*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
+#include "qemu-common.h"
+
#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
#define WORDS_ALIGNED
#endif
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
-static inline int ldub_p(void *ptr)
+static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
-static inline int ldsb_p(void *ptr)
+static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
-static inline int lduw_le_p(void *ptr)
+static inline int lduw_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
-static inline int ldsw_le_p(void *ptr)
+static inline int ldsw_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
-static inline int ldl_le_p(void *ptr)
+static inline int ldl_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
-static inline uint64_t ldq_le_p(void *ptr)
+static inline uint64_t ldq_le_p(const void *ptr)
{
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_le_p(p);
v2 = ldl_le_p(p + 4);
static inline void stw_le_p(void *ptr, int v)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
static inline void stl_le_p(void *ptr, int v)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
/* float access */
-static inline float32 ldfl_le_p(void *ptr)
+static inline float32 ldfl_le_p(const void *ptr)
{
union {
float32 f;
stl_le_p(ptr, u.i);
}
-static inline float64 ldfq_le_p(void *ptr)
+static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_le_p(ptr);
#else
-static inline int lduw_le_p(void *ptr)
+static inline int lduw_le_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
-static inline int ldsw_le_p(void *ptr)
+static inline int ldsw_le_p(const void *ptr)
{
return *(int16_t *)ptr;
}
-static inline int ldl_le_p(void *ptr)
+static inline int ldl_le_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
-static inline uint64_t ldq_le_p(void *ptr)
+static inline uint64_t ldq_le_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
/* float access */
-static inline float32 ldfl_le_p(void *ptr)
+static inline float32 ldfl_le_p(const void *ptr)
{
return *(float32 *)ptr;
}
-static inline float64 ldfq_le_p(void *ptr)
+static inline float64 ldfq_le_p(const void *ptr)
{
return *(float64 *)ptr;
}
#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
-static inline int lduw_be_p(void *ptr)
+static inline int lduw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
: "m" (*(uint16_t *)ptr));
return val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return ((b[0] << 8) | b[1]);
#endif
}
-static inline int ldsw_be_p(void *ptr)
+static inline int ldsw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
-static inline int ldl_be_p(void *ptr)
+static inline int ldl_be_p(const void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
: "m" (*(uint32_t *)ptr));
return val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
-static inline uint64_t ldq_be_p(void *ptr)
+static inline uint64_t ldq_be_p(const void *ptr)
{
uint32_t a,b;
a = ldl_be_p(ptr);
/* float access */
-static inline float32 ldfl_be_p(void *ptr)
+static inline float32 ldfl_be_p(const void *ptr)
{
union {
float32 f;
stl_be_p(ptr, u.i);
}
-static inline float64 ldfq_be_p(void *ptr)
+static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_be_p(ptr);
#else
-static inline int lduw_be_p(void *ptr)
+static inline int lduw_be_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
-static inline int ldsw_be_p(void *ptr)
+static inline int ldsw_be_p(const void *ptr)
{
return *(int16_t *)ptr;
}
-static inline int ldl_be_p(void *ptr)
+static inline int ldl_be_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
-static inline uint64_t ldq_be_p(void *ptr)
+static inline uint64_t ldq_be_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
/* float access */
-static inline float32 ldfl_be_p(void *ptr)
+static inline float32 ldfl_be_p(const void *ptr)
{
return *(float32 *)ptr;
}
-static inline float64 ldfq_be_p(void *ptr)
+static inline float64 ldfq_be_p(const void *ptr)
{
return *(float64 *)ptr;
}
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
+#include <assert.h>
+#include "qemu-types.h"
+
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
-#define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
+#define h2g(x) ({ \
+ unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
+ /* Check if given address fits target address space */ \
+ assert(__ret == (abi_ulong)__ret); \
+ (abi_ulong)__ret; \
+})
+#define h2g_valid(x) ({ \
+ unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
+ (__guest == (abi_ulong)__guest); \
+})
#define saddr(x) g2h(x)
#define laddr(x) g2h(x)
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
-void cpu_abort(CPUState *env, const char *fmt, ...)
- __attribute__ ((__format__ (__printf__, 2, 3)))
- __attribute__ ((__noreturn__));
+void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
+ __attribute__ ((__format__ (__printf__, 2, 3)));
extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
extern int64_t qemu_icount;
#define CPU_LOG_PCALL (1 << 6)
#define CPU_LOG_IOPORT (1 << 7)
#define CPU_LOG_TB_CPU (1 << 8)
+#define CPU_LOG_RESET (1 << 9)
/* define log items */
typedef struct CPULogItem {
{
cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
}
+void *cpu_physical_memory_map(target_phys_addr_t addr,
+ target_phys_addr_t *plen,
+ int is_write);
+void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
+ int is_write, target_phys_addr_t access_len);
+void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque));
+void cpu_unregister_map_client(void *cookie);
+
uint32_t ldub_phys(target_phys_addr_t addr);
uint32_t lduw_phys(target_phys_addr_t addr);
uint32_t ldl_phys(target_phys_addr_t addr);
void dump_exec_info(FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
-/*******************************************/
-/* host CPU ticks (if available) */
+/* Coalesced MMIO regions are areas where write operations can be reordered.
+ * This usually implies that write operations are side-effect free. This allows
+ * batching which can make a major impact on performance when using
+ * virtualization.
+ */
+void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
-#if defined(__powerpc__)
+void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size);
-static inline uint32_t get_tbl(void)
-{
- uint32_t tbl;
- asm volatile("mftb %0" : "=r" (tbl));
- return tbl;
-}
+/*******************************************/
+/* host CPU ticks (if available) */
-static inline uint32_t get_tbu(void)
-{
- uint32_t tbl;
- asm volatile("mftbu %0" : "=r" (tbl));
- return tbl;
-}
+#if defined(_ARCH_PPC)
static inline int64_t cpu_get_real_ticks(void)
{
- uint32_t l, h, h1;
- /* NOTE: we test if wrapping has occurred */
- do {
- h = get_tbu();
- l = get_tbl();
- h1 = get_tbu();
- } while (h != h1);
- return ((int64_t)h << 32) | l;
+ int64_t retval;
+#ifdef _ARCH_PPC64
+ /* This reads timebase in one 64bit go and includes Cell workaround from:
+ http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
+ */
+ __asm__ __volatile__ (
+ "mftb %0\n\t"
+ "cmpwi %0,0\n\t"
+ "beq- $-8"
+ : "=r" (retval));
+#else
+ /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
+ unsigned long junk;
+ __asm__ __volatile__ (
+ "mftbu %1\n\t"
+ "mftb %L0\n\t"
+ "mftbu %0\n\t"
+ "cmpw %0,%1\n\t"
+ "bne $-16"
+ : "=r" (retval), "=r" (junk));
+#endif
+ return retval;
}
#elif defined(__i386__)