*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
-#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
-#define WORDS_ALIGNED
-#endif
+#include "qemu-common.h"
+#include "cpu-common.h"
/* some important defines:
*
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
-#include "bswap.h"
#include "softfloat.h"
#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
-static inline int ldub_p(void *ptr)
+static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
-static inline int ldsb_p(void *ptr)
+static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
-static inline int lduw_le_p(void *ptr)
+static inline int lduw_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
-static inline int ldsw_le_p(void *ptr)
+static inline int ldsw_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
-static inline int ldl_le_p(void *ptr)
+static inline int ldl_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
-static inline uint64_t ldq_le_p(void *ptr)
+static inline uint64_t ldq_le_p(const void *ptr)
{
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_le_p(p);
v2 = ldl_le_p(p + 4);
static inline void stw_le_p(void *ptr, int v)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
static inline void stl_le_p(void *ptr, int v)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
/* float access */
-static inline float32 ldfl_le_p(void *ptr)
+static inline float32 ldfl_le_p(const void *ptr)
{
union {
float32 f;
stl_le_p(ptr, u.i);
}
-static inline float64 ldfq_le_p(void *ptr)
+static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_le_p(ptr);
#else
-static inline int lduw_le_p(void *ptr)
+static inline int lduw_le_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
-static inline int ldsw_le_p(void *ptr)
+static inline int ldsw_le_p(const void *ptr)
{
return *(int16_t *)ptr;
}
-static inline int ldl_le_p(void *ptr)
+static inline int ldl_le_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
-static inline uint64_t ldq_le_p(void *ptr)
+static inline uint64_t ldq_le_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
/* float access */
-static inline float32 ldfl_le_p(void *ptr)
+static inline float32 ldfl_le_p(const void *ptr)
{
return *(float32 *)ptr;
}
-static inline float64 ldfq_le_p(void *ptr)
+static inline float64 ldfq_le_p(const void *ptr)
{
return *(float64 *)ptr;
}
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
-static inline int lduw_be_p(void *ptr)
+static inline int lduw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
: "m" (*(uint16_t *)ptr));
return val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return ((b[0] << 8) | b[1]);
#endif
}
-static inline int ldsw_be_p(void *ptr)
+static inline int ldsw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
-static inline int ldl_be_p(void *ptr)
+static inline int ldl_be_p(const void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
: "m" (*(uint32_t *)ptr));
return val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
-static inline uint64_t ldq_be_p(void *ptr)
+static inline uint64_t ldq_be_p(const void *ptr)
{
uint32_t a,b;
a = ldl_be_p(ptr);
- b = ldl_be_p(ptr+4);
+ b = ldl_be_p((uint8_t *)ptr + 4);
return (((uint64_t)a<<32)|b);
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
stl_be_p(ptr, v >> 32);
- stl_be_p(ptr + 4, v);
+ stl_be_p((uint8_t *)ptr + 4, v);
}
/* float access */
-static inline float32 ldfl_be_p(void *ptr)
+static inline float32 ldfl_be_p(const void *ptr)
{
union {
float32 f;
stl_be_p(ptr, u.i);
}
-static inline float64 ldfq_be_p(void *ptr)
+static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_be_p(ptr);
- u.l.lower = ldl_be_p(ptr + 4);
+ u.l.lower = ldl_be_p((uint8_t *)ptr + 4);
return u.d;
}
CPU_DoubleU u;
u.d = v;
stl_be_p(ptr, u.l.upper);
- stl_be_p(ptr + 4, u.l.lower);
+ stl_be_p((uint8_t *)ptr + 4, u.l.lower);
}
#else
-static inline int lduw_be_p(void *ptr)
+static inline int lduw_be_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
-static inline int ldsw_be_p(void *ptr)
+static inline int ldsw_be_p(const void *ptr)
{
return *(int16_t *)ptr;
}
-static inline int ldl_be_p(void *ptr)
+static inline int ldl_be_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
-static inline uint64_t ldq_be_p(void *ptr)
+static inline uint64_t ldq_be_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
/* float access */
-static inline float32 ldfl_be_p(void *ptr)
+static inline float32 ldfl_be_p(const void *ptr)
{
return *(float32 *)ptr;
}
-static inline float64 ldfq_be_p(void *ptr)
+static inline float64 ldfq_be_p(const void *ptr)
{
return *(float64 *)ptr;
}
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
+#include <assert.h>
+#include "qemu-types.h"
+
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
-#define h2g(x) ((target_ulong)(x - GUEST_BASE))
+#define h2g(x) ({ \
+ unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
+ /* Check if given address fits target address space */ \
+ assert(__ret == (abi_ulong)__ret); \
+ (abi_ulong)__ret; \
+})
+#define h2g_valid(x) ({ \
+ unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
+ (__guest == (abi_ulong)__guest); \
+})
#define saddr(x) g2h(x)
#define laddr(x) g2h(x)
void page_set_flags(target_ulong start, target_ulong end, int flags);
int page_check_range(target_ulong start, target_ulong len, int flags);
+void cpu_exec_init_all(unsigned long tb_size);
CPUState *cpu_copy(CPUState *env);
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
-void cpu_abort(CPUState *env, const char *fmt, ...)
- __attribute__ ((__format__ (__printf__, 2, 3)))
- __attribute__ ((__noreturn__));
+void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
+ __attribute__ ((__format__ (__printf__, 2, 3)));
extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
-extern int code_copy_enabled;
+extern int64_t qemu_icount;
+extern int use_icount;
-#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
void cpu_interrupt(CPUState *s, int mask);
void cpu_reset_interrupt(CPUState *env, int mask);
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr);
-int cpu_watchpoint_remove(CPUState *env, target_ulong addr);
-int cpu_breakpoint_insert(CPUState *env, target_ulong pc);
-int cpu_breakpoint_remove(CPUState *env, target_ulong pc);
+void cpu_exit(CPUState *s);
+
+int qemu_cpu_has_work(CPUState *env);
+
+/* Breakpoint/watchpoint flags */
+#define BP_MEM_READ 0x01
+#define BP_MEM_WRITE 0x02
+#define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE)
+#define BP_STOP_BEFORE_ACCESS 0x04
+#define BP_WATCHPOINT_HIT 0x08
+#define BP_GDB 0x10
+#define BP_CPU 0x20
+
+int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+ CPUBreakpoint **breakpoint);
+int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags);
+void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint);
+void cpu_breakpoint_remove_all(CPUState *env, int mask);
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+ int flags, CPUWatchpoint **watchpoint);
+int cpu_watchpoint_remove(CPUState *env, target_ulong addr,
+ target_ulong len, int flags);
+void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint);
+void cpu_watchpoint_remove_all(CPUState *env, int mask);
#define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */
#define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */
#define CPU_LOG_PCALL (1 << 6)
#define CPU_LOG_IOPORT (1 << 7)
#define CPU_LOG_TB_CPU (1 << 8)
+#define CPU_LOG_RESET (1 << 9)
/* define log items */
typedef struct CPULogItem {
const char *help;
} CPULogItem;
-extern CPULogItem cpu_log_items[];
+extern const CPULogItem cpu_log_items[];
void cpu_set_log(int log_flags);
void cpu_set_log_filename(const char *filename);
int cpu_inl(CPUState *env, int addr);
#endif
-/* address in the RAM (different from a physical address) */
-#ifdef USE_KQEMU
-typedef uint32_t ram_addr_t;
-#else
-typedef unsigned long ram_addr_t;
-#endif
-
/* memory API */
-extern ram_addr_t phys_ram_size;
extern int phys_ram_fd;
-extern uint8_t *phys_ram_base;
extern uint8_t *phys_ram_dirty;
extern ram_addr_t ram_size;
+extern ram_addr_t last_ram_offset;
/* physical memory access */
-#define TLB_INVALID_MASK (1 << 3)
-#define IO_MEM_SHIFT 4
+
+/* MMIO pages are identified by a combination of an IO device index and
+ 3 flags. The ROMD code stores the page ram offset in iotlb entry,
+ so only a limited number of ids are avaiable. */
+
#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
-#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
-#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
-#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
-#define IO_MEM_NOTDIRTY (4 << IO_MEM_SHIFT) /* used internally, never use directly */
-/* acts like a ROM when read and like a device when written. As an
- exception, the write memory callback gets the ram offset instead of
- the physical address */
-#define IO_MEM_ROMD (1)
-#define IO_MEM_SUBPAGE (2)
-#define IO_MEM_SUBWIDTH (4)
-
-typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
-typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
-
-void cpu_register_physical_memory(target_phys_addr_t start_addr,
- ram_addr_t size,
- ram_addr_t phys_offset);
-ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
-ram_addr_t qemu_ram_alloc(ram_addr_t);
-void qemu_ram_free(ram_addr_t addr);
-int cpu_register_io_memory(int io_index,
- CPUReadMemoryFunc **mem_read,
- CPUWriteMemoryFunc **mem_write,
- void *opaque);
-CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
-CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
-
-void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
- int len, int is_write);
-static inline void cpu_physical_memory_read(target_phys_addr_t addr,
- uint8_t *buf, int len)
-{
- cpu_physical_memory_rw(addr, buf, len, 0);
-}
-static inline void cpu_physical_memory_write(target_phys_addr_t addr,
- const uint8_t *buf, int len)
-{
- cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
-}
-uint32_t ldub_phys(target_phys_addr_t addr);
-uint32_t lduw_phys(target_phys_addr_t addr);
-uint32_t ldl_phys(target_phys_addr_t addr);
-uint64_t ldq_phys(target_phys_addr_t addr);
-void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
-void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
-void stb_phys(target_phys_addr_t addr, uint32_t val);
-void stw_phys(target_phys_addr_t addr, uint32_t val);
-void stl_phys(target_phys_addr_t addr, uint32_t val);
-void stq_phys(target_phys_addr_t addr, uint64_t val);
-
-void cpu_physical_memory_write_rom(target_phys_addr_t addr,
- const uint8_t *buf, int len);
+/* Flags stored in the low bits of the TLB virtual address. These are
+ defined so that fast path ram access is all zeros. */
+/* Zero if TLB entry is valid. */
+#define TLB_INVALID_MASK (1 << 3)
+/* Set if TLB entry references a clean RAM page. The iotlb entry will
+ contain the page physical address. */
+#define TLB_NOTDIRTY (1 << 4)
+/* Set if TLB entry is an IO callback. */
+#define TLB_MMIO (1 << 5)
+
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write);
-#define VGA_DIRTY_FLAG 0x01
-#define CODE_DIRTY_FLAG 0x02
+#define VGA_DIRTY_FLAG 0x01
+#define CODE_DIRTY_FLAG 0x02
+#define KQEMU_DIRTY_FLAG 0x04
+#define MIGRATION_DIRTY_FLAG 0x08
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
int dirty_flags);
void cpu_tlb_update_dirty(CPUState *env);
+int cpu_physical_memory_set_dirty_tracking(int enable);
+
+int cpu_physical_memory_get_dirty_tracking(void);
+
+int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
+ target_phys_addr_t end_addr);
+
void dump_exec_info(FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
-/*******************************************/
-/* host CPU ticks (if available) */
+/* Coalesced MMIO regions are areas where write operations can be reordered.
+ * This usually implies that write operations are side-effect free. This allows
+ * batching which can make a major impact on performance when using
+ * virtualization.
+ */
+void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
-#if defined(__powerpc__)
+void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
-static inline uint32_t get_tbl(void)
-{
- uint32_t tbl;
- asm volatile("mftb %0" : "=r" (tbl));
- return tbl;
-}
+/*******************************************/
+/* host CPU ticks (if available) */
-static inline uint32_t get_tbu(void)
-{
- uint32_t tbl;
- asm volatile("mftbu %0" : "=r" (tbl));
- return tbl;
-}
+#if defined(_ARCH_PPC)
static inline int64_t cpu_get_real_ticks(void)
{
- uint32_t l, h, h1;
- /* NOTE: we test if wrapping has occurred */
- do {
- h = get_tbu();
- l = get_tbl();
- h1 = get_tbu();
- } while (h != h1);
- return ((int64_t)h << 32) | l;
+ int64_t retval;
+#ifdef _ARCH_PPC64
+ /* This reads timebase in one 64bit go and includes Cell workaround from:
+ http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
+ */
+ __asm__ __volatile__ (
+ "mftb %0\n\t"
+ "cmpwi %0,0\n\t"
+ "beq- $-8"
+ : "=r" (retval));
+#else
+ /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
+ unsigned long junk;
+ __asm__ __volatile__ (
+ "mftbu %1\n\t"
+ "mftb %L0\n\t"
+ "mftbu %0\n\t"
+ "cmpw %0,%1\n\t"
+ "bne $-16"
+ : "=r" (retval), "=r" (junk));
+#endif
+ return retval;
}
#elif defined(__i386__)
extern int64_t kqemu_ret_int_count;
extern int64_t kqemu_ret_excp_count;
extern int64_t kqemu_ret_intr_count;
-
-extern int64_t dyngen_tb_count1;
-extern int64_t dyngen_tb_count;
-extern int64_t dyngen_op_count;
-extern int64_t dyngen_old_op_count;
-extern int64_t dyngen_tcg_del_op_count;
-extern int dyngen_op_count_max;
-extern int64_t dyngen_code_in_len;
-extern int64_t dyngen_code_out_len;
-extern int64_t dyngen_interm_time;
-extern int64_t dyngen_code_time;
-extern int64_t dyngen_restore_count;
-extern int64_t dyngen_restore_time;
#endif
#endif /* CPU_ALL_H */