* License along with this library; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
+#include "config.h"
+#ifdef _WIN32
+#include <windows.h>
+#else
+#include <sys/types.h>
+#include <sys/mman.h>
+#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include <errno.h>
#include <unistd.h>
#include <inttypes.h>
-#include <sys/mman.h>
-#include "cpu-i386.h"
-#include "exec.h"
+#include "cpu.h"
+#include "exec-all.h"
//#define DEBUG_TB_INVALIDATE
-#define DEBUG_FLUSH
+//#define DEBUG_FLUSH
+//#define DEBUG_TLB
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
+//#define DEBUG_TLB_CHECK
/* threshold to flush the translated code buffer */
#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
-#define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / 64)
+#define SMC_BITMAP_USE_THRESHOLD 10
+
+#define MMAP_AREA_START 0x00000000
+#define MMAP_AREA_END 0xa8000000
TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
+TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
int nb_tbs;
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
uint8_t *code_gen_ptr;
-/* XXX: pack the flags in the low bits of the pointer ? */
+int phys_ram_size;
+int phys_ram_fd;
+uint8_t *phys_ram_base;
+uint8_t *phys_ram_dirty;
+
typedef struct PageDesc {
- unsigned long flags;
+ /* list of TBs intersecting this ram page */
TranslationBlock *first_tb;
+ /* in order to optimize self modifying code, we count the number
+ of lookups we do to a given page to use a bitmap */
+ unsigned int code_write_count;
+ uint8_t *code_bitmap;
+#if defined(CONFIG_USER_ONLY)
+ unsigned long flags;
+#endif
} PageDesc;
+typedef struct PhysPageDesc {
+ /* offset in host memory of the page + io_index in the low 12 bits */
+ unsigned long phys_offset;
+} PhysPageDesc;
+
+typedef struct VirtPageDesc {
+ /* physical address of code page. It is valid only if 'valid_tag'
+ matches 'virt_valid_tag' */
+ target_ulong phys_addr;
+ unsigned int valid_tag;
+#if !defined(CONFIG_SOFTMMU)
+ /* original page access rights. It is valid only if 'valid_tag'
+ matches 'virt_valid_tag' */
+ unsigned int prot;
+#endif
+} VirtPageDesc;
+
#define L2_BITS 10
#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)
-static void tb_invalidate_page(unsigned long address);
+static void io_mem_init(void);
-unsigned long real_host_page_size;
-unsigned long host_page_bits;
-unsigned long host_page_size;
-unsigned long host_page_mask;
+unsigned long qemu_real_host_page_size;
+unsigned long qemu_host_page_bits;
+unsigned long qemu_host_page_size;
+unsigned long qemu_host_page_mask;
+/* XXX: for system emulation, it could just be an array */
static PageDesc *l1_map[L1_SIZE];
+static PhysPageDesc *l1_phys_map[L1_SIZE];
-void page_init(void)
-{
- /* NOTE: we can always suppose that host_page_size >=
- TARGET_PAGE_SIZE */
- real_host_page_size = getpagesize();
- if (host_page_size == 0)
- host_page_size = real_host_page_size;
- if (host_page_size < TARGET_PAGE_SIZE)
- host_page_size = TARGET_PAGE_SIZE;
- host_page_bits = 0;
- while ((1 << host_page_bits) < host_page_size)
- host_page_bits++;
- host_page_mask = ~(host_page_size - 1);
-}
+#if !defined(CONFIG_USER_ONLY)
+static VirtPageDesc *l1_virt_map[L1_SIZE];
+static unsigned int virt_valid_tag;
+#endif
-/* dump memory mappings */
-void page_dump(FILE *f)
+/* io memory support */
+CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
+CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
+void *io_mem_opaque[IO_MEM_NB_ENTRIES];
+static int io_mem_nb;
+
+/* log support */
+char *logfilename = "/tmp/qemu.log";
+FILE *logfile;
+int loglevel;
+
+static void page_init(void)
{
- unsigned long start, end;
- int i, j, prot, prot1;
- PageDesc *p;
+ /* NOTE: we can always suppose that qemu_host_page_size >=
+ TARGET_PAGE_SIZE */
+#ifdef _WIN32
+ {
+ SYSTEM_INFO system_info;
+ DWORD old_protect;
+
+ GetSystemInfo(&system_info);
+ qemu_real_host_page_size = system_info.dwPageSize;
+
+ VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
+ PAGE_EXECUTE_READWRITE, &old_protect);
+ }
+#else
+ qemu_real_host_page_size = getpagesize();
+ {
+ unsigned long start, end;
- fprintf(f, "%-8s %-8s %-8s %s\n",
- "start", "end", "size", "prot");
- start = -1;
- end = -1;
- prot = 0;
- for(i = 0; i <= L1_SIZE; i++) {
- if (i < L1_SIZE)
- p = l1_map[i];
- else
- p = NULL;
- for(j = 0;j < L2_SIZE; j++) {
- if (!p)
- prot1 = 0;
- else
- prot1 = p[j].flags;
- if (prot1 != prot) {
- end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
- if (start != -1) {
- fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
- start, end, end - start,
- prot & PAGE_READ ? 'r' : '-',
- prot & PAGE_WRITE ? 'w' : '-',
- prot & PAGE_EXEC ? 'x' : '-');
- }
- if (prot1 != 0)
- start = end;
- else
- start = -1;
- prot = prot1;
- }
- if (!p)
- break;
- }
+ start = (unsigned long)code_gen_buffer;
+ start &= ~(qemu_real_host_page_size - 1);
+
+ end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
+ end += qemu_real_host_page_size - 1;
+ end &= ~(qemu_real_host_page_size - 1);
+
+ mprotect((void *)start, end - start,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
}
+#endif
+
+ if (qemu_host_page_size == 0)
+ qemu_host_page_size = qemu_real_host_page_size;
+ if (qemu_host_page_size < TARGET_PAGE_SIZE)
+ qemu_host_page_size = TARGET_PAGE_SIZE;
+ qemu_host_page_bits = 0;
+ while ((1 << qemu_host_page_bits) < qemu_host_page_size)
+ qemu_host_page_bits++;
+ qemu_host_page_mask = ~(qemu_host_page_size - 1);
+#if !defined(CONFIG_USER_ONLY)
+ virt_valid_tag = 1;
+#endif
}
static inline PageDesc *page_find_alloc(unsigned int index)
p = *lp;
if (!p) {
/* allocate if not found */
- p = malloc(sizeof(PageDesc) * L2_SIZE);
+ p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
memset(p, 0, sizeof(PageDesc) * L2_SIZE);
*lp = p;
}
return p + (index & (L2_SIZE - 1));
}
-int page_get_flags(unsigned long address)
+static inline PhysPageDesc *phys_page_find_alloc(unsigned int index)
{
- PageDesc *p;
+ PhysPageDesc **lp, *p;
- p = page_find(address >> TARGET_PAGE_BITS);
+ lp = &l1_phys_map[index >> L2_BITS];
+ p = *lp;
+ if (!p) {
+ /* allocate if not found */
+ p = qemu_malloc(sizeof(PhysPageDesc) * L2_SIZE);
+ memset(p, 0, sizeof(PhysPageDesc) * L2_SIZE);
+ *lp = p;
+ }
+ return p + (index & (L2_SIZE - 1));
+}
+
+static inline PhysPageDesc *phys_page_find(unsigned int index)
+{
+ PhysPageDesc *p;
+
+ p = l1_phys_map[index >> L2_BITS];
if (!p)
return 0;
- return p->flags;
+ return p + (index & (L2_SIZE - 1));
}
-/* modify the flags of a page and invalidate the code if
- necessary. The flag PAGE_WRITE_ORG is positionned automatically
- depending on PAGE_WRITE */
-void page_set_flags(unsigned long start, unsigned long end, int flags)
+#if !defined(CONFIG_USER_ONLY)
+static void tlb_protect_code(CPUState *env, target_ulong addr);
+static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr);
+
+static inline VirtPageDesc *virt_page_find_alloc(unsigned int index)
{
- PageDesc *p;
- unsigned long addr;
+ VirtPageDesc **lp, *p;
- start = start & TARGET_PAGE_MASK;
- end = TARGET_PAGE_ALIGN(end);
- if (flags & PAGE_WRITE)
- flags |= PAGE_WRITE_ORG;
- spin_lock(&tb_lock);
- for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
- p = page_find_alloc(addr >> TARGET_PAGE_BITS);
- /* if the write protection is set, then we invalidate the code
- inside */
- if (!(p->flags & PAGE_WRITE) &&
- (flags & PAGE_WRITE) &&
- p->first_tb) {
- tb_invalidate_page(addr);
+ /* XXX: should not truncate for 64 bit addresses */
+#if TARGET_LONG_BITS > 32
+ index &= (L1_SIZE - 1);
+#endif
+ lp = &l1_virt_map[index >> L2_BITS];
+ p = *lp;
+ if (!p) {
+ /* allocate if not found */
+ p = qemu_malloc(sizeof(VirtPageDesc) * L2_SIZE);
+ memset(p, 0, sizeof(VirtPageDesc) * L2_SIZE);
+ *lp = p;
+ }
+ return p + (index & (L2_SIZE - 1));
+}
+
+static inline VirtPageDesc *virt_page_find(unsigned int index)
+{
+ VirtPageDesc *p;
+
+ p = l1_virt_map[index >> L2_BITS];
+ if (!p)
+ return 0;
+ return p + (index & (L2_SIZE - 1));
+}
+
+static void virt_page_flush(void)
+{
+ int i, j;
+ VirtPageDesc *p;
+
+ virt_valid_tag++;
+
+ if (virt_valid_tag == 0) {
+ virt_valid_tag = 1;
+ for(i = 0; i < L1_SIZE; i++) {
+ p = l1_virt_map[i];
+ if (p) {
+ for(j = 0; j < L2_SIZE; j++)
+ p[j].valid_tag = 0;
+ }
}
- p->flags = flags;
}
- spin_unlock(&tb_lock);
}
+#else
+static void virt_page_flush(void)
+{
+}
+#endif
-void cpu_x86_tblocks_init(void)
+void cpu_exec_init(void)
{
if (!code_gen_ptr) {
code_gen_ptr = code_gen_buffer;
+ page_init();
+ io_mem_init();
}
}
+static inline void invalidate_page_bitmap(PageDesc *p)
+{
+ if (p->code_bitmap) {
+ qemu_free(p->code_bitmap);
+ p->code_bitmap = NULL;
+ }
+ p->code_write_count = 0;
+}
+
/* set to NULL all the 'first_tb' fields in all PageDescs */
static void page_flush_tb(void)
{
for(i = 0; i < L1_SIZE; i++) {
p = l1_map[i];
if (p) {
- for(j = 0; j < L2_SIZE; j++)
- p[j].first_tb = NULL;
+ for(j = 0; j < L2_SIZE; j++) {
+ p->first_tb = NULL;
+ invalidate_page_bitmap(p);
+ p++;
+ }
}
}
}
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
-void tb_flush(void)
+void tb_flush(CPUState *env)
{
- int i;
-#ifdef DEBUG_FLUSH
+#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
code_gen_ptr - code_gen_buffer,
nb_tbs,
- (code_gen_ptr - code_gen_buffer) / nb_tbs);
+ nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
#endif
nb_tbs = 0;
- for(i = 0;i < CODE_GEN_HASH_SIZE; i++)
- tb_hash[i] = NULL;
+ memset (tb_hash, 0, CODE_GEN_HASH_SIZE * sizeof (void *));
+ virt_page_flush();
+
+ memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
page_flush_tb();
+
code_gen_ptr = code_gen_buffer;
/* XXX: flush processor icache at this point if cache flush is
expensive */
}
}
+static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
+{
+ TranslationBlock *tb1;
+ unsigned int n1;
+
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (tb1 == tb) {
+ *ptb = tb1->page_next[n1];
+ break;
+ }
+ ptb = &tb1->page_next[n1];
+ }
+}
+
static inline void tb_jmp_remove(TranslationBlock *tb, int n)
{
TranslationBlock *tb1, **ptb;
tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}
-static inline void tb_invalidate(TranslationBlock *tb, int parity)
+static inline void tb_invalidate(TranslationBlock *tb)
{
- PageDesc *p;
- unsigned int page_index1, page_index2;
unsigned int h, n1;
- TranslationBlock *tb1, *tb2;
+ TranslationBlock *tb1, *tb2, **ptb;
+ tb_invalidated_flag = 1;
+
/* remove the TB from the hash list */
h = tb_hash_func(tb->pc);
- tb_remove(&tb_hash[h], tb,
- offsetof(TranslationBlock, hash_next));
- /* remove the TB from the page list */
- page_index1 = tb->pc >> TARGET_PAGE_BITS;
- if ((page_index1 & 1) == parity) {
- p = page_find(page_index1);
- tb_remove(&p->first_tb, tb,
- offsetof(TranslationBlock, page_next[page_index1 & 1]));
- }
- page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
- if ((page_index2 & 1) == parity) {
- p = page_find(page_index2);
- tb_remove(&p->first_tb, tb,
- offsetof(TranslationBlock, page_next[page_index2 & 1]));
+ ptb = &tb_hash[h];
+ for(;;) {
+ tb1 = *ptb;
+ /* NOTE: the TB is not necessarily linked in the hash. It
+ indicates that it is not currently used */
+ if (tb1 == NULL)
+ return;
+ if (tb1 == tb) {
+ *ptb = tb1->hash_next;
+ break;
+ }
+ ptb = &tb1->hash_next;
}
/* suppress this TB from the two jump lists */
tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
}
-/* invalidate all TBs which intersect with the target page starting at addr */
-static void tb_invalidate_page(unsigned long address)
+static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
{
- TranslationBlock *tb_next, *tb;
- unsigned int page_index;
- int parity1, parity2;
PageDesc *p;
-#ifdef DEBUG_TB_INVALIDATE
- printf("tb_invalidate_page: %lx\n", address);
+ unsigned int h;
+ target_ulong phys_pc;
+
+ /* remove the TB from the hash list */
+ phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ h = tb_phys_hash_func(phys_pc);
+ tb_remove(&tb_phys_hash[h], tb,
+ offsetof(TranslationBlock, phys_hash_next));
+
+ /* remove the TB from the page list */
+ if (tb->page_addr[0] != page_addr) {
+ p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+ if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
+ p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+
+ tb_invalidate(tb);
+}
+
+static inline void set_bits(uint8_t *tab, int start, int len)
+{
+ int end, mask, end1;
+
+ end = start + len;
+ tab += start >> 3;
+ mask = 0xff << (start & 7);
+ if ((start & ~7) == (end & ~7)) {
+ if (start < end) {
+ mask &= ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ } else {
+ *tab++ |= mask;
+ start = (start + 8) & ~7;
+ end1 = end & ~7;
+ while (start < end1) {
+ *tab++ = 0xff;
+ start += 8;
+ }
+ if (start < end) {
+ mask = ~(0xff << (end & 7));
+ *tab |= mask;
+ }
+ }
+}
+
+static void build_page_bitmap(PageDesc *p)
+{
+ int n, tb_start, tb_end;
+ TranslationBlock *tb;
+
+ p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
+ if (!p->code_bitmap)
+ return;
+ memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
+
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (long)tb & 3;
+ tb = (TranslationBlock *)((long)tb & ~3);
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->pc & ~TARGET_PAGE_MASK;
+ tb_end = tb_start + tb->size;
+ if (tb_end > TARGET_PAGE_SIZE)
+ tb_end = TARGET_PAGE_SIZE;
+ } else {
+ tb_start = 0;
+ tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
+ tb = tb->page_next[n];
+ }
+}
+
+#ifdef TARGET_HAS_PRECISE_SMC
+
+static void tb_gen_code(CPUState *env,
+ target_ulong pc, target_ulong cs_base, int flags,
+ int cflags)
+{
+ TranslationBlock *tb;
+ uint8_t *tc_ptr;
+ target_ulong phys_pc, phys_page2, virt_page2;
+ int code_gen_size;
+
+ phys_pc = get_phys_addr_code(env, pc);
+ tb = tb_alloc(pc);
+ if (!tb) {
+ /* flush must be done */
+ tb_flush(env);
+ /* cannot fail at this point */
+ tb = tb_alloc(pc);
+ }
+ tc_ptr = code_gen_ptr;
+ tb->tc_ptr = tc_ptr;
+ tb->cs_base = cs_base;
+ tb->flags = flags;
+ tb->cflags = cflags;
+ cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
+ code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+
+ /* check next page if needed */
+ virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
+ phys_page2 = -1;
+ if ((pc & TARGET_PAGE_MASK) != virt_page2) {
+ phys_page2 = get_phys_addr_code(env, virt_page2);
+ }
+ tb_link_phys(tb, phys_pc, phys_page2);
+}
#endif
+
+/* invalidate all TBs which intersect with the target physical page
+ starting in range [start;end[. NOTE: start and end must refer to
+ the same physical page. 'is_cpu_write_access' should be true if called
+ from a real cpu write access: the virtual CPU will exit the current
+ TB if code is modified inside this TB. */
+void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
+ int is_cpu_write_access)
+{
+ int n, current_tb_modified, current_tb_not_found, current_flags;
+ CPUState *env = cpu_single_env;
+ PageDesc *p;
+ TranslationBlock *tb, *tb_next, *current_tb, *saved_tb;
+ target_ulong tb_start, tb_end;
+ target_ulong current_pc, current_cs_base;
- page_index = address >> TARGET_PAGE_BITS;
- p = page_find(page_index);
- if (!p)
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p)
return;
+ if (!p->code_bitmap &&
+ ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
+ is_cpu_write_access) {
+ /* build code bitmap */
+ build_page_bitmap(p);
+ }
+
+ /* we remove all the TBs in the range [start, end[ */
+ /* XXX: see if in some cases it could be faster to invalidate all the code */
+ current_tb_not_found = is_cpu_write_access;
+ current_tb_modified = 0;
+ current_tb = NULL; /* avoid warning */
+ current_pc = 0; /* avoid warning */
+ current_cs_base = 0; /* avoid warning */
+ current_flags = 0; /* avoid warning */
tb = p->first_tb;
- parity1 = page_index & 1;
- parity2 = parity1 ^ 1;
while (tb != NULL) {
- tb_next = tb->page_next[parity1];
- tb_invalidate(tb, parity2);
+ n = (long)tb & 3;
+ tb = (TranslationBlock *)((long)tb & ~3);
+ tb_next = tb->page_next[n];
+ /* NOTE: this is subtle as a TB may span two physical pages */
+ if (n == 0) {
+ /* NOTE: tb_end may be after the end of the page, but
+ it is not a problem */
+ tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ tb_end = tb_start + tb->size;
+ } else {
+ tb_start = tb->page_addr[1];
+ tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
+ }
+ if (!(tb_end <= start || tb_start >= end)) {
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_not_found) {
+ current_tb_not_found = 0;
+ current_tb = NULL;
+ if (env->mem_write_pc) {
+ /* now we have a real cpu fault */
+ current_tb = tb_find_pc(env->mem_write_pc);
+ }
+ }
+ if (current_tb == tb &&
+ !(current_tb->cflags & CF_SINGLE_INSN)) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env,
+ env->mem_write_pc, NULL);
+#if defined(TARGET_I386)
+ current_flags = env->hflags;
+ current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ current_cs_base = (target_ulong)env->segs[R_CS].base;
+ current_pc = current_cs_base + env->eip;
+#else
+#error unsupported CPU
+#endif
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ saved_tb = env->current_tb;
+ env->current_tb = NULL;
+ tb_phys_invalidate(tb, -1);
+ env->current_tb = saved_tb;
+ if (env->interrupt_request && env->current_tb)
+ cpu_interrupt(env, env->interrupt_request);
+ }
tb = tb_next;
}
+#if !defined(CONFIG_USER_ONLY)
+ /* if no code remaining, no need to continue to use slow writes */
+ if (!p->first_tb) {
+ invalidate_page_bitmap(p);
+ if (is_cpu_write_access) {
+ tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
+ }
+ }
+#endif
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags,
+ CF_SINGLE_INSN);
+ cpu_resume_from_signal(env, NULL);
+ }
+#endif
+}
+
+/* len must be <= 8 and start must be a multiple of len */
+static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
+{
+ PageDesc *p;
+ int offset, b;
+#if 0
+ if (1) {
+ if (loglevel) {
+ fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
+ cpu_single_env->mem_write_vaddr, len,
+ cpu_single_env->eip,
+ cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
+ }
+ }
+#endif
+ p = page_find(start >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ if (p->code_bitmap) {
+ offset = start & ~TARGET_PAGE_MASK;
+ b = p->code_bitmap[offset >> 3] >> (offset & 7);
+ if (b & ((1 << len) - 1))
+ goto do_invalidate;
+ } else {
+ do_invalidate:
+ tb_invalidate_phys_page_range(start, start + len, 1);
+ }
+}
+
+#if !defined(CONFIG_SOFTMMU)
+static void tb_invalidate_phys_page(target_ulong addr,
+ unsigned long pc, void *puc)
+{
+ int n, current_flags, current_tb_modified;
+ target_ulong current_pc, current_cs_base;
+ PageDesc *p;
+ TranslationBlock *tb, *current_tb;
+#ifdef TARGET_HAS_PRECISE_SMC
+ CPUState *env = cpu_single_env;
+#endif
+
+ addr &= TARGET_PAGE_MASK;
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if (!p)
+ return;
+ tb = p->first_tb;
+ current_tb_modified = 0;
+ current_tb = NULL;
+ current_pc = 0; /* avoid warning */
+ current_cs_base = 0; /* avoid warning */
+ current_flags = 0; /* avoid warning */
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (tb && pc != 0) {
+ current_tb = tb_find_pc(pc);
+ }
+#endif
+ while (tb != NULL) {
+ n = (long)tb & 3;
+ tb = (TranslationBlock *)((long)tb & ~3);
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb == tb &&
+ !(current_tb->cflags & CF_SINGLE_INSN)) {
+ /* If we are modifying the current TB, we must stop
+ its execution. We could be more precise by checking
+ that the modification is after the current PC, but it
+ would require a specialized function to partially
+ restore the CPU state */
+
+ current_tb_modified = 1;
+ cpu_restore_state(current_tb, env, pc, puc);
+#if defined(TARGET_I386)
+ current_flags = env->hflags;
+ current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
+ current_cs_base = (target_ulong)env->segs[R_CS].base;
+ current_pc = current_cs_base + env->eip;
+#else
+#error unsupported CPU
+#endif
+ }
+#endif /* TARGET_HAS_PRECISE_SMC */
+ tb_phys_invalidate(tb, addr);
+ tb = tb->page_next[n];
+ }
p->first_tb = NULL;
+#ifdef TARGET_HAS_PRECISE_SMC
+ if (current_tb_modified) {
+ /* we generate a block containing just the instruction
+ modifying the memory. It will ensure that it cannot modify
+ itself */
+ env->current_tb = NULL;
+ tb_gen_code(env, current_pc, current_cs_base, current_flags,
+ CF_SINGLE_INSN);
+ cpu_resume_from_signal(env, puc);
+ }
+#endif
}
+#endif
/* add the tb in the target page and protect it if necessary */
-static inline void tb_alloc_page(TranslationBlock *tb, unsigned int page_index)
+static inline void tb_alloc_page(TranslationBlock *tb,
+ unsigned int n, unsigned int page_addr)
{
PageDesc *p;
- unsigned long host_start, host_end, addr, page_addr;
- int prot;
+ TranslationBlock *last_first_tb;
+
+ tb->page_addr[n] = page_addr;
+ p = page_find(page_addr >> TARGET_PAGE_BITS);
+ tb->page_next[n] = p->first_tb;
+ last_first_tb = p->first_tb;
+ p->first_tb = (TranslationBlock *)((long)tb | n);
+ invalidate_page_bitmap(p);
- p = page_find_alloc(page_index);
- tb->page_next[page_index & 1] = p->first_tb;
- p->first_tb = tb;
+#if defined(TARGET_HAS_SMC) || 1
+
+#if defined(CONFIG_USER_ONLY)
if (p->flags & PAGE_WRITE) {
+ unsigned long host_start, host_end, addr;
+ int prot;
+
/* force the host page as non writable (writes will have a
page fault + mprotect overhead) */
- page_addr = (page_index << TARGET_PAGE_BITS);
- host_start = page_addr & host_page_mask;
- host_end = host_start + host_page_size;
+ host_start = page_addr & qemu_host_page_mask;
+ host_end = host_start + qemu_host_page_size;
prot = 0;
for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
prot |= page_get_flags(addr);
- mprotect((void *)host_start, host_page_size,
+ mprotect((void *)host_start, qemu_host_page_size,
(prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
printf("protecting code page: 0x%08lx\n",
host_start);
#endif
p->flags &= ~PAGE_WRITE;
-#ifdef DEBUG_TB_CHECK
- tb_page_check();
-#endif
}
+#else
+ /* if some code is already present, then the pages are already
+ protected. So we handle the case where only the first TB is
+ allocated in a physical page */
+ if (!last_first_tb) {
+ target_ulong virt_addr;
+
+ virt_addr = (tb->pc & TARGET_PAGE_MASK) + (n << TARGET_PAGE_BITS);
+ tlb_protect_code(cpu_single_env, virt_addr);
+ }
+#endif
+
+#endif /* TARGET_HAS_SMC */
}
/* Allocate a new translation block. Flush the translation buffer if
too many translation blocks or too much generated code. */
-TranslationBlock *tb_alloc(unsigned long pc)
+TranslationBlock *tb_alloc(target_ulong pc)
{
TranslationBlock *tb;
return NULL;
tb = &tbs[nb_tbs++];
tb->pc = pc;
+ tb->cflags = 0;
return tb;
}
-/* link the tb with the other TBs */
-void tb_link(TranslationBlock *tb)
+/* add a new TB and link it to the physical page tables. phys_page2 is
+ (-1) to indicate that only one page contains the TB. */
+void tb_link_phys(TranslationBlock *tb,
+ target_ulong phys_pc, target_ulong phys_page2)
{
- unsigned int page_index1, page_index2;
+ unsigned int h;
+ TranslationBlock **ptb;
+
+ /* add in the physical hash table */
+ h = tb_phys_hash_func(phys_pc);
+ ptb = &tb_phys_hash[h];
+ tb->phys_hash_next = *ptb;
+ *ptb = tb;
/* add in the page list */
- page_index1 = tb->pc >> TARGET_PAGE_BITS;
- tb_alloc_page(tb, page_index1);
- page_index2 = (tb->pc + tb->size - 1) >> TARGET_PAGE_BITS;
- if (page_index2 != page_index1) {
- tb_alloc_page(tb, page_index2);
- }
- tb->jmp_first = (TranslationBlock *)((long)tb | 2);
- tb->jmp_next[0] = NULL;
- tb->jmp_next[1] = NULL;
+ tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
+ if (phys_page2 != -1)
+ tb_alloc_page(tb, 1, phys_page2);
+ else
+ tb->page_addr[1] = -1;
+#ifdef DEBUG_TB_CHECK
+ tb_page_check();
+#endif
+}
- /* init original jump addresses */
- if (tb->tb_next_offset[0] != 0xffff)
+/* link the tb with the other TBs */
+void tb_link(TranslationBlock *tb)
+{
+#if !defined(CONFIG_USER_ONLY)
+ {
+ VirtPageDesc *vp;
+ target_ulong addr;
+
+ /* save the code memory mappings (needed to invalidate the code) */
+ addr = tb->pc & TARGET_PAGE_MASK;
+ vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
+#ifdef DEBUG_TLB_CHECK
+ if (vp->valid_tag == virt_valid_tag &&
+ vp->phys_addr != tb->page_addr[0]) {
+ printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
+ addr, tb->page_addr[0], vp->phys_addr);
+ }
+#endif
+ vp->phys_addr = tb->page_addr[0];
+ if (vp->valid_tag != virt_valid_tag) {
+ vp->valid_tag = virt_valid_tag;
+#if !defined(CONFIG_SOFTMMU)
+ vp->prot = 0;
+#endif
+ }
+
+ if (tb->page_addr[1] != -1) {
+ addr += TARGET_PAGE_SIZE;
+ vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
+#ifdef DEBUG_TLB_CHECK
+ if (vp->valid_tag == virt_valid_tag &&
+ vp->phys_addr != tb->page_addr[1]) {
+ printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
+ addr, tb->page_addr[1], vp->phys_addr);
+ }
+#endif
+ vp->phys_addr = tb->page_addr[1];
+ if (vp->valid_tag != virt_valid_tag) {
+ vp->valid_tag = virt_valid_tag;
+#if !defined(CONFIG_SOFTMMU)
+ vp->prot = 0;
+#endif
+ }
+ }
+ }
+#endif
+
+ tb->jmp_first = (TranslationBlock *)((long)tb | 2);
+ tb->jmp_next[0] = NULL;
+ tb->jmp_next[1] = NULL;
+#ifdef USE_CODE_COPY
+ tb->cflags &= ~CF_FP_USED;
+ if (tb->cflags & CF_TB_FP_USED)
+ tb->cflags |= CF_FP_USED;
+#endif
+
+ /* init original jump addresses */
+ if (tb->tb_next_offset[0] != 0xffff)
tb_reset_jump(tb, 0);
if (tb->tb_next_offset[1] != 0xffff)
tb_reset_jump(tb, 1);
}
+/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
+ tb[1].tc_ptr. Return NULL if not found */
+TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+{
+ int m_min, m_max, m;
+ unsigned long v;
+ TranslationBlock *tb;
+
+ if (nb_tbs <= 0)
+ return NULL;
+ if (tc_ptr < (unsigned long)code_gen_buffer ||
+ tc_ptr >= (unsigned long)code_gen_ptr)
+ return NULL;
+ /* binary search (cf Knuth) */
+ m_min = 0;
+ m_max = nb_tbs - 1;
+ while (m_min <= m_max) {
+ m = (m_min + m_max) >> 1;
+ tb = &tbs[m];
+ v = (unsigned long)tb->tc_ptr;
+ if (v == tc_ptr)
+ return tb;
+ else if (tc_ptr < v) {
+ m_max = m - 1;
+ } else {
+ m_min = m + 1;
+ }
+ }
+ return &tbs[m_max];
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb);
+
+static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
+{
+ TranslationBlock *tb1, *tb_next, **ptb;
+ unsigned int n1;
+
+ tb1 = tb->jmp_next[n];
+ if (tb1 != NULL) {
+ /* find head of list */
+ for(;;) {
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (n1 == 2)
+ break;
+ tb1 = tb1->jmp_next[n1];
+ }
+ /* we are now sure now that tb jumps to tb1 */
+ tb_next = tb1;
+
+ /* remove tb from the jmp_first list */
+ ptb = &tb_next->jmp_first;
+ for(;;) {
+ tb1 = *ptb;
+ n1 = (long)tb1 & 3;
+ tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ if (n1 == n && tb1 == tb)
+ break;
+ ptb = &tb1->jmp_next[n1];
+ }
+ *ptb = tb->jmp_next[n];
+ tb->jmp_next[n] = NULL;
+
+ /* suppress the jump to next tb in generated code */
+ tb_reset_jump(tb, n);
+
+ /* suppress jumps in the tb on which we could have jumped */
+ tb_reset_jump_recursive(tb_next);
+ }
+}
+
+static void tb_reset_jump_recursive(TranslationBlock *tb)
+{
+ tb_reset_jump_recursive2(tb, 0);
+ tb_reset_jump_recursive2(tb, 1);
+}
+
+#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+{
+ target_ulong phys_addr;
+
+ phys_addr = cpu_get_phys_page_debug(env, pc);
+ tb_invalidate_phys_page_range(phys_addr, phys_addr + 1, 0);
+}
+#endif
+
+/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
+ breakpoint is reached */
+int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
+{
+#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+ int i;
+
+ for(i = 0; i < env->nb_breakpoints; i++) {
+ if (env->breakpoints[i] == pc)
+ return 0;
+ }
+
+ if (env->nb_breakpoints >= MAX_BREAKPOINTS)
+ return -1;
+ env->breakpoints[env->nb_breakpoints++] = pc;
+
+ breakpoint_invalidate(env, pc);
+ return 0;
+#else
+ return -1;
+#endif
+}
+
+/* remove a breakpoint */
+int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
+{
+#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+ int i;
+ for(i = 0; i < env->nb_breakpoints; i++) {
+ if (env->breakpoints[i] == pc)
+ goto found;
+ }
+ return -1;
+ found:
+ memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
+ (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
+ env->nb_breakpoints--;
+
+ breakpoint_invalidate(env, pc);
+ return 0;
+#else
+ return -1;
+#endif
+}
+
+/* enable or disable single step mode. EXCP_DEBUG is returned by the
+ CPU loop after each instruction */
+void cpu_single_step(CPUState *env, int enabled)
+{
+#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+ if (env->singlestep_enabled != enabled) {
+ env->singlestep_enabled = enabled;
+ /* must flush all the translated code to avoid inconsistancies */
+ /* XXX: only flush what is necessary */
+ tb_flush(env);
+ }
+#endif
+}
+
+/* enable or disable low levels log */
+void cpu_set_log(int log_flags)
+{
+ loglevel = log_flags;
+ if (loglevel && !logfile) {
+ logfile = fopen(logfilename, "w");
+ if (!logfile) {
+ perror(logfilename);
+ _exit(1);
+ }
+#if !defined(CONFIG_SOFTMMU)
+ /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
+ {
+ static uint8_t logfile_buf[4096];
+ setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
+ }
+#else
+ setvbuf(logfile, NULL, _IOLBF, 0);
+#endif
+ }
+}
+
+void cpu_set_log_filename(const char *filename)
+{
+ logfilename = strdup(filename);
+}
+
+/* mask must never be zero, except for A20 change call */
+void cpu_interrupt(CPUState *env, int mask)
+{
+ TranslationBlock *tb;
+ static int interrupt_lock;
+
+ env->interrupt_request |= mask;
+ /* if the cpu is currently executing code, we must unlink it and
+ all the potentially executing TB */
+ tb = env->current_tb;
+ if (tb && !testandset(&interrupt_lock)) {
+ env->current_tb = NULL;
+ tb_reset_jump_recursive(tb);
+ interrupt_lock = 0;
+ }
+}
+
+void cpu_reset_interrupt(CPUState *env, int mask)
+{
+ env->interrupt_request &= ~mask;
+}
+
+CPULogItem cpu_log_items[] = {
+ { CPU_LOG_TB_OUT_ASM, "out_asm",
+ "show generated host assembly code for each compiled TB" },
+ { CPU_LOG_TB_IN_ASM, "in_asm",
+ "show target assembly code for each compiled TB" },
+ { CPU_LOG_TB_OP, "op",
+ "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
+#ifdef TARGET_I386
+ { CPU_LOG_TB_OP_OPT, "op_opt",
+ "show micro ops after optimization for each compiled TB" },
+#endif
+ { CPU_LOG_INT, "int",
+ "show interrupts/exceptions in short format" },
+ { CPU_LOG_EXEC, "exec",
+ "show trace before each executed TB (lots of logs)" },
+ { CPU_LOG_TB_CPU, "cpu",
+ "show CPU state before bloc translation" },
+#ifdef TARGET_I386
+ { CPU_LOG_PCALL, "pcall",
+ "show protected mode far calls/returns/exceptions" },
+#endif
+#ifdef DEBUG_IOPORT
+ { CPU_LOG_IOPORT, "ioport",
+ "show all i/o ports accesses" },
+#endif
+ { 0, NULL, NULL },
+};
+
+static int cmp1(const char *s1, int n, const char *s2)
+{
+ if (strlen(s2) != n)
+ return 0;
+ return memcmp(s1, s2, n) == 0;
+}
+
+/* takes a comma separated list of log masks. Return 0 if error. */
+int cpu_str_to_log_mask(const char *str)
+{
+ CPULogItem *item;
+ int mask;
+ const char *p, *p1;
+
+ p = str;
+ mask = 0;
+ for(;;) {
+ p1 = strchr(p, ',');
+ if (!p1)
+ p1 = p + strlen(p);
+ if(cmp1(p,p1-p,"all")) {
+ for(item = cpu_log_items; item->mask != 0; item++) {
+ mask |= item->mask;
+ }
+ } else {
+ for(item = cpu_log_items; item->mask != 0; item++) {
+ if (cmp1(p, p1 - p, item->name))
+ goto found;
+ }
+ return 0;
+ }
+ found:
+ mask |= item->mask;
+ if (*p1 != ',')
+ break;
+ p = p1 + 1;
+ }
+ return mask;
+}
+
+void cpu_abort(CPUState *env, const char *fmt, ...)
+{
+ va_list ap;
+
+ va_start(ap, fmt);
+ fprintf(stderr, "qemu: fatal: ");
+ vfprintf(stderr, fmt, ap);
+ fprintf(stderr, "\n");
+#ifdef TARGET_I386
+ cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+ cpu_dump_state(env, stderr, fprintf, 0);
+#endif
+ va_end(ap);
+ abort();
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+/* NOTE: if flush_global is true, also flush global entries (not
+ implemented yet) */
+void tlb_flush(CPUState *env, int flush_global)
+{
+ int i;
+
+#if defined(DEBUG_TLB)
+ printf("tlb_flush:\n");
+#endif
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ for(i = 0; i < CPU_TLB_SIZE; i++) {
+ env->tlb_read[0][i].address = -1;
+ env->tlb_write[0][i].address = -1;
+ env->tlb_read[1][i].address = -1;
+ env->tlb_write[1][i].address = -1;
+ }
+
+ virt_page_flush();
+ memset (tb_hash, 0, CODE_GEN_HASH_SIZE * sizeof (void *));
+
+#if !defined(CONFIG_SOFTMMU)
+ munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
+#endif
+}
+
+static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+ if (addr == (tlb_entry->address &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)))
+ tlb_entry->address = -1;
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+ int i, n;
+ VirtPageDesc *vp;
+ PageDesc *p;
+ TranslationBlock *tb;
+
+#if defined(DEBUG_TLB)
+ printf("tlb_flush_page: 0x%08x\n", addr);
+#endif
+ /* must reset current TB so that interrupts cannot modify the
+ links while we are modifying them */
+ env->current_tb = NULL;
+
+ addr &= TARGET_PAGE_MASK;
+ i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_flush_entry(&env->tlb_read[0][i], addr);
+ tlb_flush_entry(&env->tlb_write[0][i], addr);
+ tlb_flush_entry(&env->tlb_read[1][i], addr);
+ tlb_flush_entry(&env->tlb_write[1][i], addr);
+
+ /* remove from the virtual pc hash table all the TB at this
+ virtual address */
+
+ vp = virt_page_find(addr >> TARGET_PAGE_BITS);
+ if (vp && vp->valid_tag == virt_valid_tag) {
+ p = page_find(vp->phys_addr >> TARGET_PAGE_BITS);
+ if (p) {
+ /* we remove all the links to the TBs in this virtual page */
+ tb = p->first_tb;
+ while (tb != NULL) {
+ n = (long)tb & 3;
+ tb = (TranslationBlock *)((long)tb & ~3);
+ if ((tb->pc & TARGET_PAGE_MASK) == addr ||
+ ((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr) {
+ tb_invalidate(tb);
+ }
+ tb = tb->page_next[n];
+ }
+ }
+ vp->valid_tag = 0;
+ }
+
+#if !defined(CONFIG_SOFTMMU)
+ if (addr < MMAP_AREA_END)
+ munmap((void *)addr, TARGET_PAGE_SIZE);
+#endif
+}
+
+static inline void tlb_protect_code1(CPUTLBEntry *tlb_entry, target_ulong addr)
+{
+ if (addr == (tlb_entry->address &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
+ (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_CODE &&
+ (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_ROM) {
+ tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_CODE;
+ }
+}
+
+/* update the TLBs so that writes to code in the virtual page 'addr'
+ can be detected */
+static void tlb_protect_code(CPUState *env, target_ulong addr)
+{
+ int i;
+
+ addr &= TARGET_PAGE_MASK;
+ i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_protect_code1(&env->tlb_write[0][i], addr);
+ tlb_protect_code1(&env->tlb_write[1][i], addr);
+#if !defined(CONFIG_SOFTMMU)
+ /* NOTE: as we generated the code for this page, it is already at
+ least readable */
+ if (addr < MMAP_AREA_END)
+ mprotect((void *)addr, TARGET_PAGE_SIZE, PROT_READ);
+#endif
+}
+
+static inline void tlb_unprotect_code2(CPUTLBEntry *tlb_entry,
+ unsigned long phys_addr)
+{
+ if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_CODE &&
+ ((tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend) == phys_addr) {
+ tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
+ }
+}
+
+/* update the TLB so that writes in physical page 'phys_addr' are no longer
+ tested self modifying code */
+static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr)
+{
+ int i;
+
+ phys_addr &= TARGET_PAGE_MASK;
+ phys_addr += (long)phys_ram_base;
+ i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_unprotect_code2(&env->tlb_write[0][i], phys_addr);
+ tlb_unprotect_code2(&env->tlb_write[1][i], phys_addr);
+}
+
+static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
+ unsigned long start, unsigned long length)
+{
+ unsigned long addr;
+ if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+ addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
+ if ((addr - start) < length) {
+ tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
+ }
+ }
+}
+
+void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end)
+{
+ CPUState *env;
+ unsigned long length, start1;
+ int i;
+
+ start &= TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+
+ length = end - start;
+ if (length == 0)
+ return;
+ memset(phys_ram_dirty + (start >> TARGET_PAGE_BITS), 0, length >> TARGET_PAGE_BITS);
+
+ env = cpu_single_env;
+ /* we modify the TLB cache so that the dirty bit will be set again
+ when accessing the range */
+ start1 = start + (unsigned long)phys_ram_base;
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_write[0][i], start1, length);
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_write[1][i], start1, length);
+
+#if !defined(CONFIG_SOFTMMU)
+ /* XXX: this is expensive */
+ {
+ VirtPageDesc *p;
+ int j;
+ target_ulong addr;
+
+ for(i = 0; i < L1_SIZE; i++) {
+ p = l1_virt_map[i];
+ if (p) {
+ addr = i << (TARGET_PAGE_BITS + L2_BITS);
+ for(j = 0; j < L2_SIZE; j++) {
+ if (p->valid_tag == virt_valid_tag &&
+ p->phys_addr >= start && p->phys_addr < end &&
+ (p->prot & PROT_WRITE)) {
+ if (addr < MMAP_AREA_END) {
+ mprotect((void *)addr, TARGET_PAGE_SIZE,
+ p->prot & ~PROT_WRITE);
+ }
+ }
+ addr += TARGET_PAGE_SIZE;
+ p++;
+ }
+ }
+ }
+ }
+#endif
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
+ unsigned long start)
+{
+ unsigned long addr;
+ if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
+ addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
+ if (addr == start) {
+ tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_RAM;
+ }
+ }
+}
+
+/* update the TLB corresponding to virtual page vaddr and phys addr
+ addr so that it is no longer dirty */
+static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
+{
+ CPUState *env = cpu_single_env;
+ int i;
+
+ phys_ram_dirty[(addr - (unsigned long)phys_ram_base) >> TARGET_PAGE_BITS] = 1;
+
+ addr &= TARGET_PAGE_MASK;
+ i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ tlb_set_dirty1(&env->tlb_write[0][i], addr);
+ tlb_set_dirty1(&env->tlb_write[1][i], addr);
+}
+
+/* add a new TLB entry. At most one entry for a given virtual address
+ is permitted. Return 0 if OK or 2 if the page could not be mapped
+ (can only happen in non SOFTMMU mode for I/O pages or pages
+ conflicting with the host address space). */
+int tlb_set_page(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int is_user, int is_softmmu)
+{
+ PhysPageDesc *p;
+ unsigned long pd;
+ TranslationBlock *first_tb;
+ unsigned int index;
+ target_ulong address;
+ unsigned long addend;
+ int ret;
+
+ p = phys_page_find(paddr >> TARGET_PAGE_BITS);
+ first_tb = NULL;
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ PageDesc *p1;
+ pd = p->phys_offset;
+ if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
+ /* NOTE: we also allocate the page at this stage */
+ p1 = page_find_alloc(pd >> TARGET_PAGE_BITS);
+ first_tb = p1->first_tb;
+ }
+ }
+#if defined(DEBUG_TLB)
+ printf("tlb_set_page: vaddr=0x%08x paddr=0x%08x prot=%x u=%d c=%d smmu=%d pd=0x%08x\n",
+ vaddr, paddr, prot, is_user, (first_tb != NULL), is_softmmu, pd);
+#endif
+
+ ret = 0;
+#if !defined(CONFIG_SOFTMMU)
+ if (is_softmmu)
+#endif
+ {
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
+ /* IO memory case */
+ address = vaddr | pd;
+ addend = paddr;
+ } else {
+ /* standard memory */
+ address = vaddr;
+ addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
+ }
+
+ index = (vaddr >> 12) & (CPU_TLB_SIZE - 1);
+ addend -= vaddr;
+ if (prot & PAGE_READ) {
+ env->tlb_read[is_user][index].address = address;
+ env->tlb_read[is_user][index].addend = addend;
+ } else {
+ env->tlb_read[is_user][index].address = -1;
+ env->tlb_read[is_user][index].addend = -1;
+ }
+ if (prot & PAGE_WRITE) {
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM) {
+ /* ROM: access is ignored (same as unassigned) */
+ env->tlb_write[is_user][index].address = vaddr | IO_MEM_ROM;
+ env->tlb_write[is_user][index].addend = addend;
+ } else
+ /* XXX: the PowerPC code seems not ready to handle
+ self modifying code with DCBI */
+#if defined(TARGET_HAS_SMC) || 1
+ if (first_tb) {
+ /* if code is present, we use a specific memory
+ handler. It works only for physical memory access */
+ env->tlb_write[is_user][index].address = vaddr | IO_MEM_CODE;
+ env->tlb_write[is_user][index].addend = addend;
+ } else
+#endif
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+ !cpu_physical_memory_is_dirty(pd)) {
+ env->tlb_write[is_user][index].address = vaddr | IO_MEM_NOTDIRTY;
+ env->tlb_write[is_user][index].addend = addend;
+ } else {
+ env->tlb_write[is_user][index].address = address;
+ env->tlb_write[is_user][index].addend = addend;
+ }
+ } else {
+ env->tlb_write[is_user][index].address = -1;
+ env->tlb_write[is_user][index].addend = -1;
+ }
+ }
+#if !defined(CONFIG_SOFTMMU)
+ else {
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
+ /* IO access: no mapping is done as it will be handled by the
+ soft MMU */
+ if (!(env->hflags & HF_SOFTMMU_MASK))
+ ret = 2;
+ } else {
+ void *map_addr;
+
+ if (vaddr >= MMAP_AREA_END) {
+ ret = 2;
+ } else {
+ if (prot & PROT_WRITE) {
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
+#if defined(TARGET_HAS_SMC) || 1
+ first_tb ||
+#endif
+ ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+ !cpu_physical_memory_is_dirty(pd))) {
+ /* ROM: we do as if code was inside */
+ /* if code is present, we only map as read only and save the
+ original mapping */
+ VirtPageDesc *vp;
+
+ vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS);
+ vp->phys_addr = pd;
+ vp->prot = prot;
+ vp->valid_tag = virt_valid_tag;
+ prot &= ~PAGE_WRITE;
+ }
+ }
+ map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
+ MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
+ if (map_addr == MAP_FAILED) {
+ cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
+ paddr, vaddr);
+ }
+ }
+ }
+ }
+#endif
+ return ret;
+}
+
+/* called from signal handler: invalidate the code and unprotect the
+ page. Return TRUE if the fault was succesfully handled. */
+int page_unprotect(unsigned long addr, unsigned long pc, void *puc)
+{
+#if !defined(CONFIG_SOFTMMU)
+ VirtPageDesc *vp;
+
+#if defined(DEBUG_TLB)
+ printf("page_unprotect: addr=0x%08x\n", addr);
+#endif
+ addr &= TARGET_PAGE_MASK;
+
+ /* if it is not mapped, no need to worry here */
+ if (addr >= MMAP_AREA_END)
+ return 0;
+ vp = virt_page_find(addr >> TARGET_PAGE_BITS);
+ if (!vp)
+ return 0;
+ /* NOTE: in this case, validate_tag is _not_ tested as it
+ validates only the code TLB */
+ if (vp->valid_tag != virt_valid_tag)
+ return 0;
+ if (!(vp->prot & PAGE_WRITE))
+ return 0;
+#if defined(DEBUG_TLB)
+ printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
+ addr, vp->phys_addr, vp->prot);
+#endif
+ if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
+ cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
+ (unsigned long)addr, vp->prot);
+ /* set the dirty bit */
+ phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 1;
+ /* flush the code inside */
+ tb_invalidate_phys_page(vp->phys_addr, pc, puc);
+ return 1;
+#else
+ return 0;
+#endif
+}
+
+#else
+
+void tlb_flush(CPUState *env, int flush_global)
+{
+}
+
+void tlb_flush_page(CPUState *env, target_ulong addr)
+{
+}
+
+int tlb_set_page(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int is_user, int is_softmmu)
+{
+ return 0;
+}
+
+/* dump memory mappings */
+void page_dump(FILE *f)
+{
+ unsigned long start, end;
+ int i, j, prot, prot1;
+ PageDesc *p;
+
+ fprintf(f, "%-8s %-8s %-8s %s\n",
+ "start", "end", "size", "prot");
+ start = -1;
+ end = -1;
+ prot = 0;
+ for(i = 0; i <= L1_SIZE; i++) {
+ if (i < L1_SIZE)
+ p = l1_map[i];
+ else
+ p = NULL;
+ for(j = 0;j < L2_SIZE; j++) {
+ if (!p)
+ prot1 = 0;
+ else
+ prot1 = p[j].flags;
+ if (prot1 != prot) {
+ end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
+ if (start != -1) {
+ fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
+ start, end, end - start,
+ prot & PAGE_READ ? 'r' : '-',
+ prot & PAGE_WRITE ? 'w' : '-',
+ prot & PAGE_EXEC ? 'x' : '-');
+ }
+ if (prot1 != 0)
+ start = end;
+ else
+ start = -1;
+ prot = prot1;
+ }
+ if (!p)
+ break;
+ }
+ }
+}
+
+int page_get_flags(unsigned long address)
+{
+ PageDesc *p;
+
+ p = page_find(address >> TARGET_PAGE_BITS);
+ if (!p)
+ return 0;
+ return p->flags;
+}
+
+/* modify the flags of a page and invalidate the code if
+ necessary. The flag PAGE_WRITE_ORG is positionned automatically
+ depending on PAGE_WRITE */
+void page_set_flags(unsigned long start, unsigned long end, int flags)
+{
+ PageDesc *p;
+ unsigned long addr;
+
+ start = start & TARGET_PAGE_MASK;
+ end = TARGET_PAGE_ALIGN(end);
+ if (flags & PAGE_WRITE)
+ flags |= PAGE_WRITE_ORG;
+ spin_lock(&tb_lock);
+ for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
+ p = page_find_alloc(addr >> TARGET_PAGE_BITS);
+ /* if the write protection is set, then we invalidate the code
+ inside */
+ if (!(p->flags & PAGE_WRITE) &&
+ (flags & PAGE_WRITE) &&
+ p->first_tb) {
+ tb_invalidate_phys_page(addr, 0, NULL);
+ }
+ p->flags = flags;
+ }
+ spin_unlock(&tb_lock);
+}
+
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */
-int page_unprotect(unsigned long address)
+int page_unprotect(unsigned long address, unsigned long pc, void *puc)
{
unsigned int page_index, prot, pindex;
PageDesc *p, *p1;
unsigned long host_start, host_end, addr;
- host_start = address & host_page_mask;
+ host_start = address & qemu_host_page_mask;
page_index = host_start >> TARGET_PAGE_BITS;
p1 = page_find(page_index);
if (!p1)
return 0;
- host_end = host_start + host_page_size;
+ host_end = host_start + qemu_host_page_size;
p = p1;
prot = 0;
for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
/* if the page was really writable, then we change its
protection back to writable */
if (prot & PAGE_WRITE_ORG) {
- mprotect((void *)host_start, host_page_size,
- (prot & PAGE_BITS) | PAGE_WRITE);
pindex = (address - host_start) >> TARGET_PAGE_BITS;
- p1[pindex].flags |= PAGE_WRITE;
- /* and since the content will be modified, we must invalidate
- the corresponding translated code. */
- tb_invalidate_page(address);
+ if (!(p1[pindex].flags & PAGE_WRITE)) {
+ mprotect((void *)host_start, qemu_host_page_size,
+ (prot & PAGE_BITS) | PAGE_WRITE);
+ p1[pindex].flags |= PAGE_WRITE;
+ /* and since the content will be modified, we must invalidate
+ the corresponding translated code. */
+ tb_invalidate_phys_page(address, pc, puc);
#ifdef DEBUG_TB_CHECK
- tb_invalidate_check(address);
+ tb_invalidate_check(address);
#endif
- return 1;
- } else {
- return 0;
+ return 1;
+ }
}
+ return 0;
}
/* call this function when system calls directly modify a memory area */
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
- page_unprotect(addr);
+ page_unprotect(addr, 0, NULL);
}
}
-/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
- tb[1].tc_ptr. Return NULL if not found */
-TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
{
- int m_min, m_max, m;
- unsigned long v;
- TranslationBlock *tb;
+}
+#endif /* defined(CONFIG_USER_ONLY) */
- if (nb_tbs <= 0)
- return NULL;
- if (tc_ptr < (unsigned long)code_gen_buffer ||
- tc_ptr >= (unsigned long)code_gen_ptr)
- return NULL;
- /* binary search (cf Knuth) */
- m_min = 0;
- m_max = nb_tbs - 1;
- while (m_min <= m_max) {
- m = (m_min + m_max) >> 1;
- tb = &tbs[m];
- v = (unsigned long)tb->tc_ptr;
- if (v == tc_ptr)
- return tb;
- else if (tc_ptr < v) {
- m_max = m - 1;
+/* register physical memory. 'size' must be a multiple of the target
+ page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
+ io memory page */
+void cpu_register_physical_memory(target_phys_addr_t start_addr,
+ unsigned long size,
+ unsigned long phys_offset)
+{
+ unsigned long addr, end_addr;
+ PhysPageDesc *p;
+
+ size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
+ end_addr = start_addr + size;
+ for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
+ p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS);
+ p->phys_offset = phys_offset;
+ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
+ phys_offset += TARGET_PAGE_SIZE;
+ }
+}
+
+static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+ return 0;
+}
+
+static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+}
+
+static CPUReadMemoryFunc *unassigned_mem_read[3] = {
+ unassigned_mem_readb,
+ unassigned_mem_readb,
+ unassigned_mem_readb,
+};
+
+static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
+ unassigned_mem_writeb,
+ unassigned_mem_writeb,
+ unassigned_mem_writeb,
+};
+
+/* self modifying code support in soft mmu mode : writing to a page
+ containing code comes to these functions */
+
+static void code_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ unsigned long phys_addr;
+
+ phys_addr = addr - (unsigned long)phys_ram_base;
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(phys_addr, 1);
+#endif
+ stb_p((uint8_t *)(long)addr, val);
+ phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
+}
+
+static void code_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ unsigned long phys_addr;
+
+ phys_addr = addr - (unsigned long)phys_ram_base;
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(phys_addr, 2);
+#endif
+ stw_p((uint8_t *)(long)addr, val);
+ phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
+}
+
+static void code_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ unsigned long phys_addr;
+
+ phys_addr = addr - (unsigned long)phys_ram_base;
+#if !defined(CONFIG_USER_ONLY)
+ tb_invalidate_phys_page_fast(phys_addr, 4);
+#endif
+ stl_p((uint8_t *)(long)addr, val);
+ phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 1;
+}
+
+static CPUReadMemoryFunc *code_mem_read[3] = {
+ NULL, /* never used */
+ NULL, /* never used */
+ NULL, /* never used */
+};
+
+static CPUWriteMemoryFunc *code_mem_write[3] = {
+ code_mem_writeb,
+ code_mem_writew,
+ code_mem_writel,
+};
+
+static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ stb_p((uint8_t *)(long)addr, val);
+ tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
+}
+
+static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ stw_p((uint8_t *)(long)addr, val);
+ tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
+}
+
+static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ stl_p((uint8_t *)(long)addr, val);
+ tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
+}
+
+static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
+ notdirty_mem_writeb,
+ notdirty_mem_writew,
+ notdirty_mem_writel,
+};
+
+static void io_mem_init(void)
+{
+ cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, code_mem_read, unassigned_mem_write, NULL);
+ cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
+ cpu_register_io_memory(IO_MEM_CODE >> IO_MEM_SHIFT, code_mem_read, code_mem_write, NULL);
+ cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, code_mem_read, notdirty_mem_write, NULL);
+ io_mem_nb = 5;
+
+ /* alloc dirty bits array */
+ phys_ram_dirty = qemu_malloc(phys_ram_size >> TARGET_PAGE_BITS);
+}
+
+/* mem_read and mem_write are arrays of functions containing the
+ function to access byte (index 0), word (index 1) and dword (index
+ 2). All functions must be supplied. If io_index is non zero, the
+ corresponding io zone is modified. If it is zero, a new io zone is
+ allocated. The return value can be used with
+ cpu_register_physical_memory(). (-1) is returned if error. */
+int cpu_register_io_memory(int io_index,
+ CPUReadMemoryFunc **mem_read,
+ CPUWriteMemoryFunc **mem_write,
+ void *opaque)
+{
+ int i;
+
+ if (io_index <= 0) {
+ if (io_index >= IO_MEM_NB_ENTRIES)
+ return -1;
+ io_index = io_mem_nb++;
+ } else {
+ if (io_index >= IO_MEM_NB_ENTRIES)
+ return -1;
+ }
+
+ for(i = 0;i < 3; i++) {
+ io_mem_read[io_index][i] = mem_read[i];
+ io_mem_write[io_index][i] = mem_write[i];
+ }
+ io_mem_opaque[io_index] = opaque;
+ return io_index << IO_MEM_SHIFT;
+}
+
+CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
+{
+ return io_mem_write[io_index >> IO_MEM_SHIFT];
+}
+
+CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
+{
+ return io_mem_read[io_index >> IO_MEM_SHIFT];
+}
+
+/* physical memory access (slow version, mainly for debug) */
+#if defined(CONFIG_USER_ONLY)
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+ int len, int is_write)
+{
+ int l, flags;
+ target_ulong page;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ flags = page_get_flags(page);
+ if (!(flags & PAGE_VALID))
+ return;
+ if (is_write) {
+ if (!(flags & PAGE_WRITE))
+ return;
+ memcpy((uint8_t *)addr, buf, len);
} else {
- m_min = m + 1;
+ if (!(flags & PAGE_READ))
+ return;
+ memcpy(buf, (uint8_t *)addr, len);
}
- }
- return &tbs[m_max];
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+#else
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+ int len, int is_write)
+{
+ int l, io_index;
+ uint8_t *ptr;
+ uint32_t val;
+ target_phys_addr_t page;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ p = phys_page_find(page >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if (is_write) {
+ if ((pd & ~TARGET_PAGE_MASK) != 0) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (l >= 4 && ((addr & 3) == 0)) {
+ /* 32 bit read access */
+ val = ldl_p(buf);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ l = 4;
+ } else if (l >= 2 && ((addr & 1) == 0)) {
+ /* 16 bit read access */
+ val = lduw_p(buf);
+ io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
+ l = 2;
+ } else {
+ /* 8 bit access */
+ val = ldub_p(buf);
+ io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
+ l = 1;
+ }
+ } else {
+ unsigned long addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* RAM case */
+ ptr = phys_ram_base + addr1;
+ memcpy(ptr, buf, l);
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
+ /* set dirty bit */
+ phys_ram_dirty[page >> TARGET_PAGE_BITS] = 1;
+ }
+ } else {
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ (pd & ~TARGET_PAGE_MASK) != IO_MEM_CODE) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ if (l >= 4 && ((addr & 3) == 0)) {
+ /* 32 bit read access */
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ stl_p(buf, val);
+ l = 4;
+ } else if (l >= 2 && ((addr & 1) == 0)) {
+ /* 16 bit read access */
+ val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr);
+ stw_p(buf, val);
+ l = 2;
+ } else {
+ /* 8 bit access */
+ val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
+ stb_p(buf, val);
+ l = 1;
+ }
+ } else {
+ /* RAM case */
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ memcpy(buf, ptr, l);
+ }
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
}
+#endif
+
+/* virtual memory access for debug */
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+ uint8_t *buf, int len, int is_write)
+{
+ int l;
+ target_ulong page, phys_addr;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ phys_addr = cpu_get_phys_page_debug(env, page);
+ /* if no physical page mapped, return an error */
+ if (phys_addr == -1)
+ return -1;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
+ buf, l, is_write);
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+ return 0;
+}
+
+#if !defined(CONFIG_USER_ONLY)
+
+#define MMUSUFFIX _cmmu
+#define GETPC() NULL
+#define env cpu_single_env
+#define SOFTMMU_CODE_ACCESS
+
+#define SHIFT 0
+#include "softmmu_template.h"
+
+#define SHIFT 1
+#include "softmmu_template.h"
+
+#define SHIFT 2
+#include "softmmu_template.h"
+
+#define SHIFT 3
+#include "softmmu_template.h"
+
+#undef env
+
+#endif