#include "gdbstub.h"
#include "dma.h"
#include "kvm.h"
-#include "exec-all.h"
+#include "qmp-commands.h"
+#include "qemu-thread.h"
#include "cpus.h"
-#include "compatfd.h"
+#include "main-loop.h"
-#ifdef SIGRTMIN
-#define SIG_IPI (SIGRTMIN+4)
-#else
-#define SIG_IPI SIGUSR1
+#ifndef _WIN32
+#include "compatfd.h"
#endif
#ifdef CONFIG_LINUX
static CPUState *next_cpu;
+/***********************************************************/
+/* guest cycle counter */
+
+/* Conversion factor from emulated instructions to virtual clock ticks. */
+static int icount_time_shift;
+/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
+#define MAX_ICOUNT_SHIFT 10
+/* Compensate for varying guest execution speed. */
+static int64_t qemu_icount_bias;
+static QEMUTimer *icount_rt_timer;
+static QEMUTimer *icount_vm_timer;
+static QEMUTimer *icount_warp_timer;
+static int64_t vm_clock_warp_start;
+static int64_t qemu_icount;
+
+typedef struct TimersState {
+ int64_t cpu_ticks_prev;
+ int64_t cpu_ticks_offset;
+ int64_t cpu_clock_offset;
+ int32_t cpu_ticks_enabled;
+ int64_t dummy;
+} TimersState;
+
+TimersState timers_state;
+
+/* Return the virtual CPU time, based on the instruction counter. */
+int64_t cpu_get_icount(void)
+{
+ int64_t icount;
+ CPUState *env = cpu_single_env;;
+
+ icount = qemu_icount;
+ if (env) {
+ if (!can_do_io(env)) {
+ fprintf(stderr, "Bad clock read\n");
+ }
+ icount -= (env->icount_decr.u16.low + env->icount_extra);
+ }
+ return qemu_icount_bias + (icount << icount_time_shift);
+}
+
+/* return the host CPU cycle counter and handle stop/restart */
+int64_t cpu_get_ticks(void)
+{
+ if (use_icount) {
+ return cpu_get_icount();
+ }
+ if (!timers_state.cpu_ticks_enabled) {
+ return timers_state.cpu_ticks_offset;
+ } else {
+ int64_t ticks;
+ ticks = cpu_get_real_ticks();
+ if (timers_state.cpu_ticks_prev > ticks) {
+ /* Note: non increasing ticks may happen if the host uses
+ software suspend */
+ timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
+ }
+ timers_state.cpu_ticks_prev = ticks;
+ return ticks + timers_state.cpu_ticks_offset;
+ }
+}
+
+/* return the host CPU monotonic timer and handle stop/restart */
+int64_t cpu_get_clock(void)
+{
+ int64_t ti;
+ if (!timers_state.cpu_ticks_enabled) {
+ return timers_state.cpu_clock_offset;
+ } else {
+ ti = get_clock();
+ return ti + timers_state.cpu_clock_offset;
+ }
+}
+
+/* enable cpu_get_ticks() */
+void cpu_enable_ticks(void)
+{
+ if (!timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
+ timers_state.cpu_clock_offset -= get_clock();
+ timers_state.cpu_ticks_enabled = 1;
+ }
+}
+
+/* disable cpu_get_ticks() : the clock is stopped. You must not call
+ cpu_get_ticks() after that. */
+void cpu_disable_ticks(void)
+{
+ if (timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset = cpu_get_ticks();
+ timers_state.cpu_clock_offset = cpu_get_clock();
+ timers_state.cpu_ticks_enabled = 0;
+ }
+}
+
+/* Correlation between real and virtual time is always going to be
+ fairly approximate, so ignore small variation.
+ When the guest is idle real and virtual time will be aligned in
+ the IO wait loop. */
+#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
+
+static void icount_adjust(void)
+{
+ int64_t cur_time;
+ int64_t cur_icount;
+ int64_t delta;
+ static int64_t last_delta;
+ /* If the VM is not running, then do nothing. */
+ if (!runstate_is_running()) {
+ return;
+ }
+ cur_time = cpu_get_clock();
+ cur_icount = qemu_get_clock_ns(vm_clock);
+ delta = cur_icount - cur_time;
+ /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
+ if (delta > 0
+ && last_delta + ICOUNT_WOBBLE < delta * 2
+ && icount_time_shift > 0) {
+ /* The guest is getting too far ahead. Slow time down. */
+ icount_time_shift--;
+ }
+ if (delta < 0
+ && last_delta - ICOUNT_WOBBLE > delta * 2
+ && icount_time_shift < MAX_ICOUNT_SHIFT) {
+ /* The guest is getting too far behind. Speed time up. */
+ icount_time_shift++;
+ }
+ last_delta = delta;
+ qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
+}
+
+static void icount_adjust_rt(void *opaque)
+{
+ qemu_mod_timer(icount_rt_timer,
+ qemu_get_clock_ms(rt_clock) + 1000);
+ icount_adjust();
+}
+
+static void icount_adjust_vm(void *opaque)
+{
+ qemu_mod_timer(icount_vm_timer,
+ qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
+ icount_adjust();
+}
+
+static int64_t qemu_icount_round(int64_t count)
+{
+ return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
+}
+
+static void icount_warp_rt(void *opaque)
+{
+ if (vm_clock_warp_start == -1) {
+ return;
+ }
+
+ if (runstate_is_running()) {
+ int64_t clock = qemu_get_clock_ns(rt_clock);
+ int64_t warp_delta = clock - vm_clock_warp_start;
+ if (use_icount == 1) {
+ qemu_icount_bias += warp_delta;
+ } else {
+ /*
+ * In adaptive mode, do not let the vm_clock run too
+ * far ahead of real time.
+ */
+ int64_t cur_time = cpu_get_clock();
+ int64_t cur_icount = qemu_get_clock_ns(vm_clock);
+ int64_t delta = cur_time - cur_icount;
+ qemu_icount_bias += MIN(warp_delta, delta);
+ }
+ if (qemu_clock_expired(vm_clock)) {
+ qemu_notify_event();
+ }
+ }
+ vm_clock_warp_start = -1;
+}
+
+void qemu_clock_warp(QEMUClock *clock)
+{
+ int64_t deadline;
+
+ /*
+ * There are too many global variables to make the "warp" behavior
+ * applicable to other clocks. But a clock argument removes the
+ * need for if statements all over the place.
+ */
+ if (clock != vm_clock || !use_icount) {
+ return;
+ }
+
+ /*
+ * If the CPUs have been sleeping, advance the vm_clock timer now. This
+ * ensures that the deadline for the timer is computed correctly below.
+ * This also makes sure that the insn counter is synchronized before the
+ * CPU starts running, in case the CPU is woken by an event other than
+ * the earliest vm_clock timer.
+ */
+ icount_warp_rt(NULL);
+ if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
+ qemu_del_timer(icount_warp_timer);
+ return;
+ }
+
+ vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
+ deadline = qemu_clock_deadline(vm_clock);
+ if (deadline > 0) {
+ /*
+ * Ensure the vm_clock proceeds even when the virtual CPU goes to
+ * sleep. Otherwise, the CPU might be waiting for a future timer
+ * interrupt to wake it up, but the interrupt never comes because
+ * the vCPU isn't running any insns and thus doesn't advance the
+ * vm_clock.
+ *
+ * An extreme solution for this problem would be to never let VCPUs
+ * sleep in icount mode if there is a pending vm_clock timer; rather
+ * time could just advance to the next vm_clock event. Instead, we
+ * do stop VCPUs and only advance vm_clock after some "real" time,
+ * (related to the time left until the next event) has passed. This
+ * rt_clock timer will do this. This avoids that the warps are too
+ * visible externally---for example, you will not be sending network
+ * packets continously instead of every 100ms.
+ */
+ qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
+ } else {
+ qemu_notify_event();
+ }
+}
+
+static const VMStateDescription vmstate_timers = {
+ .name = "timer",
+ .version_id = 2,
+ .minimum_version_id = 1,
+ .minimum_version_id_old = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(cpu_ticks_offset, TimersState),
+ VMSTATE_INT64(dummy, TimersState),
+ VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+void configure_icount(const char *option)
+{
+ vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
+ if (!option) {
+ return;
+ }
+
+ icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
+ if (strcmp(option, "auto") != 0) {
+ icount_time_shift = strtol(option, NULL, 0);
+ use_icount = 1;
+ return;
+ }
+
+ use_icount = 2;
+
+ /* 125MIPS seems a reasonable initial guess at the guest speed.
+ It will be corrected fairly quickly anyway. */
+ icount_time_shift = 3;
+
+ /* Have both realtime and virtual time triggers for speed adjustment.
+ The realtime trigger catches emulated time passing too slowly,
+ the virtual time trigger catches emulated time passing too fast.
+ Realtime triggers occur even when idle, so use them less frequently
+ than VM triggers. */
+ icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
+ qemu_mod_timer(icount_rt_timer,
+ qemu_get_clock_ms(rt_clock) + 1000);
+ icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
+ qemu_mod_timer(icount_vm_timer,
+ qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
+}
+
/***********************************************************/
void hw_error(const char *fmt, ...)
{
int cpu_is_stopped(CPUState *env)
{
- return !vm_running || env->stopped;
+ return !runstate_is_running() || env->stopped;
}
-static void do_vm_stop(int reason)
+static void do_vm_stop(RunState state)
{
- if (vm_running) {
+ if (runstate_is_running()) {
cpu_disable_ticks();
- vm_running = 0;
pause_all_vcpus();
- vm_state_notify(0, reason);
+ runstate_set(state);
+ vm_state_notify(0, state);
qemu_aio_flush();
bdrv_flush_all();
monitor_protocol_event(QEVENT_STOP, NULL);
if (env->stop) {
return 0;
}
- if (env->stopped || !vm_running) {
+ if (env->stopped || !runstate_is_running()) {
return 0;
}
return 1;
if (env->stop || env->queued_work_first) {
return false;
}
- if (env->stopped || !vm_running) {
+ if (env->stopped || !runstate_is_running()) {
return true;
}
- if (!env->halted || qemu_cpu_has_work(env)) {
+ if (!env->halted || qemu_cpu_has_work(env) ||
+ (kvm_enabled() && kvm_irqchip_in_kernel())) {
return false;
}
return true;
}
-static bool all_cpu_threads_idle(void)
+bool all_cpu_threads_idle(void)
{
CPUState *env;
return true;
}
-static CPUDebugExcpHandler *debug_excp_handler;
-
-CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
+static void cpu_handle_guest_debug(CPUState *env)
{
- CPUDebugExcpHandler *old_handler = debug_excp_handler;
-
- debug_excp_handler = handler;
- return old_handler;
+ gdb_set_stop_cpu(env);
+ qemu_system_debug_request();
+ env->stopped = 1;
}
-static void cpu_handle_debug_exception(CPUState *env)
+static void cpu_signal(int sig)
{
- CPUWatchpoint *wp;
-
- if (!env->watchpoint_hit) {
- QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
- wp->flags &= ~BP_WATCHPOINT_HIT;
- }
- }
- if (debug_excp_handler) {
- debug_excp_handler(env);
+ if (cpu_single_env) {
+ cpu_exit(cpu_single_env);
}
-
- gdb_set_stop_cpu(env);
- qemu_system_debug_request();
-#ifdef CONFIG_IOTHREAD
- env->stopped = 1;
-#endif
+ exit_request = 1;
}
#ifdef CONFIG_LINUX
prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
}
-#else /* !CONFIG_LINUX */
-
-static void qemu_init_sigbus(void)
-{
-}
-#endif /* !CONFIG_LINUX */
-
-#ifndef _WIN32
-static int io_thread_fd = -1;
-
-static void qemu_event_increment(void)
-{
- /* Write 8 bytes to be compatible with eventfd. */
- static const uint64_t val = 1;
- ssize_t ret;
-
- if (io_thread_fd == -1) {
- return;
- }
- do {
- ret = write(io_thread_fd, &val, sizeof(val));
- } while (ret < 0 && errno == EINTR);
-
- /* EAGAIN is fine, a read must be pending. */
- if (ret < 0 && errno != EAGAIN) {
- fprintf(stderr, "qemu_event_increment: write() filed: %s\n",
- strerror(errno));
- exit (1);
- }
-}
-
-static void qemu_event_read(void *opaque)
-{
- int fd = (unsigned long)opaque;
- ssize_t len;
- char buffer[512];
-
- /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
- do {
- len = read(fd, buffer, sizeof(buffer));
- } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
-}
-
-static int qemu_event_init(void)
-{
- int err;
- int fds[2];
-
- err = qemu_eventfd(fds);
- if (err == -1) {
- return -errno;
- }
- err = fcntl_setfl(fds[0], O_NONBLOCK);
- if (err < 0) {
- goto fail;
- }
- err = fcntl_setfl(fds[1], O_NONBLOCK);
- if (err < 0) {
- goto fail;
- }
- qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
- (void *)(unsigned long)fds[0]);
-
- io_thread_fd = fds[1];
- return 0;
-
-fail:
- close(fds[0]);
- close(fds[1]);
- return err;
-}
-
-static void dummy_signal(int sig)
-{
-}
-
-/* If we have signalfd, we mask out the signals we want to handle and then
- * use signalfd to listen for them. We rely on whatever the current signal
- * handler is to dispatch the signals when we receive them.
- */
-static void sigfd_handler(void *opaque)
-{
- int fd = (unsigned long) opaque;
- struct qemu_signalfd_siginfo info;
- struct sigaction action;
- ssize_t len;
-
- while (1) {
- do {
- len = read(fd, &info, sizeof(info));
- } while (len == -1 && errno == EINTR);
-
- if (len == -1 && errno == EAGAIN) {
- break;
- }
-
- if (len != sizeof(info)) {
- printf("read from sigfd returned %zd: %m\n", len);
- return;
- }
-
- sigaction(info.ssi_signo, NULL, &action);
- if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
- action.sa_sigaction(info.ssi_signo,
- (siginfo_t *)&info, NULL);
- } else if (action.sa_handler) {
- action.sa_handler(info.ssi_signo);
- }
- }
-}
-
-static int qemu_signalfd_init(sigset_t mask)
-{
- int sigfd;
-
- sigfd = qemu_signalfd(&mask);
- if (sigfd == -1) {
- fprintf(stderr, "failed to create signalfd\n");
- return -errno;
- }
-
- fcntl_setfl(sigfd, O_NONBLOCK);
-
- qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
- (void *)(unsigned long) sigfd);
-
- return 0;
-}
-
static void qemu_kvm_eat_signals(CPUState *env)
{
struct timespec ts = { 0, 0 };
exit(1);
}
} while (sigismember(&chkset, SIG_IPI) || sigismember(&chkset, SIGBUS));
-
-#ifndef CONFIG_IOTHREAD
- if (sigismember(&chkset, SIGIO) || sigismember(&chkset, SIGALRM)) {
- qemu_notify_event();
- }
-#endif
}
-#else /* _WIN32 */
-
-HANDLE qemu_event_handle;
-
-static void dummy_event_handler(void *opaque)
-{
-}
+#else /* !CONFIG_LINUX */
-static int qemu_event_init(void)
+static void qemu_init_sigbus(void)
{
- qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
- if (!qemu_event_handle) {
- fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
- return -1;
- }
- qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
- return 0;
}
-static void qemu_event_increment(void)
+static void qemu_kvm_eat_signals(CPUState *env)
{
- if (!SetEvent(qemu_event_handle)) {
- fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
- GetLastError());
- exit (1);
- }
}
+#endif /* !CONFIG_LINUX */
-static void qemu_kvm_eat_signals(CPUState *env)
+#ifndef _WIN32
+static void dummy_signal(int sig)
{
}
-#endif /* _WIN32 */
-#ifndef CONFIG_IOTHREAD
static void qemu_kvm_init_cpu_signals(CPUState *env)
{
-#ifndef _WIN32
int r;
sigset_t set;
struct sigaction sigact;
sigact.sa_handler = dummy_signal;
sigaction(SIG_IPI, &sigact, NULL);
- sigemptyset(&set);
- sigaddset(&set, SIG_IPI);
- sigaddset(&set, SIGIO);
- sigaddset(&set, SIGALRM);
- pthread_sigmask(SIG_BLOCK, &set, NULL);
-
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
sigdelset(&set, SIGBUS);
- sigdelset(&set, SIGIO);
- sigdelset(&set, SIGALRM);
r = kvm_set_signal_mask(env, &set);
if (r) {
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
exit(1);
}
-#endif
-}
-
-#ifndef _WIN32
-static sigset_t block_synchronous_signals(void)
-{
- sigset_t set;
-
- sigemptyset(&set);
- sigaddset(&set, SIGBUS);
- if (kvm_enabled()) {
- /*
- * We need to process timer signals synchronously to avoid a race
- * between exit_request check and KVM vcpu entry.
- */
- sigaddset(&set, SIGIO);
- sigaddset(&set, SIGALRM);
- }
-
- return set;
-}
-#endif
-
-int qemu_init_main_loop(void)
-{
-#ifndef _WIN32
- sigset_t blocked_signals;
- int ret;
-
- blocked_signals = block_synchronous_signals();
-
- ret = qemu_signalfd_init(blocked_signals);
- if (ret) {
- return ret;
- }
-#endif
-
- qemu_init_sigbus();
-
- return qemu_event_init();
-}
-
-void qemu_main_loop_start(void)
-{
-}
-
-void qemu_init_vcpu(void *_env)
-{
- CPUState *env = _env;
- int r;
-
- env->nr_cores = smp_cores;
- env->nr_threads = smp_threads;
-
- if (kvm_enabled()) {
- r = kvm_init_vcpu(env);
- if (r < 0) {
- fprintf(stderr, "kvm_init_vcpu failed: %s\n", strerror(-r));
- exit(1);
- }
- qemu_kvm_init_cpu_signals(env);
- }
-}
-
-int qemu_cpu_self(void *env)
-{
- return 1;
-}
-
-void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
-{
- func(data);
-}
-
-void resume_all_vcpus(void)
-{
-}
-
-void pause_all_vcpus(void)
-{
-}
-
-void qemu_cpu_kick(void *env)
-{
-}
-
-void qemu_cpu_kick_self(void)
-{
-#ifndef _WIN32
- assert(cpu_single_env);
-
- raise(SIG_IPI);
-#else
- abort();
-#endif
-}
-
-void qemu_notify_event(void)
-{
- CPUState *env = cpu_single_env;
-
- qemu_event_increment ();
- if (env) {
- cpu_exit(env);
- }
- if (next_cpu && env != next_cpu) {
- cpu_exit(next_cpu);
- }
- exit_request = 1;
-}
-
-void qemu_mutex_lock_iothread(void) {}
-void qemu_mutex_unlock_iothread(void) {}
-
-void cpu_stop_current(void)
-{
-}
-
-void vm_stop(int reason)
-{
- do_vm_stop(reason);
-}
-
-#else /* CONFIG_IOTHREAD */
-
-#include "qemu-thread.h"
-
-QemuMutex qemu_global_mutex;
-static QemuMutex qemu_fair_mutex;
-
-static QemuThread io_thread;
-
-static QemuThread *tcg_cpu_thread;
-static QemuCond *tcg_halt_cond;
-
-static int qemu_system_ready;
-/* cpu creation */
-static QemuCond qemu_cpu_cond;
-/* system init */
-static QemuCond qemu_system_cond;
-static QemuCond qemu_pause_cond;
-static QemuCond qemu_work_cond;
-
-static void cpu_signal(int sig)
-{
- if (cpu_single_env) {
- cpu_exit(cpu_single_env);
- }
- exit_request = 1;
-}
-
-static void qemu_kvm_init_cpu_signals(CPUState *env)
-{
- int r;
- sigset_t set;
- struct sigaction sigact;
- memset(&sigact, 0, sizeof(sigact));
- sigact.sa_handler = dummy_signal;
- sigaction(SIG_IPI, &sigact, NULL);
-
- pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
sigdelset(&set, SIGBUS);
r = kvm_set_signal_mask(env, &set);
pthread_sigmask(SIG_UNBLOCK, &set, NULL);
}
-static sigset_t block_io_signals(void)
+#else /* _WIN32 */
+static void qemu_kvm_init_cpu_signals(CPUState *env)
{
- sigset_t set;
-
- /* SIGUSR2 used by posix-aio-compat.c */
- sigemptyset(&set);
- sigaddset(&set, SIGUSR2);
- pthread_sigmask(SIG_UNBLOCK, &set, NULL);
-
- sigemptyset(&set);
- sigaddset(&set, SIGIO);
- sigaddset(&set, SIGALRM);
- sigaddset(&set, SIG_IPI);
- sigaddset(&set, SIGBUS);
- pthread_sigmask(SIG_BLOCK, &set, NULL);
-
- return set;
+ abort();
}
-int qemu_init_main_loop(void)
+static void qemu_tcg_init_cpu_signals(void)
{
- int ret;
- sigset_t blocked_signals;
+}
+#endif /* _WIN32 */
- qemu_init_sigbus();
+QemuMutex qemu_global_mutex;
+static QemuCond qemu_io_proceeded_cond;
+static bool iothread_requesting_mutex;
- blocked_signals = block_io_signals();
+static QemuThread io_thread;
- ret = qemu_signalfd_init(blocked_signals);
- if (ret) {
- return ret;
- }
+static QemuThread *tcg_cpu_thread;
+static QemuCond *tcg_halt_cond;
- /* Note eventfd must be drained before signalfd handlers run */
- ret = qemu_event_init();
- if (ret) {
- return ret;
- }
+/* cpu creation */
+static QemuCond qemu_cpu_cond;
+/* system init */
+static QemuCond qemu_pause_cond;
+static QemuCond qemu_work_cond;
+void qemu_init_cpu_loop(void)
+{
+ qemu_init_sigbus();
+ qemu_cond_init(&qemu_cpu_cond);
qemu_cond_init(&qemu_pause_cond);
- qemu_cond_init(&qemu_system_cond);
- qemu_mutex_init(&qemu_fair_mutex);
+ qemu_cond_init(&qemu_work_cond);
+ qemu_cond_init(&qemu_io_proceeded_cond);
qemu_mutex_init(&qemu_global_mutex);
- qemu_mutex_lock(&qemu_global_mutex);
- qemu_thread_self(&io_thread);
-
- return 0;
-}
-
-void qemu_main_loop_start(void)
-{
- qemu_system_ready = 1;
- qemu_cond_broadcast(&qemu_system_cond);
+ qemu_thread_get_self(&io_thread);
}
void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
{
struct qemu_work_item wi;
- if (qemu_cpu_self(env)) {
+ if (qemu_cpu_is_self(env)) {
func(data);
return;
}
CPUState *env;
while (all_cpu_threads_idle()) {
- qemu_cond_timedwait(tcg_halt_cond, &qemu_global_mutex, 1000);
+ /* Start accounting real time to the virtual clock if the CPUs
+ are idle. */
+ qemu_clock_warp(vm_clock);
+ qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
}
- qemu_mutex_unlock(&qemu_global_mutex);
-
- /*
- * Users of qemu_global_mutex can be starved, having no chance
- * to acquire it since this path will get to it first.
- * So use another lock to provide fairness.
- */
- qemu_mutex_lock(&qemu_fair_mutex);
- qemu_mutex_unlock(&qemu_fair_mutex);
-
- qemu_mutex_lock(&qemu_global_mutex);
+ while (iothread_requesting_mutex) {
+ qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
+ }
for (env = first_cpu; env != NULL; env = env->next_cpu) {
qemu_wait_io_event_common(env);
static void qemu_kvm_wait_io_event(CPUState *env)
{
while (cpu_thread_is_idle(env)) {
- qemu_cond_timedwait(env->halt_cond, &qemu_global_mutex, 1000);
+ qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
}
qemu_kvm_eat_signals(env);
qemu_wait_io_event_common(env);
}
-static int qemu_cpu_exec(CPUState *env);
-
static void *qemu_kvm_cpu_thread_fn(void *arg)
{
CPUState *env = arg;
int r;
qemu_mutex_lock(&qemu_global_mutex);
- qemu_thread_self(env->thread);
+ qemu_thread_get_self(env->thread);
+ env->thread_id = qemu_get_thread_id();
r = kvm_init_vcpu(env);
if (r < 0) {
env->created = 1;
qemu_cond_signal(&qemu_cpu_cond);
- /* and wait for machine initialization */
- while (!qemu_system_ready) {
- qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
- }
-
while (1) {
if (cpu_can_run(env)) {
- r = qemu_cpu_exec(env);
+ r = kvm_cpu_exec(env);
if (r == EXCP_DEBUG) {
- cpu_handle_debug_exception(env);
+ cpu_handle_guest_debug(env);
}
}
qemu_kvm_wait_io_event(env);
CPUState *env = arg;
qemu_tcg_init_cpu_signals();
- qemu_thread_self(env->thread);
+ qemu_thread_get_self(env->thread);
/* signal CPU creation */
qemu_mutex_lock(&qemu_global_mutex);
for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ env->thread_id = qemu_get_thread_id();
env->created = 1;
}
qemu_cond_signal(&qemu_cpu_cond);
- /* and wait for machine initialization */
- while (!qemu_system_ready) {
- qemu_cond_timedwait(&qemu_system_cond, &qemu_global_mutex, 100);
+ /* wait for initial kick-off after machine start */
+ while (first_cpu->stopped) {
+ qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
}
while (1) {
cpu_exec_all();
+ if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
+ qemu_notify_event();
+ }
qemu_tcg_wait_io_event();
}
return NULL;
}
+static void qemu_cpu_kick_thread(CPUState *env)
+{
+#ifndef _WIN32
+ int err;
+
+ err = pthread_kill(env->thread->thread, SIG_IPI);
+ if (err) {
+ fprintf(stderr, "qemu:%s: %s", __func__, strerror(err));
+ exit(1);
+ }
+#else /* _WIN32 */
+ if (!qemu_cpu_is_self(env)) {
+ SuspendThread(env->thread->thread);
+ cpu_signal(0);
+ ResumeThread(env->thread->thread);
+ }
+#endif
+}
+
void qemu_cpu_kick(void *_env)
{
CPUState *env = _env;
qemu_cond_broadcast(env->halt_cond);
- if (!env->thread_kicked) {
- qemu_thread_signal(env->thread, SIG_IPI);
+ if (kvm_enabled() && !env->thread_kicked) {
+ qemu_cpu_kick_thread(env);
env->thread_kicked = true;
}
}
void qemu_cpu_kick_self(void)
{
+#ifndef _WIN32
assert(cpu_single_env);
if (!cpu_single_env->thread_kicked) {
- qemu_thread_signal(cpu_single_env->thread, SIG_IPI);
+ qemu_cpu_kick_thread(cpu_single_env);
cpu_single_env->thread_kicked = true;
}
+#else
+ abort();
+#endif
}
-int qemu_cpu_self(void *_env)
+int qemu_cpu_is_self(void *_env)
{
CPUState *env = _env;
- QemuThread this;
-
- qemu_thread_self(&this);
- return qemu_thread_equal(&this, env->thread);
+ return qemu_thread_is_self(env->thread);
}
void qemu_mutex_lock_iothread(void)
if (kvm_enabled()) {
qemu_mutex_lock(&qemu_global_mutex);
} else {
- qemu_mutex_lock(&qemu_fair_mutex);
+ iothread_requesting_mutex = true;
if (qemu_mutex_trylock(&qemu_global_mutex)) {
- qemu_thread_signal(tcg_cpu_thread, SIG_IPI);
+ qemu_cpu_kick_thread(first_cpu);
qemu_mutex_lock(&qemu_global_mutex);
}
- qemu_mutex_unlock(&qemu_fair_mutex);
+ iothread_requesting_mutex = false;
+ qemu_cond_broadcast(&qemu_io_proceeded_cond);
}
}
{
CPUState *penv = first_cpu;
+ qemu_clock_enable(vm_clock, false);
while (penv) {
penv->stop = 1;
qemu_cpu_kick(penv);
}
while (!all_vcpus_paused()) {
- qemu_cond_timedwait(&qemu_pause_cond, &qemu_global_mutex, 100);
+ qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
penv = first_cpu;
while (penv) {
qemu_cpu_kick(penv);
/* share a single thread for all cpus with TCG */
if (!tcg_cpu_thread) {
- env->thread = qemu_mallocz(sizeof(QemuThread));
- env->halt_cond = qemu_mallocz(sizeof(QemuCond));
+ env->thread = g_malloc0(sizeof(QemuThread));
+ env->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
+ tcg_halt_cond = env->halt_cond;
qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
while (env->created == 0) {
- qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
tcg_cpu_thread = env->thread;
- tcg_halt_cond = env->halt_cond;
} else {
env->thread = tcg_cpu_thread;
env->halt_cond = tcg_halt_cond;
static void qemu_kvm_start_vcpu(CPUState *env)
{
- env->thread = qemu_mallocz(sizeof(QemuThread));
- env->halt_cond = qemu_mallocz(sizeof(QemuCond));
+ env->thread = g_malloc0(sizeof(QemuThread));
+ env->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
while (env->created == 0) {
- qemu_cond_timedwait(&qemu_cpu_cond, &qemu_global_mutex, 100);
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
}
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
+ env->stopped = 1;
if (kvm_enabled()) {
qemu_kvm_start_vcpu(env);
} else {
}
}
-void qemu_notify_event(void)
-{
- qemu_event_increment();
-}
-
void cpu_stop_current(void)
{
if (cpu_single_env) {
+ cpu_single_env->stop = 0;
cpu_single_env->stopped = 1;
cpu_exit(cpu_single_env);
+ qemu_cond_signal(&qemu_pause_cond);
}
}
-void vm_stop(int reason)
+void vm_stop(RunState state)
{
- QemuThread me;
- qemu_thread_self(&me);
-
- if (!qemu_thread_equal(&me, &io_thread)) {
- qemu_system_vmstop_request(reason);
+ if (!qemu_thread_is_self(&io_thread)) {
+ qemu_system_vmstop_request(state);
/*
* FIXME: should not return to device code in case
* vm_stop() has been requested.
cpu_stop_current();
return;
}
- do_vm_stop(reason);
+ do_vm_stop(state);
}
-#endif
+/* does a state transition even if the VM is already stopped,
+ current state is forgotten forever */
+void vm_stop_force_state(RunState state)
+{
+ if (runstate_is_running()) {
+ vm_stop(state);
+ } else {
+ runstate_set(state);
+ }
+}
-static int qemu_cpu_exec(CPUState *env)
+static int tcg_cpu_exec(CPUState *env)
{
int ret;
#ifdef CONFIG_PROFILER
qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
env->icount_decr.u16.low = 0;
env->icount_extra = 0;
- count = qemu_icount_round (qemu_next_deadline());
+ count = qemu_icount_round(qemu_clock_deadline(vm_clock));
qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
{
int r;
+ /* Account partial waits to the vm_clock. */
+ qemu_clock_warp(vm_clock);
+
if (next_cpu == NULL) {
next_cpu = first_cpu;
}
qemu_clock_enable(vm_clock,
(env->singlestep_enabled & SSTEP_NOTIMER) == 0);
- if (qemu_alarm_pending()) {
- break;
- }
if (cpu_can_run(env)) {
- r = qemu_cpu_exec(env);
if (kvm_enabled()) {
+ r = kvm_cpu_exec(env);
qemu_kvm_eat_signals(env);
+ } else {
+ r = tcg_cpu_exec(env);
}
if (r == EXCP_DEBUG) {
- cpu_handle_debug_exception(env);
+ cpu_handle_guest_debug(env);
break;
}
- } else if (env->stop) {
+ } else if (env->stop || env->stopped) {
break;
}
}
cpu_set_log(mask);
}
-/* Return the virtual CPU time, based on the instruction counter. */
-int64_t cpu_get_icount(void)
+void set_cpu_log_filename(const char *optarg)
{
- int64_t icount;
- CPUState *env = cpu_single_env;;
-
- icount = qemu_icount;
- if (env) {
- if (!can_do_io(env)) {
- fprintf(stderr, "Bad clock read\n");
- }
- icount -= (env->icount_decr.u16.low + env->icount_extra);
- }
- return qemu_icount_bias + (icount << icount_time_shift);
+ cpu_set_log_filename(optarg);
}
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
cpu_list(f, cpu_fprintf); /* deprecated */
#endif
}
+
+CpuInfoList *qmp_query_cpus(Error **errp)
+{
+ CpuInfoList *head = NULL, *cur_item = NULL;
+ CPUState *env;
+
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ CpuInfoList *info;
+
+ cpu_synchronize_state(env);
+
+ info = g_malloc0(sizeof(*info));
+ info->value = g_malloc0(sizeof(*info->value));
+ info->value->CPU = env->cpu_index;
+ info->value->current = (env == first_cpu);
+ info->value->halted = env->halted;
+ info->value->thread_id = env->thread_id;
+#if defined(TARGET_I386)
+ info->value->has_pc = true;
+ info->value->pc = env->eip + env->segs[R_CS].base;
+#elif defined(TARGET_PPC)
+ info->value->has_nip = true;
+ info->value->nip = env->nip;
+#elif defined(TARGET_SPARC)
+ info->value->has_pc = true;
+ info->value->pc = env->pc;
+ info->value->has_npc = true;
+ info->value->npc = env->npc;
+#elif defined(TARGET_MIPS)
+ info->value->has_PC = true;
+ info->value->PC = env->active_tc.PC;
+#endif
+
+ /* XXX: waiting for the qapi to support GSList */
+ if (!cur_item) {
+ head = cur_item = info;
+ } else {
+ cur_item->next = info;
+ cur_item = info;
+ }
+ }
+
+ return head;
+}