* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
+#include "qemu/osdep.h"
+#include "qemu/cutils.h"
+#include "qemu/bcd.h"
#include "hw/hw.h"
#include "qemu/timer.h"
#include "sysemu/sysemu.h"
+#include "sysemu/replay.h"
#include "hw/timer/mc146818rtc.h"
#include "qapi/visitor.h"
#include "qapi-event.h"
static uint64_t get_guest_rtc_ns(RTCState *s)
{
- uint64_t guest_rtc;
uint64_t guest_clock = qemu_clock_get_ns(rtc_clock);
- guest_rtc = s->base_rtc * NANOSECONDS_PER_SECOND
- + guest_clock - s->last_update + s->offset;
- return guest_rtc;
+ return s->base_rtc * NANOSECONDS_PER_SECOND +
+ guest_clock - s->last_update + s->offset;
}
#ifdef TARGET_I386
/* divide each RTC interval to 2 - 8 smaller intervals */
int c = MIN(s->irq_coalesced, 7) + 1;
int64_t next_clock = qemu_clock_get_ns(rtc_clock) +
- muldiv64(s->period / c, get_ticks_per_sec(), RTC_CLOCK_RATE);
+ muldiv64(s->period / c, NANOSECONDS_PER_SECOND, RTC_CLOCK_RATE);
timer_mod(s->coalesced_timer, next_clock);
}
}
s->period = period;
#endif
/* compute 32 khz clock */
- cur_clock = muldiv64(current_time, RTC_CLOCK_RATE, get_ticks_per_sec());
+ cur_clock =
+ muldiv64(current_time, RTC_CLOCK_RATE, NANOSECONDS_PER_SECOND);
+
next_irq_clock = (cur_clock & ~(period - 1)) + period;
- s->next_periodic_time =
- muldiv64(next_irq_clock, get_ticks_per_sec(), RTC_CLOCK_RATE) + 1;
+ s->next_periodic_time = muldiv64(next_irq_clock, NANOSECONDS_PER_SECOND,
+ RTC_CLOCK_RATE) + 1;
timer_mod(s->periodic_timer, s->next_periodic_time);
} else {
#ifdef TARGET_I386
rtc_set_cmos(s, &tm);
}
+static void rtc_pre_save(void *opaque)
+{
+ RTCState *s = opaque;
+
+ rtc_update_time(s);
+}
+
static int rtc_post_load(void *opaque, int version_id)
{
RTCState *s = opaque;
- if (version_id <= 2) {
+ if (version_id <= 2 || rtc_clock == QEMU_CLOCK_REALTIME) {
rtc_set_time(s);
s->offset = 0;
check_update_timer(s);
}
- uint64_t now = qemu_clock_get_ns(rtc_clock);
- if (now < s->next_periodic_time ||
- now > (s->next_periodic_time + get_max_clock_jump())) {
- periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
+ /* The periodic timer is deterministic in record/replay mode,
+ * so there is no need to update it after loading the vmstate.
+ * Reading RTC here would misalign record and replay.
+ */
+ if (replay_mode == REPLAY_MODE_NONE) {
+ uint64_t now = qemu_clock_get_ns(rtc_clock);
+ if (now < s->next_periodic_time ||
+ now > (s->next_periodic_time + get_max_clock_jump())) {
+ periodic_timer_update(s, qemu_clock_get_ns(rtc_clock));
+ }
}
#ifdef TARGET_I386
.name = "mc146818rtc",
.version_id = 3,
.minimum_version_id = 1,
+ .pre_save = rtc_pre_save,
.post_load = rtc_post_load,
.fields = (VMStateField[]) {
VMSTATE_BUFFER(cmos_data, RTCState),
object_property_add_alias(qdev_get_machine(), "rtc-time",
OBJECT(s), "date", NULL);
+
+ qdev_init_gpio_out(dev, &s->irq, 1);
}
ISADevice *rtc_init(ISABus *bus, int base_year, qemu_irq intercept_irq)
qdev_prop_set_int32(dev, "base_year", base_year);
qdev_init_nofail(dev);
if (intercept_irq) {
- s->irq = intercept_irq;
+ qdev_connect_gpio_out(dev, 0, intercept_irq);
} else {
- isa_init_irq(isadev, &s->irq, RTC_ISA_IRQ);
+ isa_connect_gpio_out(isadev, 0, RTC_ISA_IRQ);
}
QLIST_INSERT_HEAD(&rtc_devices, s, link);
DEFINE_PROP_END_OF_LIST(),
};
+static void rtc_resetdev(DeviceState *d)
+{
+ RTCState *s = MC146818_RTC(d);
+
+ /* Reason: VM do suspend self will set 0xfe
+ * Reset any values other than 0xfe(Guest suspend case) */
+ if (s->cmos_data[0x0f] != 0xfe) {
+ s->cmos_data[0x0f] = 0x00;
+ }
+}
+
static void rtc_class_initfn(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = rtc_realizefn;
+ dc->reset = rtc_resetdev;
dc->vmsd = &vmstate_rtc;
dc->props = mc146818rtc_properties;
/* Reason: needs to be wired up by rtc_init() */