* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
-#include "hw.h"
-#include "sun4m.h"
-#include "sysemu.h"
-//#define DEBUG_ECC
-
-#ifdef DEBUG_ECC
-#define DPRINTF(fmt, ...) \
- do { printf("ECC: " fmt , ## __VA_ARGS__); } while (0)
-#else
-#define DPRINTF(fmt, ...)
-#endif
+#include "hw/sysbus.h"
+#include "trace.h"
/* There are 3 versions of this chip used in SMP sun4m systems:
* MCC (version 0, implementation 0) SS-600MP
* EMC (version 0, implementation 1) SS-10
* SMC (version 0, implementation 2) SS-10SX and SS-20
+ *
+ * Chipset docs:
+ * "Sun-4M System Architecture (revision 2.0) by Chuck Narad", 950-1373-01,
+ * http://mediacast.sun.com/users/Barton808/media/Sun4M_SystemArchitecture_edited2.pdf
*/
#define ECC_MCC 0x00000000
#define ECC_DIAG_MASK (ECC_DIAG_SIZE - 1)
typedef struct ECCState {
+ SysBusDevice busdev;
+ MemoryRegion iomem, iomem_diag;
qemu_irq irq;
uint32_t regs[ECC_NREGS];
uint8_t diag[ECC_DIAG_SIZE];
uint32_t version;
} ECCState;
-static void ecc_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void ecc_mem_write(void *opaque, hwaddr addr, uint64_t val,
+ unsigned size)
{
ECCState *s = opaque;
s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_1);
else if (s->version == ECC_SMC)
s->regs[ECC_MER] = s->version | (val & ECC_MER_MASK_2);
- DPRINTF("Write memory enable %08x\n", val);
+ trace_ecc_mem_writel_mer(val);
break;
case ECC_MDR:
s->regs[ECC_MDR] = val & ECC_MDR_MASK;
- DPRINTF("Write memory delay %08x\n", val);
+ trace_ecc_mem_writel_mdr(val);
break;
case ECC_MFSR:
s->regs[ECC_MFSR] = val;
qemu_irq_lower(s->irq);
- DPRINTF("Write memory fault status %08x\n", val);
+ trace_ecc_mem_writel_mfsr(val);
break;
case ECC_VCR:
s->regs[ECC_VCR] = val;
- DPRINTF("Write slot configuration %08x\n", val);
+ trace_ecc_mem_writel_vcr(val);
break;
case ECC_DR:
s->regs[ECC_DR] = val;
- DPRINTF("Write diagnostic %08x\n", val);
+ trace_ecc_mem_writel_dr(val);
break;
case ECC_ECR0:
s->regs[ECC_ECR0] = val;
- DPRINTF("Write event count 1 %08x\n", val);
+ trace_ecc_mem_writel_ecr0(val);
break;
case ECC_ECR1:
s->regs[ECC_ECR0] = val;
- DPRINTF("Write event count 2 %08x\n", val);
+ trace_ecc_mem_writel_ecr1(val);
break;
}
}
-static uint32_t ecc_mem_readl(void *opaque, target_phys_addr_t addr)
+static uint64_t ecc_mem_read(void *opaque, hwaddr addr,
+ unsigned size)
{
ECCState *s = opaque;
uint32_t ret = 0;
switch (addr >> 2) {
case ECC_MER:
ret = s->regs[ECC_MER];
- DPRINTF("Read memory enable %08x\n", ret);
+ trace_ecc_mem_readl_mer(ret);
break;
case ECC_MDR:
ret = s->regs[ECC_MDR];
- DPRINTF("Read memory delay %08x\n", ret);
+ trace_ecc_mem_readl_mdr(ret);
break;
case ECC_MFSR:
ret = s->regs[ECC_MFSR];
- DPRINTF("Read memory fault status %08x\n", ret);
+ trace_ecc_mem_readl_mfsr(ret);
break;
case ECC_VCR:
ret = s->regs[ECC_VCR];
- DPRINTF("Read slot configuration %08x\n", ret);
+ trace_ecc_mem_readl_vcr(ret);
break;
case ECC_MFAR0:
ret = s->regs[ECC_MFAR0];
- DPRINTF("Read memory fault address 0 %08x\n", ret);
+ trace_ecc_mem_readl_mfar0(ret);
break;
case ECC_MFAR1:
ret = s->regs[ECC_MFAR1];
- DPRINTF("Read memory fault address 1 %08x\n", ret);
+ trace_ecc_mem_readl_mfar1(ret);
break;
case ECC_DR:
ret = s->regs[ECC_DR];
- DPRINTF("Read diagnostic %08x\n", ret);
+ trace_ecc_mem_readl_dr(ret);
break;
case ECC_ECR0:
ret = s->regs[ECC_ECR0];
- DPRINTF("Read event count 1 %08x\n", ret);
+ trace_ecc_mem_readl_ecr0(ret);
break;
case ECC_ECR1:
ret = s->regs[ECC_ECR0];
- DPRINTF("Read event count 2 %08x\n", ret);
+ trace_ecc_mem_readl_ecr1(ret);
break;
}
return ret;
}
-static CPUReadMemoryFunc *ecc_mem_read[3] = {
- NULL,
- NULL,
- ecc_mem_readl,
+static const MemoryRegionOps ecc_mem_ops = {
+ .read = ecc_mem_read,
+ .write = ecc_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .valid = {
+ .min_access_size = 4,
+ .max_access_size = 4,
+ },
};
-static CPUWriteMemoryFunc *ecc_mem_write[3] = {
- NULL,
- NULL,
- ecc_mem_writel,
-};
-
-static void ecc_diag_mem_writeb(void *opaque, target_phys_addr_t addr,
- uint32_t val)
+static void ecc_diag_mem_write(void *opaque, hwaddr addr,
+ uint64_t val, unsigned size)
{
ECCState *s = opaque;
- DPRINTF("Write diagnostic[%d] = %02x\n", (int)addr, val);
+ trace_ecc_diag_mem_writeb(addr, val);
s->diag[addr & ECC_DIAG_MASK] = val;
}
-static uint32_t ecc_diag_mem_readb(void *opaque, target_phys_addr_t addr)
+static uint64_t ecc_diag_mem_read(void *opaque, hwaddr addr,
+ unsigned size)
{
ECCState *s = opaque;
uint32_t ret = s->diag[(int)addr];
- DPRINTF("Read diagnostic[%d] = %02x\n", (int)addr, ret);
+ trace_ecc_diag_mem_readb(addr, ret);
return ret;
}
-static CPUReadMemoryFunc *ecc_diag_mem_read[3] = {
- ecc_diag_mem_readb,
- NULL,
- NULL,
+static const MemoryRegionOps ecc_diag_mem_ops = {
+ .read = ecc_diag_mem_read,
+ .write = ecc_diag_mem_write,
+ .endianness = DEVICE_NATIVE_ENDIAN,
+ .valid = {
+ .min_access_size = 1,
+ .max_access_size = 1,
+ },
};
-static CPUWriteMemoryFunc *ecc_diag_mem_write[3] = {
- ecc_diag_mem_writeb,
- NULL,
- NULL,
+static const VMStateDescription vmstate_ecc = {
+ .name ="ECC",
+ .version_id = 3,
+ .minimum_version_id = 3,
+ .minimum_version_id_old = 3,
+ .fields = (VMStateField []) {
+ VMSTATE_UINT32_ARRAY(regs, ECCState, ECC_NREGS),
+ VMSTATE_BUFFER(diag, ECCState),
+ VMSTATE_UINT32(version, ECCState),
+ VMSTATE_END_OF_LIST()
+ }
};
-static int ecc_load(QEMUFile *f, void *opaque, int version_id)
-{
- ECCState *s = opaque;
- int i;
-
- if (version_id != 3)
- return -EINVAL;
-
- for (i = 0; i < ECC_NREGS; i++)
- qemu_get_be32s(f, &s->regs[i]);
-
- for (i = 0; i < ECC_DIAG_SIZE; i++)
- qemu_get_8s(f, &s->diag[i]);
-
- qemu_get_be32s(f, &s->version);
-
- return 0;
-}
-
-static void ecc_save(QEMUFile *f, void *opaque)
-{
- ECCState *s = opaque;
- int i;
-
- for (i = 0; i < ECC_NREGS; i++)
- qemu_put_be32s(f, &s->regs[i]);
-
- for (i = 0; i < ECC_DIAG_SIZE; i++)
- qemu_put_8s(f, &s->diag[i]);
-
- qemu_put_be32s(f, &s->version);
-}
-
-static void ecc_reset(void *opaque)
+static void ecc_reset(DeviceState *d)
{
- ECCState *s = opaque;
+ ECCState *s = container_of(d, ECCState, busdev.qdev);
if (s->version == ECC_MCC)
s->regs[ECC_MER] &= ECC_MER_REU;
s->regs[ECC_ECR1] = 0;
}
-void * ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
+static int ecc_init1(SysBusDevice *dev)
{
- int ecc_io_memory;
- ECCState *s;
-
- s = qemu_mallocz(sizeof(ECCState));
-
- s->version = version;
- s->regs[0] = version;
- s->irq = irq;
-
- ecc_io_memory = cpu_register_io_memory(ecc_mem_read, ecc_mem_write, s);
- cpu_register_physical_memory(base, ECC_SIZE, ecc_io_memory);
- if (version == ECC_MCC) { // SS-600MP only
- ecc_io_memory = cpu_register_io_memory(ecc_diag_mem_read,
- ecc_diag_mem_write, s);
- cpu_register_physical_memory(base + 0x1000, ECC_DIAG_SIZE,
- ecc_io_memory);
+ ECCState *s = FROM_SYSBUS(ECCState, dev);
+
+ sysbus_init_irq(dev, &s->irq);
+ s->regs[0] = s->version;
+ memory_region_init_io(&s->iomem, &ecc_mem_ops, s, "ecc", ECC_SIZE);
+ sysbus_init_mmio(dev, &s->iomem);
+
+ if (s->version == ECC_MCC) { // SS-600MP only
+ memory_region_init_io(&s->iomem_diag, &ecc_diag_mem_ops, s,
+ "ecc.diag", ECC_DIAG_SIZE);
+ sysbus_init_mmio(dev, &s->iomem_diag);
}
- register_savevm("ECC", base, 3, ecc_save, ecc_load, s);
- qemu_register_reset(ecc_reset, s);
- ecc_reset(s);
- return s;
+
+ return 0;
+}
+
+static Property ecc_properties[] = {
+ DEFINE_PROP_HEX32("version", ECCState, version, -1),
+ DEFINE_PROP_END_OF_LIST(),
+};
+
+static void ecc_class_init(ObjectClass *klass, void *data)
+{
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
+
+ k->init = ecc_init1;
+ dc->reset = ecc_reset;
+ dc->vmsd = &vmstate_ecc;
+ dc->props = ecc_properties;
+}
+
+static const TypeInfo ecc_info = {
+ .name = "eccmemctl",
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(ECCState),
+ .class_init = ecc_class_init,
+};
+
+
+static void ecc_register_types(void)
+{
+ type_register_static(&ecc_info);
}
+
+type_init(ecc_register_types)