+
+3. Low level memory management
+
+Use of the malloc/free/realloc/calloc/valloc/memalign/posix_memalign
+APIs is not allowed in the QEMU codebase. Instead of these routines,
+use the GLib memory allocation routines g_malloc/g_malloc0/g_new/
+g_new0/g_realloc/g_free or QEMU's qemu_memalign/qemu_blockalign/qemu_vfree
+APIs.
+
+Please note that g_malloc will exit on allocation failure, so there
+is no need to test for failure (as you would have to with malloc).
+Calling g_malloc with a zero size is valid and will return NULL.
+
+Prefer g_new(T, n) instead of g_malloc(sizeof(T) * n) for the following
+reasons:
+
+ a. It catches multiplication overflowing size_t;
+ b. It returns T * instead of void *, letting compiler catch more type
+ errors.
+
+Declarations like T *v = g_malloc(sizeof(*v)) are acceptable, though.
+
+Memory allocated by qemu_memalign or qemu_blockalign must be freed with
+qemu_vfree, since breaking this will cause problems on Win32.
+
+4. String manipulation
+
+Do not use the strncpy function. As mentioned in the man page, it does *not*
+guarantee a NULL-terminated buffer, which makes it extremely dangerous to use.
+It also zeros trailing destination bytes out to the specified length. Instead,
+use this similar function when possible, but note its different signature:
+void pstrcpy(char *dest, int dest_buf_size, const char *src)
+
+Don't use strcat because it can't check for buffer overflows, but:
+char *pstrcat(char *buf, int buf_size, const char *s)
+
+The same limitation exists with sprintf and vsprintf, so use snprintf and
+vsnprintf.
+
+QEMU provides other useful string functions:
+int strstart(const char *str, const char *val, const char **ptr)
+int stristart(const char *str, const char *val, const char **ptr)
+int qemu_strnlen(const char *s, int max_len)
+
+There are also replacement character processing macros for isxyz and toxyz,
+so instead of e.g. isalnum you should use qemu_isalnum.
+
+Because of the memory management rules, you must use g_strdup/g_strndup
+instead of plain strdup/strndup.
+
+5. Printf-style functions
+
+Whenever you add a new printf-style function, i.e., one with a format
+string argument and following "..." in its prototype, be sure to use
+gcc's printf attribute directive in the prototype.
+
+This makes it so gcc's -Wformat and -Wformat-security options can do
+their jobs and cross-check format strings with the number and types
+of arguments.
+
+6. C standard, implementation defined and undefined behaviors
+
+C code in QEMU should be written to the C99 language specification. A copy
+of the final version of the C99 standard with corrigenda TC1, TC2, and TC3
+included, formatted as a draft, can be downloaded from:
+ http://www.open-std.org/jtc1/sc22/WG14/www/docs/n1256.pdf
+
+The C language specification defines regions of undefined behavior and
+implementation defined behavior (to give compiler authors enough leeway to
+produce better code). In general, code in QEMU should follow the language
+specification and avoid both undefined and implementation defined
+constructs. ("It works fine on the gcc I tested it with" is not a valid
+argument...) However there are a few areas where we allow ourselves to
+assume certain behaviors because in practice all the platforms we care about
+behave in the same way and writing strictly conformant code would be
+painful. These are:
+ * you may assume that integers are 2s complement representation
+ * you may assume that right shift of a signed integer duplicates
+ the sign bit (ie it is an arithmetic shift, not a logical shift)
+
+In addition, QEMU assumes that the compiler does not use the latitude
+given in C99 and C11 to treat aspects of signed '<<' as undefined, as
+documented in the GNU Compiler Collection manual starting at version 4.0.
+
+7. Error handling and reporting
+
+7.1 Reporting errors to the human user
+
+Do not use printf(), fprintf() or monitor_printf(). Instead, use
+error_report() or error_vreport() from error-report.h. This ensures the
+error is reported in the right place (current monitor or stderr), and in
+a uniform format.
+
+Use error_printf() & friends to print additional information.
+
+error_report() prints the current location. In certain common cases
+like command line parsing, the current location is tracked
+automatically. To manipulate it manually, use the loc_*() from
+error-report.h.
+
+7.2 Propagating errors
+
+An error can't always be reported to the user right where it's detected,
+but often needs to be propagated up the call chain to a place that can
+handle it. This can be done in various ways.
+
+The most flexible one is Error objects. See error.h for usage
+information.
+
+Use the simplest suitable method to communicate success / failure to
+callers. Stick to common methods: non-negative on success / -1 on
+error, non-negative / -errno, non-null / null, or Error objects.
+
+Example: when a function returns a non-null pointer on success, and it
+can fail only in one way (as far as the caller is concerned), returning
+null on failure is just fine, and certainly simpler and a lot easier on
+the eyes than propagating an Error object through an Error ** parameter.
+
+Example: when a function's callers need to report details on failure
+only the function really knows, use Error **, and set suitable errors.
+
+Do not report an error to the user when you're also returning an error
+for somebody else to handle. Leave the reporting to the place that
+consumes the error returned.
+
+7.3 Handling errors
+
+Calling exit() is fine when handling configuration errors during
+startup. It's problematic during normal operation. In particular,
+monitor commands should never exit().
+
+Do not call exit() or abort() to handle an error that can be triggered
+by the guest (e.g., some unimplemented corner case in guest code
+translation or device emulation). Guests should not be able to
+terminate QEMU.
+
+Note that &error_fatal is just another way to exit(1), and &error_abort
+is just another way to abort().