/*
* KQEMU support
- *
- * Copyright (c) 2005 Fabrice Bellard
+ *
+ * Copyright (c) 2005-2008 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
*/
#include "config.h"
#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <winioctl.h>
#else
#include <sys/mman.h>
#include <sys/ioctl.h>
#endif
+#ifdef HOST_SOLARIS
+#include <sys/ioccom.h>
+#endif
#include <stdlib.h>
#include <stdio.h>
#include <stdarg.h>
#include "cpu.h"
#include "exec-all.h"
+#include "qemu-common.h"
#ifdef USE_KQEMU
#define DEBUG
//#define PROFILE
-#include <unistd.h>
-#include <fcntl.h>
-#include "kqemu/kqemu.h"
-/* compatibility stuff */
-#ifndef KQEMU_RET_SYSCALL
-#define KQEMU_RET_SYSCALL 0x0300 /* syscall insn */
-#endif
-#ifndef KQEMU_MAX_RAM_PAGES_TO_UPDATE
-#define KQEMU_MAX_RAM_PAGES_TO_UPDATE 512
-#define KQEMU_RAM_PAGES_UPDATE_ALL (KQEMU_MAX_RAM_PAGES_TO_UPDATE + 1)
+#ifdef DEBUG
+# define LOG_INT(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
+# define LOG_INT_STATE(env) log_cpu_state_mask(CPU_LOG_INT, (env), 0)
+#else
+# define LOG_INT(...) do { } while (0)
+# define LOG_INT_STATE(env) do { } while (0)
#endif
+#include <unistd.h>
+#include <fcntl.h>
+#include "kqemu.h"
+
#ifdef _WIN32
#define KQEMU_DEVICE "\\\\.\\kqemu"
#else
#define KQEMU_DEVICE "/dev/kqemu"
#endif
+static void qpi_init(void);
+
#ifdef _WIN32
#define KQEMU_INVALID_FD INVALID_HANDLE_VALUE
HANDLE kqemu_fd = KQEMU_INVALID_FD;
#define kqemu_closefd(x) close(x)
#endif
+/* 0 = not allowed
+ 1 = user kqemu
+ 2 = kernel kqemu
+*/
int kqemu_allowed = 1;
-unsigned long *pages_to_flush;
+uint64_t *pages_to_flush;
unsigned int nb_pages_to_flush;
-unsigned long *ram_pages_to_update;
+uint64_t *ram_pages_to_update;
unsigned int nb_ram_pages_to_update;
-extern uint32_t **l1_phys_map;
+uint64_t *modified_ram_pages;
+unsigned int nb_modified_ram_pages;
+uint8_t *modified_ram_pages_table;
+int qpi_io_memory;
+uint32_t kqemu_comm_base; /* physical address of the QPI communication page */
#define cpuid(index, eax, ebx, ecx, edx) \
asm volatile ("cpuid" \
static void kqemu_update_cpuid(CPUState *env)
{
- int critical_features_mask, features;
+ int critical_features_mask, features, ext_features, ext_features_mask;
uint32_t eax, ebx, ecx, edx;
/* the following features are kept identical on the host and
target cpus because they are important for user code. Strictly
speaking, only SSE really matters because the OS must support
it if the user code uses it. */
- critical_features_mask =
- CPUID_CMOV | CPUID_CX8 |
- CPUID_FXSR | CPUID_MMX | CPUID_SSE |
+ critical_features_mask =
+ CPUID_CMOV | CPUID_CX8 |
+ CPUID_FXSR | CPUID_MMX | CPUID_SSE |
CPUID_SSE2 | CPUID_SEP;
+ ext_features_mask = CPUID_EXT_SSE3 | CPUID_EXT_MONITOR;
if (!is_cpuid_supported()) {
features = 0;
+ ext_features = 0;
} else {
cpuid(1, eax, ebx, ecx, edx);
features = edx;
+ ext_features = ecx;
}
#ifdef __x86_64__
/* NOTE: on x86_64 CPUs, SYSENTER is not supported in
#endif
env->cpuid_features = (env->cpuid_features & ~critical_features_mask) |
(features & critical_features_mask);
+ env->cpuid_ext_features = (env->cpuid_ext_features & ~ext_features_mask) |
+ (ext_features & ext_features_mask);
/* XXX: we could update more of the target CPUID state so that the
non accelerated code sees exactly the same CPU features as the
accelerated code */
int kqemu_init(CPUState *env)
{
- struct kqemu_init init;
+ struct kqemu_init kinit;
int ret, version;
#ifdef _WIN32
DWORD temp;
FILE_SHARE_READ | FILE_SHARE_WRITE,
NULL, OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL,
NULL);
+ if (kqemu_fd == KQEMU_INVALID_FD) {
+ fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %lu\n",
+ KQEMU_DEVICE, GetLastError());
+ return -1;
+ }
#else
kqemu_fd = open(KQEMU_DEVICE, O_RDWR);
-#endif
if (kqemu_fd == KQEMU_INVALID_FD) {
- fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated\n", KQEMU_DEVICE);
+ fprintf(stderr, "Could not open '%s' - QEMU acceleration layer not activated: %s\n",
+ KQEMU_DEVICE, strerror(errno));
return -1;
}
+#endif
version = 0;
#ifdef _WIN32
DeviceIoControl(kqemu_fd, KQEMU_GET_VERSION, NULL, 0,
goto fail;
}
- pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
- sizeof(unsigned long));
+ pages_to_flush = qemu_vmalloc(KQEMU_MAX_PAGES_TO_FLUSH *
+ sizeof(uint64_t));
if (!pages_to_flush)
goto fail;
- ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
- sizeof(unsigned long));
+ ram_pages_to_update = qemu_vmalloc(KQEMU_MAX_RAM_PAGES_TO_UPDATE *
+ sizeof(uint64_t));
if (!ram_pages_to_update)
goto fail;
- init.ram_base = phys_ram_base;
- init.ram_size = phys_ram_size;
- init.ram_dirty = phys_ram_dirty;
- init.phys_to_ram_map = l1_phys_map;
- init.pages_to_flush = pages_to_flush;
-#if KQEMU_VERSION >= 0x010200
- init.ram_pages_to_update = ram_pages_to_update;
-#endif
+ modified_ram_pages = qemu_vmalloc(KQEMU_MAX_MODIFIED_RAM_PAGES *
+ sizeof(uint64_t));
+ if (!modified_ram_pages)
+ goto fail;
+ modified_ram_pages_table = qemu_mallocz(phys_ram_size >> TARGET_PAGE_BITS);
+ if (!modified_ram_pages_table)
+ goto fail;
+
+ memset(&kinit, 0, sizeof(kinit)); /* set the paddings to zero */
+ kinit.ram_base = phys_ram_base;
+ kinit.ram_size = phys_ram_size;
+ kinit.ram_dirty = phys_ram_dirty;
+ kinit.pages_to_flush = pages_to_flush;
+ kinit.ram_pages_to_update = ram_pages_to_update;
+ kinit.modified_ram_pages = modified_ram_pages;
#ifdef _WIN32
- ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &init, sizeof(init),
+ ret = DeviceIoControl(kqemu_fd, KQEMU_INIT, &kinit, sizeof(kinit),
NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
#else
- ret = ioctl(kqemu_fd, KQEMU_INIT, &init);
+ ret = ioctl(kqemu_fd, KQEMU_INIT, &kinit);
#endif
if (ret < 0) {
fprintf(stderr, "Error %d while initializing QEMU acceleration layer - disabling it for now\n", ret);
return -1;
}
kqemu_update_cpuid(env);
- env->kqemu_enabled = 1;
+ env->kqemu_enabled = kqemu_allowed;
nb_pages_to_flush = 0;
nb_ram_pages_to_update = 0;
+
+ qpi_init();
return 0;
}
void kqemu_flush_page(CPUState *env, target_ulong addr)
{
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
- }
-#endif
+ LOG_INT("kqemu_flush_page: addr=" TARGET_FMT_lx "\n", addr);
if (nb_pages_to_flush >= KQEMU_MAX_PAGES_TO_FLUSH)
nb_pages_to_flush = KQEMU_FLUSH_ALL;
else
void kqemu_flush(CPUState *env, int global)
{
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "kqemu_flush:\n");
- }
-#endif
+ LOG_INT("kqemu_flush:\n");
nb_pages_to_flush = KQEMU_FLUSH_ALL;
}
void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr)
{
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "kqemu_set_notdirty: addr=%08lx\n", ram_addr);
- }
-#endif
+ LOG_INT("kqemu_set_notdirty: addr=%08lx\n",
+ (unsigned long)ram_addr);
/* we only track transitions to dirty state */
if (phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] != 0xff)
return;
ram_pages_to_update[nb_ram_pages_to_update++] = ram_addr;
}
+static void kqemu_reset_modified_ram_pages(void)
+{
+ int i;
+ unsigned long page_index;
+
+ for(i = 0; i < nb_modified_ram_pages; i++) {
+ page_index = modified_ram_pages[i] >> TARGET_PAGE_BITS;
+ modified_ram_pages_table[page_index] = 0;
+ }
+ nb_modified_ram_pages = 0;
+}
+
+void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr)
+{
+ unsigned long page_index;
+ int ret;
+#ifdef _WIN32
+ DWORD temp;
+#endif
+
+ page_index = ram_addr >> TARGET_PAGE_BITS;
+ if (!modified_ram_pages_table[page_index]) {
+#if 0
+ printf("%d: modify_page=%08lx\n", nb_modified_ram_pages, ram_addr);
+#endif
+ modified_ram_pages_table[page_index] = 1;
+ modified_ram_pages[nb_modified_ram_pages++] = ram_addr;
+ if (nb_modified_ram_pages >= KQEMU_MAX_MODIFIED_RAM_PAGES) {
+ /* flush */
+#ifdef _WIN32
+ ret = DeviceIoControl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
+ &nb_modified_ram_pages,
+ sizeof(nb_modified_ram_pages),
+ NULL, 0, &temp, NULL);
+#else
+ ret = ioctl(kqemu_fd, KQEMU_MODIFY_RAM_PAGES,
+ &nb_modified_ram_pages);
+#endif
+ kqemu_reset_modified_ram_pages();
+ }
+ }
+}
+
+void kqemu_set_phys_mem(uint64_t start_addr, ram_addr_t size,
+ ram_addr_t phys_offset)
+{
+ struct kqemu_phys_mem kphys_mem1, *kphys_mem = &kphys_mem1;
+ uint64_t end;
+ int ret, io_index;
+
+ end = (start_addr + size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
+ start_addr &= TARGET_PAGE_MASK;
+ kphys_mem->phys_addr = start_addr;
+ kphys_mem->size = end - start_addr;
+ kphys_mem->ram_addr = phys_offset & TARGET_PAGE_MASK;
+ io_index = phys_offset & ~TARGET_PAGE_MASK;
+ switch(io_index) {
+ case IO_MEM_RAM:
+ kphys_mem->io_index = KQEMU_IO_MEM_RAM;
+ break;
+ case IO_MEM_ROM:
+ kphys_mem->io_index = KQEMU_IO_MEM_ROM;
+ break;
+ default:
+ if (qpi_io_memory == io_index) {
+ kphys_mem->io_index = KQEMU_IO_MEM_COMM;
+ } else {
+ kphys_mem->io_index = KQEMU_IO_MEM_UNASSIGNED;
+ }
+ break;
+ }
+#ifdef _WIN32
+ {
+ DWORD temp;
+ ret = DeviceIoControl(kqemu_fd, KQEMU_SET_PHYS_MEM,
+ kphys_mem, sizeof(*kphys_mem),
+ NULL, 0, &temp, NULL) == TRUE ? 0 : -1;
+ }
+#else
+ ret = ioctl(kqemu_fd, KQEMU_SET_PHYS_MEM, kphys_mem);
+#endif
+ if (ret < 0) {
+ fprintf(stderr, "kqemu: KQEMU_SET_PHYS_PAGE error=%d: start_addr=0x%016" PRIx64 " size=0x%08lx phys_offset=0x%08lx\n",
+ ret, start_addr,
+ (unsigned long)size, (unsigned long)phys_offset);
+ }
+}
+
struct fpstate {
uint16_t fpuc;
uint16_t dummy1;
{
int fptag, i, j;
struct fpstate fp1, *fp = &fp1;
-
+
fp->fpuc = env->fpuc;
fp->fpus = (env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11;
fptag = 0;
}
asm volatile ("frstor %0" : "=m" (*fp));
}
-
+
static void save_native_fp_fsave(CPUState *env)
{
int fptag, i, j;
struct kqemu_cpu_state *kenv)
{
int selector;
-
+
selector = (env->star >> 32) & 0xffff;
-#ifdef __x86_64__
+#ifdef TARGET_X86_64
if (env->hflags & HF_LMA_MASK) {
+ int code64;
+
env->regs[R_ECX] = kenv->next_eip;
env->regs[11] = env->eflags;
+ code64 = env->hflags & HF_CS64_MASK;
+
cpu_x86_set_cpl(env, 0);
- cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
- 0, 0xffffffff,
- DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
+ cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
+ 0, 0xffffffff,
+ DESC_G_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK | DESC_L_MASK);
- cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
+ cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_W_MASK | DESC_A_MASK);
env->eflags &= ~env->fmask;
- if (env->hflags & HF_CS64_MASK)
+ if (code64)
env->eip = env->lstar;
else
env->eip = env->cstar;
- } else
+ } else
#endif
{
env->regs[R_ECX] = (uint32_t)kenv->next_eip;
-
+
cpu_x86_set_cpl(env, 0);
- cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
- 0, 0xffffffff,
+ cpu_x86_load_seg_cache(env, R_CS, selector & 0xfffc,
+ 0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
DESC_CS_MASK | DESC_R_MASK | DESC_A_MASK);
- cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
+ cpu_x86_load_seg_cache(env, R_SS, (selector + 8) & 0xfffc,
0, 0xffffffff,
DESC_G_MASK | DESC_B_MASK | DESC_P_MASK |
DESC_S_MASK |
return 2;
}
-#ifdef PROFILE
+#ifdef CONFIG_PROFILER
#define PC_REC_SIZE 1
#define PC_REC_HASH_BITS 16
struct PCRecord *next;
} PCRecord;
-PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
-int nb_pc_records;
+static PCRecord *pc_rec_hash[PC_REC_HASH_SIZE];
+static int nb_pc_records;
-void kqemu_record_pc(unsigned long pc)
+static void kqemu_record_pc(unsigned long pc)
{
unsigned long h;
PCRecord **pr, *r;
nb_pc_records++;
}
-int pc_rec_cmp(const void *p1, const void *p2)
+static int pc_rec_cmp(const void *p1, const void *p2)
{
PCRecord *r1 = *(PCRecord **)p1;
PCRecord *r2 = *(PCRecord **)p2;
return -1;
}
+static void kqemu_record_flush(void)
+{
+ PCRecord *r, *r_next;
+ int h;
+
+ for(h = 0; h < PC_REC_HASH_SIZE; h++) {
+ for(r = pc_rec_hash[h]; r != NULL; r = r_next) {
+ r_next = r->next;
+ free(r);
+ }
+ pc_rec_hash[h] = NULL;
+ }
+ nb_pc_records = 0;
+}
+
void kqemu_record_dump(void)
{
PCRecord **pr, *r;
}
}
qsort(pr, nb_pc_records, sizeof(PCRecord *), pc_rec_cmp);
-
+
f = fopen("/tmp/kqemu.stats", "w");
if (!f) {
perror("/tmp/kqemu.stats");
exit(1);
}
- fprintf(f, "total: %lld\n", total);
+ fprintf(f, "total: %" PRId64 "\n", total);
sum = 0;
for(i = 0; i < nb_pc_records; i++) {
r = pr[i];
sum += r->count;
- fprintf(f, "%08lx: %lld %0.2f%% %0.2f%%\n",
- r->pc,
- r->count,
+ fprintf(f, "%08lx: %" PRId64 " %0.2f%% %0.2f%%\n",
+ r->pc,
+ r->count,
(double)r->count / (double)total * 100.0,
(double)sum / (double)total * 100.0);
}
fclose(f);
free(pr);
+
+ kqemu_record_flush();
}
-#else
-void kqemu_record_dump(void)
+#endif
+
+static inline void kqemu_load_seg(struct kqemu_segment_cache *ksc,
+ const SegmentCache *sc)
{
+ ksc->selector = sc->selector;
+ ksc->flags = sc->flags;
+ ksc->limit = sc->limit;
+ ksc->base = sc->base;
+}
+
+static inline void kqemu_save_seg(SegmentCache *sc,
+ const struct kqemu_segment_cache *ksc)
+{
+ sc->selector = ksc->selector;
+ sc->flags = ksc->flags;
+ sc->limit = ksc->limit;
+ sc->base = ksc->base;
}
-#endif
int kqemu_cpu_exec(CPUState *env)
{
struct kqemu_cpu_state kcpu_state, *kenv = &kcpu_state;
- int ret;
+ int ret, cpl, i;
+#ifdef CONFIG_PROFILER
+ int64_t ti;
+#endif
#ifdef _WIN32
DWORD temp;
#endif
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "kqemu: cpu_exec: enter\n");
- cpu_dump_state(env, logfile, fprintf, 0);
- }
+#ifdef CONFIG_PROFILER
+ ti = profile_getclock();
#endif
- memcpy(kenv->regs, env->regs, sizeof(kenv->regs));
+ LOG_INT("kqemu: cpu_exec: enter\n");
+ LOG_INT_STATE(env);
+ for(i = 0; i < CPU_NB_REGS; i++)
+ kenv->regs[i] = env->regs[i];
kenv->eip = env->eip;
kenv->eflags = env->eflags;
- memcpy(&kenv->segs, &env->segs, sizeof(env->segs));
- memcpy(&kenv->ldt, &env->ldt, sizeof(env->ldt));
- memcpy(&kenv->tr, &env->tr, sizeof(env->tr));
- memcpy(&kenv->gdt, &env->gdt, sizeof(env->gdt));
- memcpy(&kenv->idt, &env->idt, sizeof(env->idt));
+ for(i = 0; i < 6; i++)
+ kqemu_load_seg(&kenv->segs[i], &env->segs[i]);
+ kqemu_load_seg(&kenv->ldt, &env->ldt);
+ kqemu_load_seg(&kenv->tr, &env->tr);
+ kqemu_load_seg(&kenv->gdt, &env->gdt);
+ kqemu_load_seg(&kenv->idt, &env->idt);
kenv->cr0 = env->cr[0];
kenv->cr2 = env->cr[2];
kenv->cr3 = env->cr[3];
kenv->cr4 = env->cr[4];
kenv->a20_mask = env->a20_mask;
-#if KQEMU_VERSION >= 0x010100
kenv->efer = env->efer;
+ kenv->tsc_offset = 0;
+ kenv->star = env->star;
+ kenv->sysenter_cs = env->sysenter_cs;
+ kenv->sysenter_esp = env->sysenter_esp;
+ kenv->sysenter_eip = env->sysenter_eip;
+#ifdef TARGET_X86_64
+ kenv->lstar = env->lstar;
+ kenv->cstar = env->cstar;
+ kenv->fmask = env->fmask;
+ kenv->kernelgsbase = env->kernelgsbase;
#endif
if (env->dr[7] & 0xff) {
kenv->dr7 = env->dr[7];
kenv->dr7 = 0;
}
kenv->dr6 = env->dr[6];
- kenv->cpl = 3;
+ cpl = (env->hflags & HF_CPL_MASK);
+ kenv->cpl = cpl;
kenv->nb_pages_to_flush = nb_pages_to_flush;
- nb_pages_to_flush = 0;
-#if KQEMU_VERSION >= 0x010200
- kenv->user_only = 1;
+ kenv->user_only = (env->kqemu_enabled == 1);
kenv->nb_ram_pages_to_update = nb_ram_pages_to_update;
-#endif
nb_ram_pages_to_update = 0;
-
- if (!(kenv->cr0 & CR0_TS_MASK)) {
- if (env->cpuid_features & CPUID_FXSR)
- restore_native_fp_fxrstor(env);
- else
- restore_native_fp_frstor(env);
- }
+ kenv->nb_modified_ram_pages = nb_modified_ram_pages;
+
+ kqemu_reset_modified_ram_pages();
+
+ if (env->cpuid_features & CPUID_FXSR)
+ restore_native_fp_fxrstor(env);
+ else
+ restore_native_fp_frstor(env);
#ifdef _WIN32
if (DeviceIoControl(kqemu_fd, KQEMU_EXEC,
ret = -1;
}
#else
-#if KQEMU_VERSION >= 0x010100
ioctl(kqemu_fd, KQEMU_EXEC, kenv);
ret = kenv->retval;
-#else
- ret = ioctl(kqemu_fd, KQEMU_EXEC, kenv);
#endif
-#endif
- if (!(kenv->cr0 & CR0_TS_MASK)) {
- if (env->cpuid_features & CPUID_FXSR)
- save_native_fp_fxsave(env);
- else
- save_native_fp_fsave(env);
- }
+ if (env->cpuid_features & CPUID_FXSR)
+ save_native_fp_fxsave(env);
+ else
+ save_native_fp_fsave(env);
- memcpy(env->regs, kenv->regs, sizeof(env->regs));
+ for(i = 0; i < CPU_NB_REGS; i++)
+ env->regs[i] = kenv->regs[i];
env->eip = kenv->eip;
env->eflags = kenv->eflags;
- memcpy(env->segs, kenv->segs, sizeof(env->segs));
-#if 0
- /* no need to restore that */
- memcpy(env->ldt, kenv->ldt, sizeof(env->ldt));
- memcpy(env->tr, kenv->tr, sizeof(env->tr));
- memcpy(env->gdt, kenv->gdt, sizeof(env->gdt));
- memcpy(env->idt, kenv->idt, sizeof(env->idt));
+ for(i = 0; i < 6; i++)
+ kqemu_save_seg(&env->segs[i], &kenv->segs[i]);
+ cpu_x86_set_cpl(env, kenv->cpl);
+ kqemu_save_seg(&env->ldt, &kenv->ldt);
env->cr[0] = kenv->cr0;
- env->cr[3] = kenv->cr3;
env->cr[4] = kenv->cr4;
- env->a20_mask = kenv->a20_mask;
-#endif
+ env->cr[3] = kenv->cr3;
env->cr[2] = kenv->cr2;
env->dr[6] = kenv->dr6;
+#ifdef TARGET_X86_64
+ env->kernelgsbase = kenv->kernelgsbase;
+#endif
+
+ /* flush pages as indicated by kqemu */
+ if (kenv->nb_pages_to_flush >= KQEMU_FLUSH_ALL) {
+ tlb_flush(env, 1);
+ } else {
+ for(i = 0; i < kenv->nb_pages_to_flush; i++) {
+ tlb_flush_page(env, pages_to_flush[i]);
+ }
+ }
+ nb_pages_to_flush = 0;
+
+#ifdef CONFIG_PROFILER
+ kqemu_time += profile_getclock() - ti;
+ kqemu_exec_count++;
+#endif
-#if KQEMU_VERSION >= 0x010200
if (kenv->nb_ram_pages_to_update > 0) {
cpu_tlb_update_dirty(env);
}
-#endif
+
+ if (kenv->nb_modified_ram_pages > 0) {
+ for(i = 0; i < kenv->nb_modified_ram_pages; i++) {
+ unsigned long addr;
+ addr = modified_ram_pages[i];
+ tb_invalidate_phys_page_range(addr, addr + TARGET_PAGE_SIZE, 0);
+ }
+ }
/* restore the hidden flags */
{
unsigned int new_hflags;
#ifdef TARGET_X86_64
- if ((env->hflags & HF_LMA_MASK) &&
+ if ((env->hflags & HF_LMA_MASK) &&
(env->segs[R_CS].flags & DESC_L_MASK)) {
/* long mode */
new_hflags = HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
>> (DESC_B_SHIFT - HF_CS32_SHIFT);
new_hflags |= (env->segs[R_SS].flags & DESC_B_MASK)
>> (DESC_B_SHIFT - HF_SS32_SHIFT);
- if (!(env->cr[0] & CR0_PE_MASK) ||
+ if (!(env->cr[0] & CR0_PE_MASK) ||
(env->eflags & VM_MASK) ||
!(env->hflags & HF_CS32_MASK)) {
/* XXX: try to avoid this test. The problem comes from the
translate-i386.c. */
new_hflags |= HF_ADDSEG_MASK;
} else {
- new_hflags |= ((env->segs[R_DS].base |
+ new_hflags |= ((env->segs[R_DS].base |
env->segs[R_ES].base |
- env->segs[R_SS].base) != 0) <<
+ env->segs[R_SS].base) != 0) <<
HF_ADDSEG_SHIFT;
}
}
- env->hflags = (env->hflags &
+ env->hflags = (env->hflags &
~(HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)) |
new_hflags;
}
+ /* update FPU flags */
+ env->hflags = (env->hflags & ~(HF_MP_MASK | HF_EM_MASK | HF_TS_MASK)) |
+ ((env->cr[0] << (HF_MP_SHIFT - 1)) & (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK));
+ if (env->cr[4] & CR4_OSFXSR_MASK)
+ env->hflags |= HF_OSFXSR_MASK;
+ else
+ env->hflags &= ~HF_OSFXSR_MASK;
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
- }
-#endif
+ LOG_INT("kqemu: kqemu_cpu_exec: ret=0x%x\n", ret);
if (ret == KQEMU_RET_SYSCALL) {
/* syscall instruction */
return do_syscall(env, kenv);
- } else
+ } else
if ((ret & 0xff00) == KQEMU_RET_INT) {
env->exception_index = ret & 0xff;
env->error_code = 0;
env->exception_is_int = 1;
env->exception_next_eip = kenv->next_eip;
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "kqemu: interrupt v=%02x:\n",
- env->exception_index);
- cpu_dump_state(env, logfile, fprintf, 0);
- }
+#ifdef CONFIG_PROFILER
+ kqemu_ret_int_count++;
#endif
+ LOG_INT("kqemu: interrupt v=%02x:\n", env->exception_index);
+ LOG_INT_STATE(env);
return 1;
} else if ((ret & 0xff00) == KQEMU_RET_EXCEPTION) {
env->exception_index = ret & 0xff;
env->error_code = kenv->error_code;
env->exception_is_int = 0;
env->exception_next_eip = 0;
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- fprintf(logfile, "kqemu: exception v=%02x e=%04x:\n",
- env->exception_index, env->error_code);
- cpu_dump_state(env, logfile, fprintf, 0);
- }
+#ifdef CONFIG_PROFILER
+ kqemu_ret_excp_count++;
#endif
+ LOG_INT("kqemu: exception v=%02x e=%04x:\n",
+ env->exception_index, env->error_code);
+ LOG_INT_STATE(env);
return 1;
} else if (ret == KQEMU_RET_INTR) {
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- cpu_dump_state(env, logfile, fprintf, 0);
- }
+#ifdef CONFIG_PROFILER
+ kqemu_ret_intr_count++;
#endif
+ LOG_INT_STATE(env);
return 0;
- } else if (ret == KQEMU_RET_SOFTMMU) {
-#ifdef PROFILE
- kqemu_record_pc(env->eip + env->segs[R_CS].base);
-#endif
-#ifdef DEBUG
- if (loglevel & CPU_LOG_INT) {
- cpu_dump_state(env, logfile, fprintf, 0);
+ } else if (ret == KQEMU_RET_SOFTMMU) {
+#ifdef CONFIG_PROFILER
+ {
+ unsigned long pc = env->eip + env->segs[R_CS].base;
+ kqemu_record_pc(pc);
}
#endif
+ LOG_INT_STATE(env);
return 2;
} else {
cpu_dump_state(env, stderr, fprintf, 0);
void kqemu_cpu_interrupt(CPUState *env)
{
-#if defined(_WIN32) && KQEMU_VERSION >= 0x010101
- /* cancelling the I/O request causes KQEMU to finish executing the
+#if defined(_WIN32)
+ /* cancelling the I/O request causes KQEMU to finish executing the
current block and successfully returning. */
CancelIo(kqemu_fd);
#endif
}
+/*
+ QEMU paravirtualization interface. The current interface only
+ allows to modify the IF and IOPL flags when running in
+ kqemu.
+
+ At this point it is not very satisfactory. I leave it for reference
+ as it adds little complexity.
+*/
+
+#define QPI_COMM_PAGE_PHYS_ADDR 0xff000000
+
+static uint32_t qpi_mem_readb(void *opaque, target_phys_addr_t addr)
+{
+ return 0;
+}
+
+static uint32_t qpi_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+ return 0;
+}
+
+static void qpi_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+}
+
+static void qpi_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+}
+
+static uint32_t qpi_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+ CPUState *env;
+
+ env = cpu_single_env;
+ if (!env)
+ return 0;
+ return env->eflags & (IF_MASK | IOPL_MASK);
+}
+
+/* Note: after writing to this address, the guest code must make sure
+ it is exiting the current TB. pushf/popf can be used for that
+ purpose. */
+static void qpi_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+ CPUState *env;
+
+ env = cpu_single_env;
+ if (!env)
+ return;
+ env->eflags = (env->eflags & ~(IF_MASK | IOPL_MASK)) |
+ (val & (IF_MASK | IOPL_MASK));
+}
+
+static CPUReadMemoryFunc *qpi_mem_read[3] = {
+ qpi_mem_readb,
+ qpi_mem_readw,
+ qpi_mem_readl,
+};
+
+static CPUWriteMemoryFunc *qpi_mem_write[3] = {
+ qpi_mem_writeb,
+ qpi_mem_writew,
+ qpi_mem_writel,
+};
+
+static void qpi_init(void)
+{
+ kqemu_comm_base = 0xff000000 | 1;
+ qpi_io_memory = cpu_register_io_memory(0,
+ qpi_mem_read,
+ qpi_mem_write, NULL);
+ cpu_register_physical_memory(kqemu_comm_base & ~0xfff,
+ 0x1000, qpi_io_memory);
+}
#endif