* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "config.h"
-#define CPU_NO_GLOBAL_REGS
#include "exec.h"
#include "disas.h"
#include "tcg.h"
+#include "kvm.h"
#if !defined(CONFIG_SOFTMMU)
#undef EAX
#undef EDI
#undef EIP
#include <signal.h>
+#ifdef __linux__
#include <sys/ucontext.h>
#endif
+#endif
-int tb_invalidated_flag;
-static unsigned long next_tb;
-
-//#define DEBUG_EXEC
-//#define DEBUG_SIGNAL
-
-#define SAVE_GLOBALS()
-#define RESTORE_GLOBALS()
-
-#if defined(__sparc__) && !defined(HOST_SOLARIS)
-#include <features.h>
-#if defined(__GLIBC__) && ((__GLIBC__ < 2) || \
- ((__GLIBC__ == 2) && (__GLIBC_MINOR__ <= 90)))
+#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
// Work around ugly bugs in glibc that mangle global register contents
+#undef env
+#define env cpu_single_env
+#endif
-static volatile void *saved_env;
-static volatile unsigned long saved_t0, saved_i7;
-#undef SAVE_GLOBALS
-#define SAVE_GLOBALS() do { \
- saved_env = env; \
- saved_t0 = T0; \
- asm volatile ("st %%i7, [%0]" : : "r" (&saved_i7)); \
- } while(0)
-
-#undef RESTORE_GLOBALS
-#define RESTORE_GLOBALS() do { \
- env = (void *)saved_env; \
- T0 = saved_t0; \
- asm volatile ("ld [%0], %%i7" : : "r" (&saved_i7)); \
- } while(0)
-
-static int sparc_setjmp(jmp_buf buf)
-{
- int ret;
+int tb_invalidated_flag;
- SAVE_GLOBALS();
- ret = setjmp(buf);
- RESTORE_GLOBALS();
- return ret;
-}
-#undef setjmp
-#define setjmp(jmp_buf) sparc_setjmp(jmp_buf)
+//#define CONFIG_DEBUG_EXEC
+//#define DEBUG_SIGNAL
-static void sparc_longjmp(jmp_buf buf, int val)
+int qemu_cpu_has_work(CPUState *env)
{
- SAVE_GLOBALS();
- longjmp(buf, val);
+ return cpu_has_work(env);
}
-#define longjmp(jmp_buf, val) sparc_longjmp(jmp_buf, val)
-#endif
-#endif
void cpu_loop_exit(void)
{
longjmp(env->jmp_env, 1);
}
-#if !(defined(TARGET_SPARC) || defined(TARGET_SH4) || defined(TARGET_M68K))
-#define reg_T2
-#endif
-
/* exit the current TB from a signal handler. The host registers are
restored in a state compatible with the CPU emulator
*/
void cpu_resume_from_signal(CPUState *env1, void *puc)
{
#if !defined(CONFIG_SOFTMMU)
+#ifdef __linux__
struct ucontext *uc = puc;
+#elif defined(__OpenBSD__)
+ struct sigcontext *uc = puc;
+#endif
#endif
env = env1;
#if !defined(CONFIG_SOFTMMU)
if (puc) {
/* XXX: use siglongjmp ? */
+#ifdef __linux__
sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL);
+#elif defined(__OpenBSD__)
+ sigprocmask(SIG_SETMASK, &uc->sc_mask, NULL);
+#endif
}
#endif
+ env->exception_index = -1;
longjmp(env->jmp_env, 1);
}
+/* Execute the code without caching the generated code. An interpreter
+ could be used if available. */
+static void cpu_exec_nocache(int max_cycles, TranslationBlock *orig_tb)
+{
+ unsigned long next_tb;
+ TranslationBlock *tb;
+
+ /* Should never happen.
+ We only end up here when an existing TB is too long. */
+ if (max_cycles > CF_COUNT_MASK)
+ max_cycles = CF_COUNT_MASK;
+
+ tb = tb_gen_code(env, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
+ max_cycles);
+ env->current_tb = tb;
+ /* execute the generated code */
+ next_tb = tcg_qemu_tb_exec(tb->tc_ptr);
+
+ if ((next_tb & 3) == 2) {
+ /* Restore PC. This may happen if async event occurs before
+ the TB starts executing. */
+ cpu_pc_from_tb(env, tb);
+ }
+ tb_phys_invalidate(tb, -1);
+ tb_free(tb);
+}
+
static TranslationBlock *tb_find_slow(target_ulong pc,
target_ulong cs_base,
uint64_t flags)
{
TranslationBlock *tb, **ptb1;
- int code_gen_size;
unsigned int h;
target_ulong phys_pc, phys_page1, phys_page2, virt_page2;
- uint8_t *tc_ptr;
-
- spin_lock(&tb_lock);
tb_invalidated_flag = 0;
ptb1 = &tb->phys_hash_next;
}
not_found:
- /* if no translated code available, then translate it now */
- tb = tb_alloc(pc);
- if (!tb) {
- /* flush must be done */
- tb_flush(env);
- /* cannot fail at this point */
- tb = tb_alloc(pc);
- /* don't forget to invalidate previous TB info */
- tb_invalidated_flag = 1;
- }
- tc_ptr = code_gen_ptr;
- tb->tc_ptr = tc_ptr;
- tb->cs_base = cs_base;
- tb->flags = flags;
- SAVE_GLOBALS();
- cpu_gen_code(env, tb, &code_gen_size);
- RESTORE_GLOBALS();
- code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
-
- /* check next page if needed */
- virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
- phys_page2 = -1;
- if ((pc & TARGET_PAGE_MASK) != virt_page2) {
- phys_page2 = get_phys_addr_code(env, virt_page2);
- }
- tb_link_phys(tb, phys_pc, phys_page2);
+ /* if no translated code available, then translate it now */
+ tb = tb_gen_code(env, pc, cs_base, flags, 0);
found:
/* we add the TB in the virtual pc hash table */
env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)] = tb;
- spin_unlock(&tb_lock);
return tb;
}
{
TranslationBlock *tb;
target_ulong cs_base, pc;
- uint64_t flags;
+ int flags;
/* we record a subset of the CPU state. It will
always be the same before a given translated block
is executed. */
-#if defined(TARGET_I386)
- flags = env->hflags;
- flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
- flags |= env->intercept;
- cs_base = env->segs[R_CS].base;
- pc = cs_base + env->eip;
-#elif defined(TARGET_ARM)
- flags = env->thumb | (env->vfp.vec_len << 1)
- | (env->vfp.vec_stride << 4);
- if ((env->uncached_cpsr & CPSR_M) != ARM_CPU_MODE_USR)
- flags |= (1 << 6);
- if (env->vfp.xregs[ARM_VFP_FPEXC] & (1 << 30))
- flags |= (1 << 7);
- flags |= (env->condexec_bits << 8);
- cs_base = 0;
- pc = env->regs[15];
-#elif defined(TARGET_SPARC)
-#ifdef TARGET_SPARC64
- // Combined FPU enable bits . PRIV . DMMU enabled . IMMU enabled
- flags = (((env->pstate & PS_PEF) >> 1) | ((env->fprs & FPRS_FEF) << 2))
- | (env->pstate & PS_PRIV) | ((env->lsu & (DMMU_E | IMMU_E)) >> 2);
-#else
- // FPU enable . Supervisor
- flags = (env->psref << 4) | env->psrs;
-#endif
- cs_base = env->npc;
- pc = env->pc;
-#elif defined(TARGET_PPC)
- flags = env->hflags;
- cs_base = 0;
- pc = env->nip;
-#elif defined(TARGET_MIPS)
- flags = env->hflags & (MIPS_HFLAG_TMASK | MIPS_HFLAG_BMASK);
- cs_base = 0;
- pc = env->PC[env->current_tc];
-#elif defined(TARGET_M68K)
- flags = (env->fpcr & M68K_FPCR_PREC) /* Bit 6 */
- | (env->sr & SR_S) /* Bit 13 */
- | ((env->macsr >> 4) & 0xf); /* Bits 0-3 */
- cs_base = 0;
- pc = env->pc;
-#elif defined(TARGET_SH4)
- flags = env->flags;
- cs_base = 0;
- pc = env->pc;
-#elif defined(TARGET_ALPHA)
- flags = env->ps;
- cs_base = 0;
- pc = env->pc;
-#elif defined(TARGET_CRIS)
- flags = env->pregs[PR_CCS] & U_FLAG;
- cs_base = 0;
- pc = env->pc;
-#else
-#error unsupported CPU
-#endif
+ cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
tb = env->tb_jmp_cache[tb_jmp_cache_hash_func(pc)];
- if (__builtin_expect(!tb || tb->pc != pc || tb->cs_base != cs_base ||
- tb->flags != flags, 0)) {
+ if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
+ tb->flags != flags)) {
tb = tb_find_slow(pc, cs_base, flags);
- /* Note: we do it here to avoid a gcc bug on Mac OS X when
- doing it in tb_find_slow */
- if (tb_invalidated_flag) {
- /* as some TB could have been invalidated because
- of memory exceptions while generating the code, we
- must recompute the hash index here */
- next_tb = 0;
- }
}
return tb;
}
+static CPUDebugExcpHandler *debug_excp_handler;
+
+CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler)
+{
+ CPUDebugExcpHandler *old_handler = debug_excp_handler;
+
+ debug_excp_handler = handler;
+ return old_handler;
+}
+
+static void cpu_handle_debug_exception(CPUState *env)
+{
+ CPUWatchpoint *wp;
+
+ if (!env->watchpoint_hit)
+ QTAILQ_FOREACH(wp, &env->watchpoints, entry)
+ wp->flags &= ~BP_WATCHPOINT_HIT;
+
+ if (debug_excp_handler)
+ debug_excp_handler(env);
+}
+
/* main execution loop */
int cpu_exec(CPUState *env1)
{
#define DECLARE_HOST_REGS 1
#include "hostregs_helper.h"
-#if defined(TARGET_SPARC)
-#if defined(reg_REGWPTR)
- uint32_t *saved_regwptr;
-#endif
-#endif
int ret, interrupt_request;
TranslationBlock *tb;
uint8_t *tc_ptr;
+ unsigned long next_tb;
if (cpu_halted(env1) == EXCP_HALTED)
return EXCP_HALTED;
#define SAVE_HOST_REGS 1
#include "hostregs_helper.h"
env = env1;
- SAVE_GLOBALS();
env_to_regs();
#if defined(TARGET_I386)
CC_OP = CC_OP_EFLAGS;
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_SPARC)
-#if defined(reg_REGWPTR)
- saved_regwptr = REGWPTR;
-#endif
#elif defined(TARGET_M68K)
env->cc_op = CC_OP_FLAGS;
env->cc_dest = env->sr & 0xf;
#elif defined(TARGET_ALPHA)
#elif defined(TARGET_ARM)
#elif defined(TARGET_PPC)
+#elif defined(TARGET_MICROBLAZE)
#elif defined(TARGET_MIPS)
#elif defined(TARGET_SH4)
#elif defined(TARGET_CRIS)
+#elif defined(TARGET_S390X)
/* XXXXX */
#else
#error unsupported target CPU
/* prepare setjmp context for exception handling */
for(;;) {
if (setjmp(env->jmp_env) == 0) {
+#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
+#undef env
+ env = cpu_single_env;
+#define env cpu_single_env
+#endif
env->current_tb = NULL;
/* if an exception is pending, we execute it here */
if (env->exception_index >= 0) {
if (env->exception_index >= EXCP_INTERRUPT) {
/* exit request from the cpu execution loop */
ret = env->exception_index;
+ if (ret == EXCP_DEBUG)
+ cpu_handle_debug_exception(env);
break;
- } else if (env->user_mode_only) {
+ } else {
+#if defined(CONFIG_USER_ONLY)
/* if user mode only, we simulate a fake exception
which will be handled outside the cpu execution
loop */
env->exception_is_int,
env->error_code,
env->exception_next_eip);
+ /* successfully delivered */
+ env->old_exception = -1;
#endif
ret = env->exception_index;
break;
- } else {
+#else
#if defined(TARGET_I386)
/* simulate a real cpu exception. On i386, it can
trigger new exceptions, but we do not handle
env->old_exception = -1;
#elif defined(TARGET_PPC)
do_interrupt(env);
+#elif defined(TARGET_MICROBLAZE)
+ do_interrupt(env);
#elif defined(TARGET_MIPS)
do_interrupt(env);
#elif defined(TARGET_SPARC)
- do_interrupt(env->exception_index);
+ do_interrupt(env);
#elif defined(TARGET_ARM)
do_interrupt(env);
#elif defined(TARGET_SH4)
do_interrupt(env);
#elif defined(TARGET_M68K)
do_interrupt(0);
+#endif
#endif
}
env->exception_index = -1;
}
-#ifdef USE_KQEMU
- if (kqemu_is_ok(env) && env->interrupt_request == 0) {
- int ret;
- env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
- ret = kqemu_cpu_exec(env);
- /* put eflags in CPU temporary format */
- CC_SRC = env->eflags & (CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
- DF = 1 - (2 * ((env->eflags >> 10) & 1));
- CC_OP = CC_OP_EFLAGS;
- env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
- if (ret == 1) {
- /* exception */
- longjmp(env->jmp_env, 1);
- } else if (ret == 2) {
- /* softmmu execution needed */
- } else {
- if (env->interrupt_request != 0) {
- /* hardware interrupt will be executed just after */
- } else {
- /* otherwise, we restart */
- longjmp(env->jmp_env, 1);
- }
- }
+
+ if (kvm_enabled()) {
+ kvm_cpu_exec(env);
+ longjmp(env->jmp_env, 1);
}
-#endif
next_tb = 0; /* force lookup of first TB */
for(;;) {
- SAVE_GLOBALS();
interrupt_request = env->interrupt_request;
- if (__builtin_expect(interrupt_request, 0)
-#if defined(TARGET_I386)
- && env->hflags & HF_GIF_MASK
-#endif
- && !(env->singlestep_enabled & SSTEP_NOIRQ)) {
+ if (unlikely(interrupt_request)) {
+ if (unlikely(env->singlestep_enabled & SSTEP_NOIRQ)) {
+ /* Mask out external interrupts for this step. */
+ interrupt_request &= ~(CPU_INTERRUPT_HARD |
+ CPU_INTERRUPT_FIQ |
+ CPU_INTERRUPT_SMI |
+ CPU_INTERRUPT_NMI);
+ }
if (interrupt_request & CPU_INTERRUPT_DEBUG) {
env->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
#if defined(TARGET_ARM) || defined(TARGET_SPARC) || defined(TARGET_MIPS) || \
- defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS)
+ defined(TARGET_PPC) || defined(TARGET_ALPHA) || defined(TARGET_CRIS) || \
+ defined(TARGET_MICROBLAZE)
if (interrupt_request & CPU_INTERRUPT_HALT) {
env->interrupt_request &= ~CPU_INTERRUPT_HALT;
env->halted = 1;
}
#endif
#if defined(TARGET_I386)
- if ((interrupt_request & CPU_INTERRUPT_SMI) &&
- !(env->hflags & HF_SMM_MASK)) {
- svm_check_intercept(SVM_EXIT_SMI);
- env->interrupt_request &= ~CPU_INTERRUPT_SMI;
- do_smm_enter();
- next_tb = 0;
- } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
- !(env->hflags & HF_NMI_MASK)) {
- env->interrupt_request &= ~CPU_INTERRUPT_NMI;
- env->hflags |= HF_NMI_MASK;
- do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
- next_tb = 0;
- } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
- (env->eflags & IF_MASK || env->hflags & HF_HIF_MASK) &&
- !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
- int intno;
- svm_check_intercept(SVM_EXIT_INTR);
- env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
- intno = cpu_get_pic_interrupt(env);
- if (loglevel & CPU_LOG_TB_IN_ASM) {
- fprintf(logfile, "Servicing hardware INT=0x%02x\n", intno);
- }
- do_interrupt(intno, 0, 0, 0, 1);
- /* ensure that no TB jump will be modified as
- the program flow was changed */
- next_tb = 0;
+ if (interrupt_request & CPU_INTERRUPT_INIT) {
+ svm_check_intercept(SVM_EXIT_INIT);
+ do_cpu_init(env);
+ env->exception_index = EXCP_HALTED;
+ cpu_loop_exit();
+ } else if (interrupt_request & CPU_INTERRUPT_SIPI) {
+ do_cpu_sipi(env);
+ } else if (env->hflags2 & HF2_GIF_MASK) {
+ if ((interrupt_request & CPU_INTERRUPT_SMI) &&
+ !(env->hflags & HF_SMM_MASK)) {
+ svm_check_intercept(SVM_EXIT_SMI);
+ env->interrupt_request &= ~CPU_INTERRUPT_SMI;
+ do_smm_enter();
+ next_tb = 0;
+ } else if ((interrupt_request & CPU_INTERRUPT_NMI) &&
+ !(env->hflags2 & HF2_NMI_MASK)) {
+ env->interrupt_request &= ~CPU_INTERRUPT_NMI;
+ env->hflags2 |= HF2_NMI_MASK;
+ do_interrupt(EXCP02_NMI, 0, 0, 0, 1);
+ next_tb = 0;
+ } else if (interrupt_request & CPU_INTERRUPT_MCE) {
+ env->interrupt_request &= ~CPU_INTERRUPT_MCE;
+ do_interrupt(EXCP12_MCHK, 0, 0, 0, 0);
+ next_tb = 0;
+ } else if ((interrupt_request & CPU_INTERRUPT_HARD) &&
+ (((env->hflags2 & HF2_VINTR_MASK) &&
+ (env->hflags2 & HF2_HIF_MASK)) ||
+ (!(env->hflags2 & HF2_VINTR_MASK) &&
+ (env->eflags & IF_MASK &&
+ !(env->hflags & HF_INHIBIT_IRQ_MASK))))) {
+ int intno;
+ svm_check_intercept(SVM_EXIT_INTR);
+ env->interrupt_request &= ~(CPU_INTERRUPT_HARD | CPU_INTERRUPT_VIRQ);
+ intno = cpu_get_pic_interrupt(env);
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing hardware INT=0x%02x\n", intno);
+#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
+#undef env
+ env = cpu_single_env;
+#define env cpu_single_env
+#endif
+ do_interrupt(intno, 0, 0, 0, 1);
+ /* ensure that no TB jump will be modified as
+ the program flow was changed */
+ next_tb = 0;
#if !defined(CONFIG_USER_ONLY)
- } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
- (env->eflags & IF_MASK) && !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
- int intno;
- /* FIXME: this should respect TPR */
- env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
- svm_check_intercept(SVM_EXIT_VINTR);
- intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
- if (loglevel & CPU_LOG_TB_IN_ASM)
- fprintf(logfile, "Servicing virtual hardware INT=0x%02x\n", intno);
- do_interrupt(intno, 0, 0, -1, 1);
- stl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl),
- ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)) & ~V_IRQ_MASK);
- next_tb = 0;
+ } else if ((interrupt_request & CPU_INTERRUPT_VIRQ) &&
+ (env->eflags & IF_MASK) &&
+ !(env->hflags & HF_INHIBIT_IRQ_MASK)) {
+ int intno;
+ /* FIXME: this should respect TPR */
+ svm_check_intercept(SVM_EXIT_VINTR);
+ intno = ldl_phys(env->vm_vmcb + offsetof(struct vmcb, control.int_vector));
+ qemu_log_mask(CPU_LOG_TB_IN_ASM, "Servicing virtual hardware INT=0x%02x\n", intno);
+ do_interrupt(intno, 0, 0, 0, 1);
+ env->interrupt_request &= ~CPU_INTERRUPT_VIRQ;
+ next_tb = 0;
#endif
+ }
}
#elif defined(TARGET_PPC)
#if 0
if ((interrupt_request & CPU_INTERRUPT_RESET)) {
- cpu_ppc_reset(env);
+ cpu_reset(env);
}
#endif
if (interrupt_request & CPU_INTERRUPT_HARD) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
next_tb = 0;
}
+#elif defined(TARGET_MICROBLAZE)
+ if ((interrupt_request & CPU_INTERRUPT_HARD)
+ && (env->sregs[SR_MSR] & MSR_IE)
+ && !(env->sregs[SR_MSR] & (MSR_EIP | MSR_BIP))
+ && !(env->iflags & (D_FLAG | IMM_FLAG))) {
+ env->exception_index = EXCP_IRQ;
+ do_interrupt(env);
+ next_tb = 0;
+ }
#elif defined(TARGET_MIPS)
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
(env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask) &&
}
#elif defined(TARGET_SPARC)
if ((interrupt_request & CPU_INTERRUPT_HARD) &&
- (env->psret != 0)) {
+ cpu_interrupts_enabled(env)) {
int pil = env->interrupt_index & 15;
int type = env->interrupt_index & 0xf0;
(pil == 15 || pil > env->psrpil)) ||
type != TT_EXTINT) {
env->interrupt_request &= ~CPU_INTERRUPT_HARD;
- do_interrupt(env->interrupt_index);
+ env->exception_index = env->interrupt_index;
+ do_interrupt(env);
env->interrupt_index = 0;
-#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY)
- cpu_check_irqs(env);
-#endif
next_tb = 0;
}
} else if (interrupt_request & CPU_INTERRUPT_TIMER) {
next_tb = 0;
}
#elif defined(TARGET_CRIS)
- if (interrupt_request & CPU_INTERRUPT_HARD) {
+ if (interrupt_request & CPU_INTERRUPT_HARD
+ && (env->pregs[PR_CCS] & I_FLAG)) {
+ env->exception_index = EXCP_IRQ;
+ do_interrupt(env);
+ next_tb = 0;
+ }
+ if (interrupt_request & CPU_INTERRUPT_NMI
+ && (env->pregs[PR_CCS] & M_FLAG)) {
+ env->exception_index = EXCP_NMI;
do_interrupt(env);
next_tb = 0;
}
the program flow was changed */
next_tb = 0;
}
- if (interrupt_request & CPU_INTERRUPT_EXIT) {
- env->interrupt_request &= ~CPU_INTERRUPT_EXIT;
- env->exception_index = EXCP_INTERRUPT;
- cpu_loop_exit();
- }
}
-#ifdef DEBUG_EXEC
- if ((loglevel & CPU_LOG_TB_CPU)) {
+ if (unlikely(env->exit_request)) {
+ env->exit_request = 0;
+ env->exception_index = EXCP_INTERRUPT;
+ cpu_loop_exit();
+ }
+#ifdef CONFIG_DEBUG_EXEC
+ if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
/* restore flags in standard format */
regs_to_env();
#if defined(TARGET_I386)
- env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
- cpu_dump_state(env, logfile, fprintf, X86_DUMP_CCOP);
+ env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
+ log_cpu_state(env, X86_DUMP_CCOP);
env->eflags &= ~(DF_MASK | CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C);
#elif defined(TARGET_ARM)
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#elif defined(TARGET_SPARC)
- REGWPTR = env->regbase + (env->cwp * 16);
- env->regwptr = REGWPTR;
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#elif defined(TARGET_PPC)
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#elif defined(TARGET_M68K)
cpu_m68k_flush_flags(env, env->cc_op);
env->cc_op = CC_OP_FLAGS;
env->sr = (env->sr & 0xffe0)
| env->cc_dest | (env->cc_x << 4);
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
+#elif defined(TARGET_MICROBLAZE)
+ log_cpu_state(env, 0);
#elif defined(TARGET_MIPS)
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#elif defined(TARGET_SH4)
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#elif defined(TARGET_ALPHA)
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#elif defined(TARGET_CRIS)
- cpu_dump_state(env, logfile, fprintf, 0);
+ log_cpu_state(env, 0);
#else
#error unsupported target CPU
#endif
}
#endif
+ spin_lock(&tb_lock);
tb = tb_find_fast();
-#ifdef DEBUG_EXEC
- if ((loglevel & CPU_LOG_EXEC)) {
- fprintf(logfile, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
- (long)tb->tc_ptr, tb->pc,
- lookup_symbol(tb->pc));
+ /* Note: we do it here to avoid a gcc bug on Mac OS X when
+ doing it in tb_find_slow */
+ if (tb_invalidated_flag) {
+ /* as some TB could have been invalidated because
+ of memory exceptions while generating the code, we
+ must recompute the hash index here */
+ next_tb = 0;
+ tb_invalidated_flag = 0;
}
+#ifdef CONFIG_DEBUG_EXEC
+ qemu_log_mask(CPU_LOG_EXEC, "Trace 0x%08lx [" TARGET_FMT_lx "] %s\n",
+ (long)tb->tc_ptr, tb->pc,
+ lookup_symbol(tb->pc));
#endif
- RESTORE_GLOBALS();
/* see if we can patch the calling TB. When the TB
spans two pages, we cannot safely do a direct
jump. */
{
- if (next_tb != 0 &&
-#ifdef USE_KQEMU
- (env->kqemu_enabled != 2) &&
-#endif
- tb->page_addr[1] == -1) {
- spin_lock(&tb_lock);
+ if (next_tb != 0 && tb->page_addr[1] == -1) {
tb_add_jump((TranslationBlock *)(next_tb & ~3), next_tb & 3, tb);
- spin_unlock(&tb_lock);
}
}
- tc_ptr = tb->tc_ptr;
+ spin_unlock(&tb_lock);
env->current_tb = tb;
+
+ /* cpu_interrupt might be called while translating the
+ TB, but before it is linked into a potentially
+ infinite loop and becomes env->current_tb. Avoid
+ starting execution if there is a pending interrupt. */
+ if (unlikely (env->exit_request))
+ env->current_tb = NULL;
+
+ while (env->current_tb) {
+ tc_ptr = tb->tc_ptr;
/* execute the generated code */
- next_tb = tcg_qemu_tb_exec(tc_ptr);
- env->current_tb = NULL;
- /* reset soft MMU for next block (it can currently
- only be set by a memory fault) */
-#if defined(TARGET_I386) && !defined(CONFIG_SOFTMMU)
- if (env->hflags & HF_SOFTMMU_MASK) {
- env->hflags &= ~HF_SOFTMMU_MASK;
- /* do not allow linking to another block */
- next_tb = 0;
- }
+#if defined(__sparc__) && !defined(CONFIG_SOLARIS)
+#undef env
+ env = cpu_single_env;
+#define env cpu_single_env
#endif
-#if defined(USE_KQEMU)
-#define MIN_CYCLE_BEFORE_SWITCH (100 * 1000)
- if (kqemu_is_ok(env) &&
- (cpu_get_time_fast() - env->last_io_time) >= MIN_CYCLE_BEFORE_SWITCH) {
- cpu_loop_exit();
+ next_tb = tcg_qemu_tb_exec(tc_ptr);
+ env->current_tb = NULL;
+ if ((next_tb & 3) == 2) {
+ /* Instruction counter expired. */
+ int insns_left;
+ tb = (TranslationBlock *)(long)(next_tb & ~3);
+ /* Restore PC. */
+ cpu_pc_from_tb(env, tb);
+ insns_left = env->icount_decr.u32;
+ if (env->icount_extra && insns_left >= 0) {
+ /* Refill decrementer and continue execution. */
+ env->icount_extra += insns_left;
+ if (env->icount_extra > 0xffff) {
+ insns_left = 0xffff;
+ } else {
+ insns_left = env->icount_extra;
+ }
+ env->icount_extra -= insns_left;
+ env->icount_decr.u16.low = insns_left;
+ } else {
+ if (insns_left > 0) {
+ /* Execute remaining instructions. */
+ cpu_exec_nocache(insns_left, tb);
+ }
+ env->exception_index = EXCP_INTERRUPT;
+ next_tb = 0;
+ cpu_loop_exit();
+ }
+ }
}
-#endif
+ /* reset soft MMU for next block (it can currently
+ only be set by a memory fault) */
} /* for(;;) */
} else {
env_to_regs();
#if defined(TARGET_I386)
/* restore flags in standard format */
- env->eflags = env->eflags | cc_table[CC_OP].compute_all() | (DF & DF_MASK);
+ env->eflags = env->eflags | helper_cc_compute_all(CC_OP) | (DF & DF_MASK);
#elif defined(TARGET_ARM)
/* XXX: Save/restore host fpu exception state?. */
#elif defined(TARGET_SPARC)
-#if defined(reg_REGWPTR)
- REGWPTR = saved_regwptr;
-#endif
#elif defined(TARGET_PPC)
#elif defined(TARGET_M68K)
cpu_m68k_flush_flags(env, env->cc_op);
env->cc_op = CC_OP_FLAGS;
env->sr = (env->sr & 0xffe0)
| env->cc_dest | (env->cc_x << 4);
+#elif defined(TARGET_MICROBLAZE)
#elif defined(TARGET_MIPS)
#elif defined(TARGET_SH4)
#elif defined(TARGET_ALPHA)
#elif defined(TARGET_CRIS)
+#elif defined(TARGET_S390X)
/* XXXXX */
#else
#error unsupported target CPU
#endif
/* restore global registers */
- RESTORE_GLOBALS();
#include "hostregs_helper.h"
/* fail safe : never use cpu_single_env outside cpu_exec() */
cpu_x86_load_seg_cache(env, seg_reg, selector,
(selector << 4), 0xffff, 0);
} else {
- load_seg(seg_reg, selector);
+ helper_load_seg(seg_reg, selector);
}
env = saved_env;
}
#if !defined(CONFIG_SOFTMMU)
#if defined(TARGET_I386)
+#define EXCEPTION_ACTION raise_exception_err(env->exception_index, env->error_code)
+#else
+#define EXCEPTION_ACTION cpu_loop_exit()
+#endif
/* 'pc' is the host PC at which the exception was raised. 'address' is
the effective address of the memory exception. 'is_write' is 1 if a
}
/* see if it is an MMU fault */
- ret = cpu_x86_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
- if (ret == 1) {
-#if 0
- printf("PF exception: EIP=0x%08x CR2=0x%08x error=0x%x\n",
- env->eip, env->cr[2], env->error_code);
-#endif
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- raise_exception_err(env->exception_index, env->error_code);
- } else {
- /* activate soft MMU for this block */
- env->hflags |= HF_SOFTMMU_MASK;
- cpu_resume_from_signal(env, puc);
- }
- /* never comes here */
- return 1;
-}
-
-#elif defined(TARGET_ARM)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
-
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(h2g(address), pc, puc)) {
- return 1;
- }
- /* see if it is an MMU fault */
- ret = cpu_arm_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
- /* never comes here */
- return 1;
-}
-#elif defined(TARGET_SPARC)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
-
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(h2g(address), pc, puc)) {
- return 1;
- }
- /* see if it is an MMU fault */
- ret = cpu_sparc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
- /* never comes here */
- return 1;
-}
-#elif defined (TARGET_PPC)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
-
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(h2g(address), pc, puc)) {
- return 1;
- }
-
- /* see if it is an MMU fault */
- ret = cpu_ppc_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
+ ret = cpu_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
if (ret < 0)
return 0; /* not an MMU fault */
if (ret == 0)
return 1; /* the MMU fault was handled without causing real CPU fault */
-
/* now we have a real cpu fault */
tb = tb_find_pc(pc);
if (tb) {
a virtual CPU fault */
cpu_restore_state(tb, env, pc, puc);
}
- if (ret == 1) {
-#if 0
- printf("PF exception: NIP=0x%08x error=0x%x %p\n",
- env->nip, env->error_code, tb);
-#endif
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- do_raise_exception_err(env->exception_index, env->error_code);
- } else {
- /* activate soft MMU for this block */
- cpu_resume_from_signal(env, puc);
- }
- /* never comes here */
- return 1;
-}
-
-#elif defined(TARGET_M68K)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(address, pc, puc)) {
- return 1;
- }
- /* see if it is an MMU fault */
- ret = cpu_m68k_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
/* we restore the process signal mask as the sigreturn should
do it (XXX: use sigsetjmp) */
sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
- /* never comes here */
- return 1;
-}
+ EXCEPTION_ACTION;
-#elif defined (TARGET_MIPS)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
-
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(h2g(address), pc, puc)) {
- return 1;
- }
-
- /* see if it is an MMU fault */
- ret = cpu_mips_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
-
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
- if (ret == 1) {
-#if 0
- printf("PF exception: PC=0x" TARGET_FMT_lx " error=0x%x %p\n",
- env->PC, env->error_code, tb);
-#endif
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- do_raise_exception_err(env->exception_index, env->error_code);
- } else {
- /* activate soft MMU for this block */
- cpu_resume_from_signal(env, puc);
- }
/* never comes here */
return 1;
}
-#elif defined (TARGET_SH4)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
-
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(h2g(address), pc, puc)) {
- return 1;
- }
-
- /* see if it is an MMU fault */
- ret = cpu_sh4_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
-
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
-#if 0
- printf("PF exception: NIP=0x%08x error=0x%x %p\n",
- env->nip, env->error_code, tb);
-#endif
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
- /* never comes here */
- return 1;
-}
-
-#elif defined (TARGET_ALPHA)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
-
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(h2g(address), pc, puc)) {
- return 1;
- }
-
- /* see if it is an MMU fault */
- ret = cpu_alpha_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
-
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
-#if 0
- printf("PF exception: NIP=0x%08x error=0x%x %p\n",
- env->nip, env->error_code, tb);
-#endif
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
- /* never comes here */
- return 1;
-}
-#elif defined (TARGET_CRIS)
-static inline int handle_cpu_signal(unsigned long pc, unsigned long address,
- int is_write, sigset_t *old_set,
- void *puc)
-{
- TranslationBlock *tb;
- int ret;
-
- if (cpu_single_env)
- env = cpu_single_env; /* XXX: find a correct solution for multithread */
-#if defined(DEBUG_SIGNAL)
- printf("qemu: SIGSEGV pc=0x%08lx address=%08lx w=%d oldset=0x%08lx\n",
- pc, address, is_write, *(unsigned long *)old_set);
-#endif
- /* XXX: locking issue */
- if (is_write && page_unprotect(h2g(address), pc, puc)) {
- return 1;
- }
-
- /* see if it is an MMU fault */
- ret = cpu_cris_handle_mmu_fault(env, address, is_write, MMU_USER_IDX, 0);
- if (ret < 0)
- return 0; /* not an MMU fault */
- if (ret == 0)
- return 1; /* the MMU fault was handled without causing real CPU fault */
-
- /* now we have a real cpu fault */
- tb = tb_find_pc(pc);
- if (tb) {
- /* the PC is inside the translated code. It means that we have
- a virtual CPU fault */
- cpu_restore_state(tb, env, pc, puc);
- }
- /* we restore the process signal mask as the sigreturn should
- do it (XXX: use sigsetjmp) */
- sigprocmask(SIG_SETMASK, old_set, NULL);
- cpu_loop_exit();
- /* never comes here */
- return 1;
-}
-
-#else
-#error unsupported target CPU
-#endif
-
#if defined(__i386__)
#if defined(__APPLE__)
# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext->ss.eip))
# define TRAP_sig(context) ((context)->uc_mcontext->es.trapno)
# define ERROR_sig(context) ((context)->uc_mcontext->es.err)
+# define MASK_sig(context) ((context)->uc_sigmask)
+#elif defined (__NetBSD__)
+# include <ucontext.h>
+
+# define EIP_sig(context) ((context)->uc_mcontext.__gregs[_REG_EIP])
+# define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
+# define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
+# define MASK_sig(context) ((context)->uc_sigmask)
+#elif defined (__FreeBSD__) || defined(__DragonFly__)
+# include <ucontext.h>
+
+# define EIP_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_eip))
+# define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
+# define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
+# define MASK_sig(context) ((context)->uc_sigmask)
+#elif defined(__OpenBSD__)
+# define EIP_sig(context) ((context)->sc_eip)
+# define TRAP_sig(context) ((context)->sc_trapno)
+# define ERROR_sig(context) ((context)->sc_err)
+# define MASK_sig(context) ((context)->sc_mask)
#else
# define EIP_sig(context) ((context)->uc_mcontext.gregs[REG_EIP])
# define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
# define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
+# define MASK_sig(context) ((context)->uc_sigmask)
#endif
int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
+#if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
+ ucontext_t *uc = puc;
+#elif defined(__OpenBSD__)
+ struct sigcontext *uc = puc;
+#else
struct ucontext *uc = puc;
+#endif
unsigned long pc;
int trapno;
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
trapno == 0xe ?
(ERROR_sig(uc) >> 1) & 1 : 0,
- &uc->uc_sigmask, puc);
+ &MASK_sig(uc), puc);
}
#elif defined(__x86_64__)
+#ifdef __NetBSD__
+#define PC_sig(context) _UC_MACHINE_PC(context)
+#define TRAP_sig(context) ((context)->uc_mcontext.__gregs[_REG_TRAPNO])
+#define ERROR_sig(context) ((context)->uc_mcontext.__gregs[_REG_ERR])
+#define MASK_sig(context) ((context)->uc_sigmask)
+#elif defined(__OpenBSD__)
+#define PC_sig(context) ((context)->sc_rip)
+#define TRAP_sig(context) ((context)->sc_trapno)
+#define ERROR_sig(context) ((context)->sc_err)
+#define MASK_sig(context) ((context)->sc_mask)
+#elif defined (__FreeBSD__) || defined(__DragonFly__)
+#include <ucontext.h>
+
+#define PC_sig(context) (*((unsigned long*)&(context)->uc_mcontext.mc_rip))
+#define TRAP_sig(context) ((context)->uc_mcontext.mc_trapno)
+#define ERROR_sig(context) ((context)->uc_mcontext.mc_err)
+#define MASK_sig(context) ((context)->uc_sigmask)
+#else
+#define PC_sig(context) ((context)->uc_mcontext.gregs[REG_RIP])
+#define TRAP_sig(context) ((context)->uc_mcontext.gregs[REG_TRAPNO])
+#define ERROR_sig(context) ((context)->uc_mcontext.gregs[REG_ERR])
+#define MASK_sig(context) ((context)->uc_sigmask)
+#endif
+
int cpu_signal_handler(int host_signum, void *pinfo,
void *puc)
{
siginfo_t *info = pinfo;
- struct ucontext *uc = puc;
unsigned long pc;
+#if defined(__NetBSD__) || defined (__FreeBSD__) || defined(__DragonFly__)
+ ucontext_t *uc = puc;
+#elif defined(__OpenBSD__)
+ struct sigcontext *uc = puc;
+#else
+ struct ucontext *uc = puc;
+#endif
- pc = uc->uc_mcontext.gregs[REG_RIP];
+ pc = PC_sig(uc);
return handle_cpu_signal(pc, (unsigned long)info->si_addr,
- uc->uc_mcontext.gregs[REG_TRAPNO] == 0xe ?
- (uc->uc_mcontext.gregs[REG_ERR] >> 1) & 1 : 0,
- &uc->uc_sigmask, puc);
+ TRAP_sig(uc) == 0xe ?
+ (ERROR_sig(uc) >> 1) & 1 : 0,
+ &MASK_sig(uc), puc);
}
-#elif defined(__powerpc__)
+#elif defined(_ARCH_PPC)
/***********************************************************************
* signal context platform-specific definitions
void *puc)
{
siginfo_t *info = pinfo;
- uint32_t *regs = (uint32_t *)(info + 1);
- void *sigmask = (regs + 20);
- unsigned long pc;
int is_write;
uint32_t insn;
-
+#if !defined(__arch64__) || defined(CONFIG_SOLARIS)
+ uint32_t *regs = (uint32_t *)(info + 1);
+ void *sigmask = (regs + 20);
/* XXX: is there a standard glibc define ? */
- pc = regs[1];
+ unsigned long pc = regs[1];
+#else
+#ifdef __linux__
+ struct sigcontext *sc = puc;
+ unsigned long pc = sc->sigc_regs.tpc;
+ void *sigmask = (void *)sc->sigc_mask;
+#elif defined(__OpenBSD__)
+ struct sigcontext *uc = puc;
+ unsigned long pc = uc->sc_pc;
+ void *sigmask = (void *)(long)uc->sc_mask;
+#endif
+#endif
+
/* XXX: need kernel patch to get write flag faster */
is_write = 0;
insn = *(uint32_t *)pc;
if ((insn >> 30) == 3) {
switch((insn >> 19) & 0x3f) {
case 0x05: // stb
+ case 0x15: // stba
case 0x06: // sth
+ case 0x16: // stha
case 0x04: // st
+ case 0x14: // sta
case 0x07: // std
+ case 0x17: // stda
+ case 0x0e: // stx
+ case 0x1e: // stxa
case 0x24: // stf
+ case 0x34: // stfa
case 0x27: // stdf
+ case 0x37: // stdfa
+ case 0x26: // stqf
+ case 0x36: // stqfa
case 0x25: // stfsr
+ case 0x3c: // casa
+ case 0x3e: // casxa
is_write = 1;
break;
}
unsigned long pc;
int is_write;
+#if (__GLIBC__ < 2 || (__GLIBC__ == 2 && __GLIBC_MINOR__ <= 3))
+ pc = uc->uc_mcontext.gregs[R15];
+#else
pc = uc->uc_mcontext.arm_pc;
+#endif
/* XXX: compute is_write */
is_write = 0;
return handle_cpu_signal(pc, (unsigned long)info->si_addr,