe_silence_nan(c);
- case 3:
- default:
- return float64_default_nan;
+ if (is_snan(a_cls)) {
+ return float64_silence_nan(a, status);
+ }
+ return a;
}
}
-#ifdef NO_SIGNALING_NANS
-int floatx80_is_quiet_nan(floatx80 a_)
-{
- return floatx80_is_any_nan(a_);
-}
-
-int floatx80_is_signaling_nan(floatx80 a_)
-{
- return 0;
-}
-#else
/*----------------------------------------------------------------------------
| Returns 1 if the extended double-precision floating-point value `a' is a
| quiet NaN; otherwise returns 0. This slightly differs from the same
| function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/
-int floatx80_is_quiet_nan( floatx80 a )
+int floatx80_is_quiet_nan(floatx80 a, float_status *status)
{
-#if SNAN_BIT_IS_ONE
- uint64_t aLow;
-
- aLow = a.low & ~ LIT64( 0x4000000000000000 );
- return
- ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (uint64_t) ( aLow<<1 )
- && ( a.low == aLow );
+#ifdef NO_SIGNALING_NANS
+ return floatx80_is_any_nan(a);
#else
- return ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
+ if (snan_bit_is_one(status)) {
+ uint64_t aLow;
+
+ aLow = a.low & ~0x4000000000000000ULL;
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && (aLow << 1)
+ && (a.low == aLow);
+ } else {
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && (LIT64(0x8000000000000000) <= ((uint64_t)(a.low << 1)));
+ }
#endif
}
| function for other types as floatx80 has an explicit bit.
*----------------------------------------------------------------------------*/
-int floatx80_is_signaling_nan( floatx80 a )
+int floatx80_is_signaling_nan(floatx80 a, float_status *status)
{
-#if SNAN_BIT_IS_ONE
- return ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (LIT64( 0x8000000000000000 ) <= ((uint64_t) ( a.low<<1 )));
+#ifdef NO_SIGNALING_NANS
+ return 0;
#else
- uint64_t aLow;
+ if (snan_bit_is_one(status)) {
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && ((a.low << 1) >= 0x8000000000000000ULL);
+ } else {
+ uint64_t aLow;
- aLow = a.low & ~ LIT64( 0x4000000000000000 );
- return
- ( ( a.high & 0x7FFF ) == 0x7FFF )
- && (uint64_t) ( aLow<<1 )
- && ( a.low == aLow );
+ aLow = a.low & ~LIT64(0x4000000000000000);
+ return ((a.high & 0x7FFF) == 0x7FFF)
+ && (uint64_t)(aLow << 1)
+ && (a.low == aLow);
+ }
#endif
}
-#endif
/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the extended double-precision floating point value
-| `a' is a signaling NaN; otherwise returns `a'.
+| Returns a quiet NaN from a signalling NaN for the extended double-precision
+| floating point value `a'.
*----------------------------------------------------------------------------*/
-floatx80 floatx80_maybe_silence_nan( floatx80 a )
+floatx80 floatx80_silence_nan(floatx80 a, float_status *status)
{
- if (floatx80_is_signaling_nan(a)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- a.low = floatx80_default_nan_low;
- a.high = floatx80_default_nan_high;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
-#else
- a.low |= LIT64( 0xC000000000000000 );
- return a;
-#endif
- }
+ /* None of the targets that have snan_bit_is_one use floatx80. */
+ assert(!snan_bit_is_one(status));
+ a.low |= LIT64(0xC000000000000000);
return a;
}
| invalid exception is raised.
*----------------------------------------------------------------------------*/
-static commonNaNT floatx80ToCommonNaN( floatx80 a STATUS_PARAM)
+static commonNaNT floatx80ToCommonNaN(floatx80 a, float_status *status)
{
+ floatx80 dflt;
commonNaNT z;
- if ( floatx80_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
- if ( a.low >> 63 ) {
+ if (floatx80_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ if (a.low >> 63) {
z.sign = a.high >> 15;
z.low = 0;
z.high = a.low << 1;
} else {
- z.sign = floatx80_default_nan_high >> 15;
+ dflt = floatx80_default_nan(status);
+ z.sign = dflt.high >> 15;
z.low = 0;
- z.high = floatx80_default_nan_low << 1;
+ z.high = dflt.low << 1;
}
return z;
}
| double-precision floating-point format.
*----------------------------------------------------------------------------*/
-static floatx80 commonNaNToFloatx80( commonNaNT a STATUS_PARAM)
+static floatx80 commonNaNToFloatx80(commonNaNT a, float_status *status)
{
floatx80 z;
- if ( STATUS(default_nan_mode) ) {
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
- return z;
+ if (status->default_nan_mode) {
+ return floatx80_default_nan(status);
}
if (a.high >> 1) {
- z.low = LIT64( 0x8000000000000000 ) | a.high >> 1;
- z.high = ( ( (uint16_t) a.sign )<<15 ) | 0x7FFF;
+ z.low = LIT64(0x8000000000000000) | a.high >> 1;
+ z.high = (((uint16_t)a.sign) << 15) | 0x7FFF;
} else {
- z.low = floatx80_default_nan_low;
- z.high = floatx80_default_nan_high;
+ z = floatx80_default_nan(status);
}
-
return z;
}
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
-static floatx80 propagateFloatx80NaN( floatx80 a, floatx80 b STATUS_PARAM)
+floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status)
{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
flag aIsLargerSignificand;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!floatx80_is_any_nan(a)
+ ? float_class_normal
+ : floatx80_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!floatx80_is_any_nan(b)
+ ? float_class_normal
+ : floatx80_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
+
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
- aIsQuietNaN = floatx80_is_quiet_nan( a );
- aIsSignalingNaN = floatx80_is_signaling_nan( a );
- bIsQuietNaN = floatx80_is_quiet_nan( b );
- bIsSignalingNaN = floatx80_is_signaling_nan( b );
-
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
-
- if ( STATUS(default_nan_mode) ) {
- a.low = floatx80_default_nan_low;
- a.high = floatx80_default_nan_high;
- return a;
+ if (status->default_nan_mode) {
+ return floatx80_default_nan(status);
}
if (a.low < b.low) {
aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
}
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return floatx80_maybe_silence_nan(b);
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return floatx80_silence_nan(b, status);
+ }
+ return b;
} else {
- return floatx80_maybe_silence_nan(a);
+ if (is_snan(a_cls)) {
+ return floatx80_silence_nan(a, status);
+ }
+ return a;
}
}
-#ifdef NO_SIGNALING_NANS
-int float128_is_quiet_nan(float128 a_)
-{
- return float128_is_any_nan(a_);
-}
-
-int float128_is_signaling_nan(float128 a_)
-{
- return 0;
-}
-#else
/*----------------------------------------------------------------------------
| Returns 1 if the quadruple-precision floating-point value `a' is a quiet
| NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float128_is_quiet_nan( float128 a )
+int float128_is_quiet_nan(float128 a, float_status *status)
{
-#if SNAN_BIT_IS_ONE
- return
- ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
- && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
+#ifdef NO_SIGNALING_NANS
+ return float128_is_any_nan(a);
#else
- return
- ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
- && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
+ if (snan_bit_is_one(status)) {
+ return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
+ && (a.low || (a.high & 0x00007FFFFFFFFFFFULL));
+ } else {
+ return ((a.high << 1) >= 0xFFFF000000000000ULL)
+ && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
+ }
#endif
}
| signaling NaN; otherwise returns 0.
*----------------------------------------------------------------------------*/
-int float128_is_signaling_nan( float128 a )
+int float128_is_signaling_nan(float128 a, float_status *status)
{
-#if SNAN_BIT_IS_ONE
- return
- ( LIT64( 0xFFFE000000000000 ) <= (uint64_t) ( a.high<<1 ) )
- && ( a.low || ( a.high & LIT64( 0x0000FFFFFFFFFFFF ) ) );
+#ifdef NO_SIGNALING_NANS
+ return 0;
#else
- return
- ( ( ( a.high>>47 ) & 0xFFFF ) == 0xFFFE )
- && ( a.low || ( a.high & LIT64( 0x00007FFFFFFFFFFF ) ) );
+ if (snan_bit_is_one(status)) {
+ return ((a.high << 1) >= 0xFFFF000000000000ULL)
+ && (a.low || (a.high & 0x0000FFFFFFFFFFFFULL));
+ } else {
+ return (((a.high >> 47) & 0xFFFF) == 0xFFFE)
+ && (a.low || (a.high & LIT64(0x00007FFFFFFFFFFF)));
+ }
#endif
}
-#endif
/*----------------------------------------------------------------------------
-| Returns a quiet NaN if the quadruple-precision floating point value `a' is
-| a signaling NaN; otherwise returns `a'.
+| Returns a quiet NaN from a signalling NaN for the quadruple-precision
+| floating point value `a'.
*----------------------------------------------------------------------------*/
-float128 float128_maybe_silence_nan( float128 a )
+float128 float128_silence_nan(float128 a, float_status *status)
{
- if (float128_is_signaling_nan(a)) {
-#if SNAN_BIT_IS_ONE
-# if defined(TARGET_MIPS) || defined(TARGET_SH4) || defined(TARGET_UNICORE32)
- a.low = float128_default_nan_low;
- a.high = float128_default_nan_high;
-# else
-# error Rules for silencing a signaling NaN are target-specific
-# endif
+#ifdef NO_SIGNALING_NANS
+ g_assert_not_reached();
#else
- a.high |= LIT64( 0x0000800000000000 );
+ if (snan_bit_is_one(status)) {
+ return float128_default_nan(status);
+ } else {
+ a.high |= LIT64(0x0000800000000000);
return a;
-#endif
}
- return a;
+#endif
}
/*----------------------------------------------------------------------------
| exception is raised.
*----------------------------------------------------------------------------*/
-static commonNaNT float128ToCommonNaN( float128 a STATUS_PARAM)
+static commonNaNT float128ToCommonNaN(float128 a, float_status *status)
{
commonNaNT z;
- if ( float128_is_signaling_nan( a ) ) float_raise( float_flag_invalid STATUS_VAR);
- z.sign = a.high>>63;
- shortShift128Left( a.high, a.low, 16, &z.high, &z.low );
+ if (float128_is_signaling_nan(a, status)) {
+ float_raise(float_flag_invalid, status);
+ }
+ z.sign = a.high >> 63;
+ shortShift128Left(a.high, a.low, 16, &z.high, &z.low);
return z;
}
| precision floating-point format.
*----------------------------------------------------------------------------*/
-static float128 commonNaNToFloat128( commonNaNT a STATUS_PARAM)
+static float128 commonNaNToFloat128(commonNaNT a, float_status *status)
{
float128 z;
- if ( STATUS(default_nan_mode) ) {
- z.low = float128_default_nan_low;
- z.high = float128_default_nan_high;
- return z;
+ if (status->default_nan_mode) {
+ return float128_default_nan(status);
}
- shift128Right( a.high, a.low, 16, &z.high, &z.low );
- z.high |= ( ( (uint64_t) a.sign )<<63 ) | LIT64( 0x7FFF000000000000 );
+ shift128Right(a.high, a.low, 16, &z.high, &z.low);
+ z.high |= (((uint64_t)a.sign) << 63) | LIT64(0x7FFF000000000000);
return z;
}
| `b' is a signaling NaN, the invalid exception is raised.
*----------------------------------------------------------------------------*/
-static float128 propagateFloat128NaN( float128 a, float128 b STATUS_PARAM)
+static float128 propagateFloat128NaN(float128 a, float128 b,
+ float_status *status)
{
- flag aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN;
flag aIsLargerSignificand;
+ FloatClass a_cls, b_cls;
+
+ /* This is not complete, but is good enough for pickNaN. */
+ a_cls = (!float128_is_any_nan(a)
+ ? float_class_normal
+ : float128_is_signaling_nan(a, status)
+ ? float_class_snan
+ : float_class_qnan);
+ b_cls = (!float128_is_any_nan(b)
+ ? float_class_normal
+ : float128_is_signaling_nan(b, status)
+ ? float_class_snan
+ : float_class_qnan);
+
+ if (is_snan(a_cls) || is_snan(b_cls)) {
+ float_raise(float_flag_invalid, status);
+ }
- aIsQuietNaN = float128_is_quiet_nan( a );
- aIsSignalingNaN = float128_is_signaling_nan( a );
- bIsQuietNaN = float128_is_quiet_nan( b );
- bIsSignalingNaN = float128_is_signaling_nan( b );
-
- if ( aIsSignalingNaN | bIsSignalingNaN ) float_raise( float_flag_invalid STATUS_VAR);
-
- if ( STATUS(default_nan_mode) ) {
- a.low = float128_default_nan_low;
- a.high = float128_default_nan_high;
- return a;
+ if (status->default_nan_mode) {
+ return float128_default_nan(status);
}
- if (lt128(a.high<<1, a.low, b.high<<1, b.low)) {
+ if (lt128(a.high << 1, a.low, b.high << 1, b.low)) {
aIsLargerSignificand = 0;
- } else if (lt128(b.high<<1, b.low, a.high<<1, a.low)) {
+ } else if (lt128(b.high << 1, b.low, a.high << 1, a.low)) {
aIsLargerSignificand = 1;
} else {
aIsLargerSignificand = (a.high < b.high) ? 1 : 0;
}
- if (pickNaN(aIsQuietNaN, aIsSignalingNaN, bIsQuietNaN, bIsSignalingNaN,
- aIsLargerSignificand)) {
- return float128_maybe_silence_nan(b);
+ if (pickNaN(a_cls, b_cls, aIsLargerSignificand)) {
+ if (is_snan(b_cls)) {
+ return float128_silence_nan(b, status);
+ }
+ return b;
} else {
- return float128_maybe_silence_nan(a);
+ if (is_snan(a_cls)) {
+ return float128_silence_nan(a, status);
+ }
+ return a;
}
}
-