#define code_gen_section \
__attribute__((__section__(".gen_code"))) \
__attribute__((aligned (32)))
-#elif defined(_WIN32)
-/* Maximum alignment for Win32 is 16. */
+#elif defined(_WIN32) && !defined(_WIN64)
#define code_gen_section \
__attribute__((aligned (16)))
#else
#endif
-CPUState *first_cpu;
+CPUArchState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
-DEFINE_TLS(CPUState *,cpu_single_env);
+DEFINE_TLS(CPUArchState *,cpu_single_env);
/* 0 = Do not count executed instructions.
1 = Precise instruction counting.
2 = Adaptive rate instruction counting. */
#define L2_BITS 10
#define L2_SIZE (1 << L2_BITS)
+#define P_L2_LEVELS \
+ (((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - 1) / L2_BITS) + 1)
+
/* The bits remaining after N lower levels of page tables. */
-#define P_L1_BITS_REM \
- ((TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
#define V_L1_BITS_REM \
((L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS) % L2_BITS)
-/* Size of the L1 page table. Avoid silly small sizes. */
-#if P_L1_BITS_REM < 4
-#define P_L1_BITS (P_L1_BITS_REM + L2_BITS)
-#else
-#define P_L1_BITS P_L1_BITS_REM
-#endif
-
#if V_L1_BITS_REM < 4
#define V_L1_BITS (V_L1_BITS_REM + L2_BITS)
#else
#define V_L1_BITS V_L1_BITS_REM
#endif
-#define P_L1_SIZE ((target_phys_addr_t)1 << P_L1_BITS)
#define V_L1_SIZE ((target_ulong)1 << V_L1_BITS)
-#define P_L1_SHIFT (TARGET_PHYS_ADDR_SPACE_BITS - TARGET_PAGE_BITS - P_L1_BITS)
#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
-unsigned long qemu_real_host_page_size;
-unsigned long qemu_host_page_size;
-unsigned long qemu_host_page_mask;
+uintptr_t qemu_real_host_page_size;
+uintptr_t qemu_host_page_size;
+uintptr_t qemu_host_page_mask;
/* This is a multi-level map on the virtual address space.
The bottom level has pointers to PageDesc. */
static void *l1_map[V_L1_SIZE];
#if !defined(CONFIG_USER_ONLY)
-typedef struct PhysPageDesc {
- /* offset in host memory of the page + io_index in the low bits */
- ram_addr_t phys_offset;
- ram_addr_t region_offset;
-} PhysPageDesc;
+typedef struct PhysPageEntry PhysPageEntry;
+
+static MemoryRegionSection *phys_sections;
+static unsigned phys_sections_nb, phys_sections_nb_alloc;
+static uint16_t phys_section_unassigned;
+static uint16_t phys_section_notdirty;
+static uint16_t phys_section_rom;
+static uint16_t phys_section_watch;
+
+struct PhysPageEntry {
+ uint16_t is_leaf : 1;
+ /* index into phys_sections (is_leaf) or phys_map_nodes (!is_leaf) */
+ uint16_t ptr : 15;
+};
+
+/* Simple allocator for PhysPageEntry nodes */
+static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
+static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
+
+#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
/* This is a multi-level map on the physical address space.
- The bottom level has pointers to PhysPageDesc. */
-static void *l1_phys_map[P_L1_SIZE];
+ The bottom level has pointers to MemoryRegionSections. */
+static PhysPageEntry phys_map = { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
static void io_mem_init(void);
static void memory_map_init(void);
-/* io memory support */
-MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
-static char io_mem_used[IO_MEM_NB_ENTRIES];
static MemoryRegion io_mem_watch;
#endif
}
#if !defined(CONFIG_USER_ONLY)
-static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
+
+static void phys_map_node_reserve(unsigned nodes)
{
- PhysPageDesc *pd;
- void **lp;
- int i;
+ if (phys_map_nodes_nb + nodes > phys_map_nodes_nb_alloc) {
+ typedef PhysPageEntry Node[L2_SIZE];
+ phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc * 2, 16);
+ phys_map_nodes_nb_alloc = MAX(phys_map_nodes_nb_alloc,
+ phys_map_nodes_nb + nodes);
+ phys_map_nodes = g_renew(Node, phys_map_nodes,
+ phys_map_nodes_nb_alloc);
+ }
+}
- /* Level 1. Always allocated. */
- lp = l1_phys_map + ((index >> P_L1_SHIFT) & (P_L1_SIZE - 1));
+static uint16_t phys_map_node_alloc(void)
+{
+ unsigned i;
+ uint16_t ret;
- /* Level 2..N-1. */
- for (i = P_L1_SHIFT / L2_BITS - 1; i > 0; i--) {
- void **p = *lp;
- if (p == NULL) {
- if (!alloc) {
- return NULL;
- }
- *lp = p = g_malloc0(sizeof(void *) * L2_SIZE);
- }
- lp = p + ((index >> (i * L2_BITS)) & (L2_SIZE - 1));
+ ret = phys_map_nodes_nb++;
+ assert(ret != PHYS_MAP_NODE_NIL);
+ assert(ret != phys_map_nodes_nb_alloc);
+ for (i = 0; i < L2_SIZE; ++i) {
+ phys_map_nodes[ret][i].is_leaf = 0;
+ phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
}
+ return ret;
+}
- pd = *lp;
- if (pd == NULL) {
- int i;
- int first_index = index & ~(L2_SIZE - 1);
+static void phys_map_nodes_reset(void)
+{
+ phys_map_nodes_nb = 0;
+}
- if (!alloc) {
- return NULL;
- }
- *lp = pd = g_malloc(sizeof(PhysPageDesc) * L2_SIZE);
+static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
+ target_phys_addr_t *nb, uint16_t leaf,
+ int level)
+{
+ PhysPageEntry *p;
+ int i;
+ target_phys_addr_t step = (target_phys_addr_t)1 << (level * L2_BITS);
+
+ if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
+ lp->ptr = phys_map_node_alloc();
+ p = phys_map_nodes[lp->ptr];
+ if (level == 0) {
+ for (i = 0; i < L2_SIZE; i++) {
+ p[i].is_leaf = 1;
+ p[i].ptr = phys_section_unassigned;
+ }
+ }
+ } else {
+ p = phys_map_nodes[lp->ptr];
+ }
+ lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
- for (i = 0; i < L2_SIZE; i++) {
- pd[i].phys_offset = io_mem_unassigned.ram_addr;
- pd[i].region_offset = (first_index + i) << TARGET_PAGE_BITS;
+ while (*nb && lp < &p[L2_SIZE]) {
+ if ((*index & (step - 1)) == 0 && *nb >= step) {
+ lp->is_leaf = true;
+ lp->ptr = leaf;
+ *index += step;
+ *nb -= step;
+ } else {
+ phys_page_set_level(lp, index, nb, leaf, level - 1);
}
+ ++lp;
}
+}
- return pd + (index & (L2_SIZE - 1));
+static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
+ uint16_t leaf)
+{
+ /* Wildly overreserve - it doesn't matter much. */
+ phys_map_node_reserve(3 * P_L2_LEVELS);
+
+ phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
}
-static inline PhysPageDesc phys_page_find(target_phys_addr_t index)
+static MemoryRegionSection *phys_page_find(target_phys_addr_t index)
{
- PhysPageDesc *p = phys_page_find_alloc(index, 0);
+ PhysPageEntry lp = phys_map;
+ PhysPageEntry *p;
+ int i;
+ uint16_t s_index = phys_section_unassigned;
- if (p) {
- return *p;
- } else {
- return (PhysPageDesc) {
- .phys_offset = io_mem_unassigned.ram_addr,
- .region_offset = index << TARGET_PAGE_BITS,
- };
+ for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
+ if (lp.ptr == PHYS_MAP_NODE_NIL) {
+ goto not_found;
+ }
+ p = phys_map_nodes[lp.ptr];
+ lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
}
+
+ s_index = lp.ptr;
+not_found:
+ return &phys_sections[s_index];
+}
+
+static target_phys_addr_t section_addr(MemoryRegionSection *section,
+ target_phys_addr_t addr)
+{
+ addr -= section->offset_within_address_space;
+ addr += section->offset_within_region;
+ return addr;
}
static void tlb_protect_code(ram_addr_t ram_addr);
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
target_ulong vaddr);
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
cpu_gen_init();
code_gen_alloc(tb_size);
code_gen_ptr = code_gen_buffer;
+ tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
page_init();
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
/* There's no guest base to take into account, so go ahead and
static int cpu_common_post_load(void *opaque, int version_id)
{
- CPUState *env = opaque;
+ CPUArchState *env = opaque;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
.minimum_version_id_old = 1,
.post_load = cpu_common_post_load,
.fields = (VMStateField []) {
- VMSTATE_UINT32(halted, CPUState),
- VMSTATE_UINT32(interrupt_request, CPUState),
+ VMSTATE_UINT32(halted, CPUArchState),
+ VMSTATE_UINT32(interrupt_request, CPUArchState),
VMSTATE_END_OF_LIST()
}
};
#endif
-CPUState *qemu_get_cpu(int cpu)
+CPUArchState *qemu_get_cpu(int cpu)
{
- CPUState *env = first_cpu;
+ CPUArchState *env = first_cpu;
while (env) {
if (env->cpu_index == cpu)
return env;
}
-void cpu_exec_init(CPUState *env)
+void cpu_exec_init(CPUArchState *env)
{
- CPUState **penv;
+ CPUArchState **penv;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
-void tb_flush(CPUState *env1)
+void tb_flush(CPUArchState *env1)
{
- CPUState *env;
+ CPUArchState *env;
#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
(unsigned long)(code_gen_ptr - code_gen_buffer),
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (tb1 == tb) {
*ptb = tb1->page_next[n1];
break;
/* find tb(n) in circular list */
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
if (n1 == 2) {
another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
- tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
+ tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
- CPUState *env;
+ CPUArchState *env;
PageDesc *p;
unsigned int h, n1;
tb_page_addr_t phys_pc;
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
- n1 = (long)tb1 & 3;
+ n1 = (uintptr_t)tb1 & 3;
if (n1 == 2)
break;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
tb2 = tb1->jmp_next[n1];
tb_reset_jump(tb1, n1);
tb1->jmp_next[n1] = NULL;
tb1 = tb2;
}
- tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
tb_phys_invalidate_count++;
}
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
}
}
-TranslationBlock *tb_gen_code(CPUState *env,
+TranslationBlock *tb_gen_code(CPUArchState *env,
target_ulong pc, target_ulong cs_base,
int flags, int cflags)
{
tb->flags = flags;
tb->cflags = cflags;
cpu_gen_code(env, tb, &code_gen_size);
- code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+ code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
+ CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
int is_cpu_write_access)
{
TranslationBlock *tb, *tb_next, *saved_tb;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
tb_page_addr_t tb_start, tb_end;
PageDesc *p;
int n;
/* XXX: see if in some cases it could be faster to invalidate all the code */
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
tb_next = tb->page_next[n];
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
cpu_single_env->mem_io_vaddr, len,
cpu_single_env->eip,
- cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
+ cpu_single_env->eip +
+ (intptr_t)cpu_single_env->segs[R_CS].base);
}
#endif
p = page_find(start >> TARGET_PAGE_BITS);
#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
- unsigned long pc, void *puc)
+ uintptr_t pc, void *puc)
{
TranslationBlock *tb;
PageDesc *p;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
TranslationBlock *current_tb = NULL;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
int current_tb_modified = 0;
target_ulong current_pc = 0;
target_ulong current_cs_base = 0;
}
#endif
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
(current_tb->cflags & CF_COUNT_MASK) != 1) {
#ifndef CONFIG_USER_ONLY
page_already_protected = p->first_tb != NULL;
#endif
- p->first_tb = (TranslationBlock *)((long)tb | n);
+ p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
invalidate_page_bitmap(p);
#if defined(TARGET_HAS_SMC) || 1
else
tb->page_addr[1] = -1;
- tb->jmp_first = (TranslationBlock *)((long)tb | 2);
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
tb[1].tc_ptr. Return NULL if not found */
-TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
{
int m_min, m_max, m;
- unsigned long v;
+ uintptr_t v;
TranslationBlock *tb;
if (nb_tbs <= 0)
return NULL;
- if (tc_ptr < (unsigned long)code_gen_buffer ||
- tc_ptr >= (unsigned long)code_gen_ptr)
+ if (tc_ptr < (uintptr_t)code_gen_buffer ||
+ tc_ptr >= (uintptr_t)code_gen_ptr) {
return NULL;
+ }
/* binary search (cf Knuth) */
m_min = 0;
m_max = nb_tbs - 1;
while (m_min <= m_max) {
m = (m_min + m_max) >> 1;
tb = &tbs[m];
- v = (unsigned long)tb->tc_ptr;
+ v = (uintptr_t)tb->tc_ptr;
if (v == tc_ptr)
return tb;
else if (tc_ptr < v) {
if (tb1 != NULL) {
/* find head of list */
for(;;) {
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
ptb = &tb_next->jmp_first;
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
ptb = &tb1->jmp_next[n1];
#if defined(TARGET_HAS_ICE)
#if defined(CONFIG_USER_ONLY)
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
{
tb_invalidate_phys_page_range(pc, pc + 1, 0);
}
#else
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+void tb_invalidate_phys_addr(target_phys_addr_t addr)
{
- target_phys_addr_t addr;
- target_ulong pd;
ram_addr_t ram_addr;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- addr = cpu_get_phys_page_debug(env, pc);
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
- ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!(memory_region_is_ram(section->mr)
+ || (section->mr->rom_device && section->mr->readable))) {
+ return;
+ }
+ ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + section_addr(section, addr);
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
}
+
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
+{
+ tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc));
+}
#endif
#endif /* TARGET_HAS_ICE */
#if defined(CONFIG_USER_ONLY)
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
}
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
return -ENOSYS;
}
#else
/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
target_ulong len_mask = ~(len - 1);
CPUWatchpoint *wp;
/* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
- if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
+ if ((len & (len - 1)) || (addr & ~len_mask) ||
+ len == 0 || len > TARGET_PAGE_SIZE) {
fprintf(stderr, "qemu: tried to set invalid watchpoint at "
TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
return -EINVAL;
}
/* Remove a specific watchpoint. */
-int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
int flags)
{
target_ulong len_mask = ~(len - 1);
}
/* Remove a specific watchpoint by reference. */
-void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
+void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
{
QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
}
/* Remove all matching watchpoints. */
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
CPUWatchpoint *wp, *next;
#endif
/* Add a breakpoint. */
-int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint)
{
#if defined(TARGET_HAS_ICE)
}
/* Remove a specific breakpoint. */
-int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
+int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
}
/* Remove a specific breakpoint by reference. */
-void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
+void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
{
#if defined(TARGET_HAS_ICE)
QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
}
/* Remove all matching breakpoints. */
-void cpu_breakpoint_remove_all(CPUState *env, int mask)
+void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp, *next;
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
-void cpu_single_step(CPUState *env, int enabled)
+void cpu_single_step(CPUArchState *env, int enabled)
{
#if defined(TARGET_HAS_ICE)
if (env->singlestep_enabled != enabled) {
cpu_set_log(loglevel);
}
-static void cpu_unlink_tb(CPUState *env)
+static void cpu_unlink_tb(CPUArchState *env)
{
/* FIXME: TB unchaining isn't SMP safe. For now just ignore the
problem and hope the cpu will stop of its own accord. For userspace
#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
-static void tcg_handle_interrupt(CPUState *env, int mask)
+static void tcg_handle_interrupt(CPUArchState *env, int mask)
{
int old_mask;
#else /* CONFIG_USER_ONLY */
-void cpu_interrupt(CPUState *env, int mask)
+void cpu_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request |= mask;
cpu_unlink_tb(env);
}
#endif /* CONFIG_USER_ONLY */
-void cpu_reset_interrupt(CPUState *env, int mask)
+void cpu_reset_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request &= ~mask;
}
-void cpu_exit(CPUState *env)
+void cpu_exit(CPUArchState *env)
{
env->exit_request = 1;
cpu_unlink_tb(env);
return mask;
}
-void cpu_abort(CPUState *env, const char *fmt, ...)
+void cpu_abort(CPUArchState *env, const char *fmt, ...)
{
va_list ap;
va_list ap2;
abort();
}
-CPUState *cpu_copy(CPUState *env)
+CPUArchState *cpu_copy(CPUArchState *env)
{
- CPUState *new_env = cpu_init(env->cpu_model_str);
- CPUState *next_cpu = new_env->next_cpu;
+ CPUArchState *new_env = cpu_init(env->cpu_model_str);
+ CPUArchState *next_cpu = new_env->next_cpu;
int cpu_index = new_env->cpu_index;
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
CPUWatchpoint *wp;
#endif
- memcpy(new_env, env, sizeof(CPUState));
+ memcpy(new_env, env, sizeof(CPUArchState));
/* Preserve chaining and index. */
new_env->next_cpu = next_cpu;
#if !defined(CONFIG_USER_ONLY)
-static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+static inline void tlb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
{
unsigned int i;
* entries from the TLB at any time, so flushing more entries than
* required is only an efficiency issue, not a correctness issue.
*/
-void tlb_flush(CPUState *env, int flush_global)
+void tlb_flush(CPUArchState *env, int flush_global)
{
int i;
}
}
-void tlb_flush_page(CPUState *env, target_ulong addr)
+void tlb_flush_page(CPUArchState *env, target_ulong addr)
{
int i;
int mmu_idx;
/* update the TLB so that writes in physical page 'phys_addr' are no longer
tested for self modifying code */
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+static void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
target_ulong vaddr)
{
cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
}
+static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
+{
+ return (tlbe->addr_write & (TLB_INVALID_MASK|TLB_MMIO|TLB_NOTDIRTY)) == 0;
+}
+
static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
- unsigned long start, unsigned long length)
+ uintptr_t start, uintptr_t length)
{
- unsigned long addr;
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
+ uintptr_t addr;
+ if (tlb_is_dirty_ram(tlb_entry)) {
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
if ((addr - start) < length) {
- tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
}
}
}
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags)
{
- CPUState *env;
- unsigned long length, start1;
+ CPUArchState *env;
+ uintptr_t length, start1;
int i;
start &= TARGET_PAGE_MASK;
/* we modify the TLB cache so that the dirty bit will be set again
when accessing the range */
- start1 = (unsigned long)qemu_safe_ram_ptr(start);
+ start1 = (uintptr_t)qemu_safe_ram_ptr(start);
/* Check that we don't span multiple blocks - this breaks the
address comparisons below. */
- if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
+ if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
!= (end - 1) - start) {
abort();
}
ram_addr_t ram_addr;
void *p;
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
- p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
+ if (tlb_is_dirty_ram(tlb_entry)) {
+ p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
+ tlb_entry->addend);
ram_addr = qemu_ram_addr_from_host_nofail(p);
if (!cpu_physical_memory_is_dirty(ram_addr)) {
}
/* update the TLB according to the current state of the dirty bits */
-void cpu_tlb_update_dirty(CPUState *env)
+void cpu_tlb_update_dirty(CPUArchState *env)
{
int i;
int mmu_idx;
/* update the TLB corresponding to virtual page vaddr
so that it is no longer dirty */
-static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
+static inline void tlb_set_dirty(CPUArchState *env, target_ulong vaddr)
{
int i;
int mmu_idx;
/* Our TLB does not support large pages, so remember the area covered by
large pages and trigger a full TLB flush if these are invalidated. */
-static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
+static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
target_ulong size)
{
target_ulong mask = ~(size - 1);
env->tlb_flush_mask = mask;
}
-static bool is_ram_rom(ram_addr_t pd)
+static bool is_ram_rom(MemoryRegionSection *s)
{
- pd &= ~TARGET_PAGE_MASK;
- return pd == io_mem_ram.ram_addr || pd == io_mem_rom.ram_addr;
+ return memory_region_is_ram(s->mr);
}
-static bool is_romd(ram_addr_t pd)
+static bool is_romd(MemoryRegionSection *s)
{
- MemoryRegion *mr;
+ MemoryRegion *mr = s->mr;
- pd &= ~TARGET_PAGE_MASK;
- mr = io_mem_region[pd];
return mr->rom_device && mr->readable;
}
-static bool is_ram_rom_romd(ram_addr_t pd)
+static bool is_ram_rom_romd(MemoryRegionSection *s)
{
- return is_ram_rom(pd) || is_romd(pd);
+ return is_ram_rom(s) || is_romd(s);
}
/* Add a new TLB entry. At most one entry for a given virtual address
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
supplied size is only used by tlb_flush_page. */
-void tlb_set_page(CPUState *env, target_ulong vaddr,
+void tlb_set_page(CPUArchState *env, target_ulong vaddr,
target_phys_addr_t paddr, int prot,
int mmu_idx, target_ulong size)
{
- PhysPageDesc p;
- unsigned long pd;
+ MemoryRegionSection *section;
unsigned int index;
target_ulong address;
target_ulong code_address;
- unsigned long addend;
+ uintptr_t addend;
CPUTLBEntry *te;
CPUWatchpoint *wp;
target_phys_addr_t iotlb;
if (size != TARGET_PAGE_SIZE) {
tlb_add_large_page(env, vaddr, size);
}
- p = phys_page_find(paddr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(paddr >> TARGET_PAGE_BITS);
#if defined(DEBUG_TLB)
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
" prot=%x idx=%d pd=0x%08lx\n",
#endif
address = vaddr;
- if (!is_ram_rom_romd(pd)) {
+ if (!is_ram_rom_romd(section)) {
/* IO memory case (romd handled later) */
address |= TLB_MMIO;
}
- addend = (unsigned long)qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
- if (is_ram_rom(pd)) {
+ if (is_ram_rom_romd(section)) {
+ addend = (uintptr_t)memory_region_get_ram_ptr(section->mr)
+ + section_addr(section, paddr);
+ } else {
+ addend = 0;
+ }
+ if (is_ram_rom(section)) {
/* Normal RAM. */
- iotlb = pd & TARGET_PAGE_MASK;
- if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr)
- iotlb |= io_mem_notdirty.ram_addr;
+ iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + section_addr(section, paddr);
+ if (!section->readonly)
+ iotlb |= phys_section_notdirty;
else
- iotlb |= io_mem_rom.ram_addr;
+ iotlb |= phys_section_rom;
} else {
/* IO handlers are currently passed a physical address.
It would be nice to pass an offset from the base address
and avoid full address decoding in every device.
We can't use the high bits of pd for this because
IO_MEM_ROMD uses these as a ram address. */
- iotlb = (pd & ~TARGET_PAGE_MASK);
- iotlb += p.region_offset;
+ iotlb = section - phys_sections;
+ iotlb += section_addr(section, paddr);
}
code_address = address;
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
/* Avoid trapping reads of pages with a write breakpoint. */
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
- iotlb = io_mem_watch.ram_addr + paddr;
+ iotlb = phys_section_watch + paddr;
address |= TLB_MMIO;
break;
}
te->addr_code = -1;
}
if (prot & PAGE_WRITE) {
- if ((pd & ~TARGET_PAGE_MASK) == io_mem_rom.ram_addr || is_romd(pd)) {
+ if ((memory_region_is_ram(section->mr) && section->readonly)
+ || is_romd(section)) {
/* Write access calls the I/O callback. */
te->addr_write = address | TLB_MMIO;
- } else if ((pd & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr &&
- !cpu_physical_memory_is_dirty(pd)) {
+ } else if (memory_region_is_ram(section->mr)
+ && !cpu_physical_memory_is_dirty(
+ section->mr->ram_addr
+ + section_addr(section, paddr))) {
te->addr_write = address | TLB_NOTDIRTY;
} else {
te->addr_write = address;
#else
-void tlb_flush(CPUState *env, int flush_global)
+void tlb_flush(CPUArchState *env, int flush_global)
{
}
-void tlb_flush_page(CPUState *env, target_ulong addr)
+void tlb_flush_page(CPUArchState *env, target_ulong addr)
{
}
{
walk_memory_regions_fn fn;
void *priv;
- unsigned long start;
+ uintptr_t start;
int prot;
};
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
struct walk_memory_regions_data data;
- unsigned long i;
+ uintptr_t i;
data.fn = fn;
data.priv = priv;
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was successfully handled. */
-int page_unprotect(target_ulong address, unsigned long pc, void *puc)
+int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
unsigned int prot;
PageDesc *p;
return 0;
}
-static inline void tlb_set_dirty(CPUState *env,
- unsigned long addr, target_ulong vaddr)
+static inline void tlb_set_dirty(CPUArchState *env,
+ uintptr_t addr, target_ulong vaddr)
{
}
#endif /* defined(CONFIG_USER_ONLY) */
typedef struct subpage_t {
MemoryRegion iomem;
target_phys_addr_t base;
- ram_addr_t sub_io_index[TARGET_PAGE_SIZE];
- ram_addr_t region_offset[TARGET_PAGE_SIZE];
+ uint16_t sub_section[TARGET_PAGE_SIZE];
} subpage_t;
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- ram_addr_t memory, ram_addr_t region_offset);
-static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
- ram_addr_t orig_memory,
- ram_addr_t region_offset);
-#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
- need_subpage) \
- do { \
- if (addr > start_addr) \
- start_addr2 = 0; \
- else { \
- start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
- if (start_addr2 > 0) \
- need_subpage = 1; \
- } \
- \
- if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
- end_addr2 = TARGET_PAGE_SIZE - 1; \
- else { \
- end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
- if (end_addr2 < TARGET_PAGE_SIZE - 1) \
- need_subpage = 1; \
- } \
- } while (0)
+ uint16_t section);
+static subpage_t *subpage_init(target_phys_addr_t base);
+static void destroy_page_desc(uint16_t section_index)
+{
+ MemoryRegionSection *section = &phys_sections[section_index];
+ MemoryRegion *mr = section->mr;
+
+ if (mr->subpage) {
+ subpage_t *subpage = container_of(mr, subpage_t, iomem);
+ memory_region_destroy(&subpage->iomem);
+ g_free(subpage);
+ }
+}
+
+static void destroy_l2_mapping(PhysPageEntry *lp, unsigned level)
+{
+ unsigned i;
+ PhysPageEntry *p;
+
+ if (lp->ptr == PHYS_MAP_NODE_NIL) {
+ return;
+ }
+
+ p = phys_map_nodes[lp->ptr];
+ for (i = 0; i < L2_SIZE; ++i) {
+ if (!p[i].is_leaf) {
+ destroy_l2_mapping(&p[i], level - 1);
+ } else {
+ destroy_page_desc(p[i].ptr);
+ }
+ }
+ lp->is_leaf = 0;
+ lp->ptr = PHYS_MAP_NODE_NIL;
+}
+
+static void destroy_all_mappings(void)
+{
+ destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
+ phys_map_nodes_reset();
+}
+
+static uint16_t phys_section_add(MemoryRegionSection *section)
+{
+ if (phys_sections_nb == phys_sections_nb_alloc) {
+ phys_sections_nb_alloc = MAX(phys_sections_nb_alloc * 2, 16);
+ phys_sections = g_renew(MemoryRegionSection, phys_sections,
+ phys_sections_nb_alloc);
+ }
+ phys_sections[phys_sections_nb] = *section;
+ return phys_sections_nb++;
+}
+
+static void phys_sections_clear(void)
+{
+ phys_sections_nb = 0;
+}
/* register physical memory.
For RAM, 'size' must be a multiple of the target page size.
start_addr and region_offset are rounded down to a page boundary
before calculating this offset. This should not be a problem unless
the low bits of start_addr and region_offset differ. */
-void cpu_register_physical_memory_log(MemoryRegionSection *section,
- bool readable, bool readonly)
+static void register_subpage(MemoryRegionSection *section)
{
- target_phys_addr_t start_addr = section->offset_within_address_space;
- ram_addr_t size = section->size;
- ram_addr_t phys_offset = section->mr->ram_addr;
- ram_addr_t region_offset = section->offset_within_region;
- target_phys_addr_t addr, end_addr;
- PhysPageDesc *p;
- CPUState *env;
- ram_addr_t orig_size = size;
subpage_t *subpage;
-
- if (memory_region_is_ram(section->mr)) {
- phys_offset += region_offset;
- region_offset = 0;
+ target_phys_addr_t base = section->offset_within_address_space
+ & TARGET_PAGE_MASK;
+ MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
+ MemoryRegionSection subsection = {
+ .offset_within_address_space = base,
+ .size = TARGET_PAGE_SIZE,
+ };
+ target_phys_addr_t start, end;
+
+ assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
+
+ if (!(existing->mr->subpage)) {
+ subpage = subpage_init(base);
+ subsection.mr = &subpage->iomem;
+ phys_page_set(base >> TARGET_PAGE_BITS, 1,
+ phys_section_add(&subsection));
+ } else {
+ subpage = container_of(existing->mr, subpage_t, iomem);
}
+ start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
+ end = start + section->size;
+ subpage_register(subpage, start, end, phys_section_add(section));
+}
- if (readonly) {
- phys_offset |= io_mem_rom.ram_addr;
- }
- assert(size);
+static void register_multipage(MemoryRegionSection *section)
+{
+ target_phys_addr_t start_addr = section->offset_within_address_space;
+ ram_addr_t size = section->size;
+ target_phys_addr_t addr;
+ uint16_t section_index = phys_section_add(section);
- if (phys_offset == io_mem_unassigned.ram_addr) {
- region_offset = start_addr;
- }
- region_offset &= TARGET_PAGE_MASK;
- size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
- end_addr = start_addr + (target_phys_addr_t)size;
+ assert(size);
addr = start_addr;
- do {
- p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 0);
- if (p && p->phys_offset != io_mem_unassigned.ram_addr) {
- ram_addr_t orig_memory = p->phys_offset;
- target_phys_addr_t start_addr2, end_addr2;
- int need_subpage = 0;
- MemoryRegion *mr = io_mem_region[orig_memory & ~TARGET_PAGE_MASK];
-
- CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
- need_subpage);
- if (need_subpage) {
- if (!(mr->subpage)) {
- subpage = subpage_init((addr & TARGET_PAGE_MASK),
- &p->phys_offset, orig_memory,
- p->region_offset);
- } else {
- subpage = container_of(mr, subpage_t, iomem);
- }
- subpage_register(subpage, start_addr2, end_addr2, phys_offset,
- region_offset);
- p->region_offset = 0;
- } else {
- p->phys_offset = phys_offset;
- p->region_offset = region_offset;
- if (is_ram_rom_romd(phys_offset))
- phys_offset += TARGET_PAGE_SIZE;
- }
- } else {
- p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
- p->phys_offset = phys_offset;
- p->region_offset = region_offset;
- if (is_ram_rom_romd(phys_offset)) {
- phys_offset += TARGET_PAGE_SIZE;
- } else {
- target_phys_addr_t start_addr2, end_addr2;
- int need_subpage = 0;
-
- CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
- end_addr2, need_subpage);
-
- if (need_subpage) {
- subpage = subpage_init((addr & TARGET_PAGE_MASK),
- &p->phys_offset,
- io_mem_unassigned.ram_addr,
- addr & TARGET_PAGE_MASK);
- subpage_register(subpage, start_addr2, end_addr2,
- phys_offset, region_offset);
- p->region_offset = 0;
- }
- }
- }
- region_offset += TARGET_PAGE_SIZE;
- addr += TARGET_PAGE_SIZE;
- } while (addr != end_addr);
+ phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
+ section_index);
+}
- /* since each CPU stores ram addresses in its TLB cache, we must
- reset the modified entries */
- /* XXX: slow ! */
- for(env = first_cpu; env != NULL; env = env->next_cpu) {
- tlb_flush(env, 1);
+void cpu_register_physical_memory_log(MemoryRegionSection *section,
+ bool readonly)
+{
+ MemoryRegionSection now = *section, remain = *section;
+
+ if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
+ || (now.size < TARGET_PAGE_SIZE)) {
+ now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
+ - now.offset_within_address_space,
+ now.size);
+ register_subpage(&now);
+ remain.size -= now.size;
+ remain.offset_within_address_space += now.size;
+ remain.offset_within_region += now.size;
+ }
+ now = remain;
+ now.size &= TARGET_PAGE_MASK;
+ if (now.size) {
+ register_multipage(&now);
+ remain.size -= now.size;
+ remain.offset_within_address_space += now.size;
+ remain.offset_within_region += now.size;
+ }
+ now = remain;
+ if (now.size) {
+ register_subpage(&now);
}
}
+
void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
{
if (kvm_enabled())
/* Generate a debug exception if a watchpoint has been hit. */
static void check_watchpoint(int offset, int len_mask, int flags)
{
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
target_ulong pc, cs_base;
TranslationBlock *tb;
target_ulong vaddr;
tb_phys_invalidate(tb, -1);
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
env->exception_index = EXCP_DEBUG;
+ cpu_loop_exit(env);
} else {
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
tb_gen_code(env, pc, cs_base, cpu_flags, 1);
+ cpu_resume_from_signal(env, NULL);
}
- cpu_resume_from_signal(env, NULL);
}
} else {
wp->flags &= ~BP_WATCHPOINT_HIT;
{
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
switch (size) {
- case 1: stb_phys(addr, val);
- case 2: stw_phys(addr, val);
- case 4: stl_phys(addr, val);
+ case 1:
+ stb_phys(addr, val);
+ break;
+ case 2:
+ stw_phys(addr, val);
+ break;
+ case 4:
+ stl_phys(addr, val);
+ break;
default: abort();
}
}
{
subpage_t *mmio = opaque;
unsigned int idx = SUBPAGE_IDX(addr);
+ MemoryRegionSection *section;
#if defined(DEBUG_SUBPAGE)
printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
mmio, len, addr, idx);
#endif
- addr += mmio->region_offset[idx];
- idx = mmio->sub_io_index[idx];
- return io_mem_read(idx, addr, len);
+ section = &phys_sections[mmio->sub_section[idx]];
+ addr += mmio->base;
+ addr -= section->offset_within_address_space;
+ addr += section->offset_within_region;
+ return io_mem_read(section->mr, addr, len);
}
static void subpage_write(void *opaque, target_phys_addr_t addr,
{
subpage_t *mmio = opaque;
unsigned int idx = SUBPAGE_IDX(addr);
+ MemoryRegionSection *section;
#if defined(DEBUG_SUBPAGE)
printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %"PRIx64"\n",
__func__, mmio, len, addr, idx, value);
#endif
- addr += mmio->region_offset[idx];
- idx = mmio->sub_io_index[idx];
- io_mem_write(idx, addr, value, len);
+ section = &phys_sections[mmio->sub_section[idx]];
+ addr += mmio->base;
+ addr -= section->offset_within_address_space;
+ addr += section->offset_within_region;
+ io_mem_write(section->mr, addr, value, len);
}
static const MemoryRegionOps subpage_ops = {
};
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- ram_addr_t memory, ram_addr_t region_offset)
+ uint16_t section)
{
int idx, eidx;
printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %ld\n", __func__,
mmio, start, end, idx, eidx, memory);
#endif
- if ((memory & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
- memory = io_mem_subpage_ram.ram_addr;
+ if (memory_region_is_ram(phys_sections[section].mr)) {
+ MemoryRegionSection new_section = phys_sections[section];
+ new_section.mr = &io_mem_subpage_ram;
+ section = phys_section_add(&new_section);
}
- memory &= IO_MEM_NB_ENTRIES - 1;
for (; idx <= eidx; idx++) {
- mmio->sub_io_index[idx] = memory;
- mmio->region_offset[idx] = region_offset;
+ mmio->sub_section[idx] = section;
}
return 0;
}
-static subpage_t *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
- ram_addr_t orig_memory,
- ram_addr_t region_offset)
+static subpage_t *subpage_init(target_phys_addr_t base)
{
subpage_t *mmio;
- int subpage_memory;
mmio = g_malloc0(sizeof(subpage_t));
memory_region_init_io(&mmio->iomem, &subpage_ops, mmio,
"subpage", TARGET_PAGE_SIZE);
mmio->iomem.subpage = true;
- subpage_memory = mmio->iomem.ram_addr;
#if defined(DEBUG_SUBPAGE)
printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
mmio, base, TARGET_PAGE_SIZE, subpage_memory);
#endif
- *phys = subpage_memory;
- subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, orig_memory, region_offset);
+ subpage_register(mmio, 0, TARGET_PAGE_SIZE-1, phys_section_unassigned);
return mmio;
}
-static int get_free_io_mem_idx(void)
+static uint16_t dummy_section(MemoryRegion *mr)
{
- int i;
+ MemoryRegionSection section = {
+ .mr = mr,
+ .offset_within_address_space = 0,
+ .offset_within_region = 0,
+ .size = UINT64_MAX,
+ };
- for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
- if (!io_mem_used[i]) {
- io_mem_used[i] = 1;
- return i;
- }
- fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
- return -1;
+ return phys_section_add(§ion);
}
-/* mem_read and mem_write are arrays of functions containing the
- function to access byte (index 0), word (index 1) and dword (index
- 2). Functions can be omitted with a NULL function pointer.
- If io_index is non zero, the corresponding io zone is
- modified. If it is zero, a new io zone is allocated. The return
- value can be used with cpu_register_physical_memory(). (-1) is
- returned if error. */
-static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
+MemoryRegion *iotlb_to_region(target_phys_addr_t index)
{
- if (io_index <= 0) {
- io_index = get_free_io_mem_idx();
- if (io_index == -1)
- return io_index;
- } else {
- if (io_index >= IO_MEM_NB_ENTRIES)
- return -1;
- }
-
- io_mem_region[io_index] = mr;
-
- return io_index;
-}
-
-int cpu_register_io_memory(MemoryRegion *mr)
-{
- return cpu_register_io_memory_fixed(0, mr);
-}
-
-void cpu_unregister_io_memory(int io_index)
-{
- io_mem_region[io_index] = NULL;
- io_mem_used[io_index] = 0;
+ return phys_sections[index & ~TARGET_PAGE_MASK].mr;
}
static void io_mem_init(void)
{
- int i;
-
- /* Must be first: */
memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
- assert(io_mem_ram.ram_addr == 0);
memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
"unassigned", UINT64_MAX);
"notdirty", UINT64_MAX);
memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
"subpage-ram", UINT64_MAX);
- for (i=0; i<5; i++)
- io_mem_used[i] = 1;
-
memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
"watch", UINT64_MAX);
}
+static void core_begin(MemoryListener *listener)
+{
+ destroy_all_mappings();
+ phys_sections_clear();
+ phys_map.ptr = PHYS_MAP_NODE_NIL;
+ phys_section_unassigned = dummy_section(&io_mem_unassigned);
+ phys_section_notdirty = dummy_section(&io_mem_notdirty);
+ phys_section_rom = dummy_section(&io_mem_rom);
+ phys_section_watch = dummy_section(&io_mem_watch);
+}
+
+static void core_commit(MemoryListener *listener)
+{
+ CPUArchState *env;
+
+ /* since each CPU stores ram addresses in its TLB cache, we must
+ reset the modified entries */
+ /* XXX: slow ! */
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ tlb_flush(env, 1);
+ }
+}
+
+static void core_region_add(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ cpu_register_physical_memory_log(section, section->readonly);
+}
+
+static void core_region_del(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void core_region_nop(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ cpu_register_physical_memory_log(section, section->readonly);
+}
+
+static void core_log_start(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void core_log_stop(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void core_log_sync(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void core_log_global_start(MemoryListener *listener)
+{
+ cpu_physical_memory_set_dirty_tracking(1);
+}
+
+static void core_log_global_stop(MemoryListener *listener)
+{
+ cpu_physical_memory_set_dirty_tracking(0);
+}
+
+static void core_eventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, int fd)
+{
+}
+
+static void core_eventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, int fd)
+{
+}
+
+static void io_begin(MemoryListener *listener)
+{
+}
+
+static void io_commit(MemoryListener *listener)
+{
+}
+
+static void io_region_add(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
+
+ mrio->mr = section->mr;
+ mrio->offset = section->offset_within_region;
+ iorange_init(&mrio->iorange, &memory_region_iorange_ops,
+ section->offset_within_address_space, section->size);
+ ioport_register(&mrio->iorange);
+}
+
+static void io_region_del(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+ isa_unassign_ioport(section->offset_within_address_space, section->size);
+}
+
+static void io_region_nop(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void io_log_start(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void io_log_stop(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void io_log_sync(MemoryListener *listener,
+ MemoryRegionSection *section)
+{
+}
+
+static void io_log_global_start(MemoryListener *listener)
+{
+}
+
+static void io_log_global_stop(MemoryListener *listener)
+{
+}
+
+static void io_eventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, int fd)
+{
+}
+
+static void io_eventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data, int fd)
+{
+}
+
+static MemoryListener core_memory_listener = {
+ .begin = core_begin,
+ .commit = core_commit,
+ .region_add = core_region_add,
+ .region_del = core_region_del,
+ .region_nop = core_region_nop,
+ .log_start = core_log_start,
+ .log_stop = core_log_stop,
+ .log_sync = core_log_sync,
+ .log_global_start = core_log_global_start,
+ .log_global_stop = core_log_global_stop,
+ .eventfd_add = core_eventfd_add,
+ .eventfd_del = core_eventfd_del,
+ .priority = 0,
+};
+
+static MemoryListener io_memory_listener = {
+ .begin = io_begin,
+ .commit = io_commit,
+ .region_add = io_region_add,
+ .region_del = io_region_del,
+ .region_nop = io_region_nop,
+ .log_start = io_log_start,
+ .log_stop = io_log_stop,
+ .log_sync = io_log_sync,
+ .log_global_start = io_log_global_start,
+ .log_global_stop = io_log_global_stop,
+ .eventfd_add = io_eventfd_add,
+ .eventfd_del = io_eventfd_del,
+ .priority = 0,
+};
+
static void memory_map_init(void)
{
system_memory = g_malloc(sizeof(*system_memory));
system_io = g_malloc(sizeof(*system_io));
memory_region_init(system_io, "io", 65536);
set_system_io_map(system_io);
+
+ memory_listener_register(&core_memory_listener, system_memory);
+ memory_listener_register(&io_memory_listener, system_io);
}
MemoryRegion *get_system_memory(void)
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l, flags;
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
{
- int l, io_index;
+ int l;
uint8_t *ptr;
uint32_t val;
target_phys_addr_t page;
- ram_addr_t pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- p = phys_page_find(page >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(page >> TARGET_PAGE_BITS);
if (is_write) {
- if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
+ if (!memory_region_is_ram(section->mr)) {
target_phys_addr_t addr1;
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
+ addr1 = section_addr(section, addr);
/* XXX: could force cpu_single_env to NULL to avoid
potential bugs */
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit write access */
val = ldl_p(buf);
- io_mem_write(io_index, addr1, val, 4);
+ io_mem_write(section->mr, addr1, val, 4);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit write access */
val = lduw_p(buf);
- io_mem_write(io_index, addr1, val, 2);
+ io_mem_write(section->mr, addr1, val, 2);
l = 2;
} else {
/* 8 bit write access */
val = ldub_p(buf);
- io_mem_write(io_index, addr1, val, 1);
+ io_mem_write(section->mr, addr1, val, 1);
l = 1;
}
- } else {
+ } else if (!section->readonly) {
ram_addr_t addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
qemu_put_ram_ptr(ptr);
}
} else {
- if (!is_ram_rom_romd(pd)) {
+ if (!is_ram_rom_romd(section)) {
target_phys_addr_t addr1;
/* I/O case */
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr1 = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
+ addr1 = section_addr(section, addr);
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit read access */
- val = io_mem_read(io_index, addr1, 4);
+ val = io_mem_read(section->mr, addr1, 4);
stl_p(buf, val);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit read access */
- val = io_mem_read(io_index, addr1, 2);
+ val = io_mem_read(section->mr, addr1, 2);
stw_p(buf, val);
l = 2;
} else {
/* 8 bit read access */
- val = io_mem_read(io_index, addr1, 1);
+ val = io_mem_read(section->mr, addr1, 1);
stb_p(buf, val);
l = 1;
}
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK);
- memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
+ ptr = qemu_get_ram_ptr(section->mr->ram_addr
+ + section_addr(section, addr));
+ memcpy(buf, ptr, l);
qemu_put_ram_ptr(ptr);
}
}
int l;
uint8_t *ptr;
target_phys_addr_t page;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- p = phys_page_find(page >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(page >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(pd)) {
+ if (!is_ram_rom_romd(section)) {
/* do nothing */
} else {
unsigned long addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + section_addr(section, addr);
/* ROM/RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
target_phys_addr_t todo = 0;
int l;
target_phys_addr_t page;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
ram_addr_t raddr = RAM_ADDR_MAX;
ram_addr_t rlen;
void *ret;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- p = phys_page_find(page >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(page >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
+ if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
if (todo || bounce.buffer) {
break;
}
return bounce.buffer;
}
if (!todo) {
- raddr = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ raddr = memory_region_get_ram_addr(section->mr)
+ + section_addr(section, addr);
}
len -= l;
static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint32_t val;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(pd)) {
+ if (!is_ram_rom_romd(section)) {
/* I/O case */
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
- val = io_mem_read(io_index, addr, 4);
+ addr = section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 4);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldl_le_p(ptr);
static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(pd)) {
+ if (!is_ram_rom_romd(section)) {
/* I/O case */
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
+ addr = section_addr(section, addr);
/* XXX This is broken when device endian != cpu endian.
Fix and add "endian" variable check */
#ifdef TARGET_WORDS_BIGENDIAN
- val = io_mem_read(io_index, addr, 4) << 32;
- val |= io_mem_read(io_index, addr + 4, 4);
+ val = io_mem_read(section->mr, addr, 4) << 32;
+ val |= io_mem_read(section->mr, addr + 4, 4);
#else
- val = io_mem_read(io_index, addr, 4);
- val |= io_mem_read(io_index, addr + 4, 4) << 32;
+ val = io_mem_read(section->mr, addr, 4);
+ val |= io_mem_read(section->mr, addr + 4, 4) << 32;
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldq_le_p(ptr);
static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(pd)) {
+ if (!is_ram_rom_romd(section)) {
/* I/O case */
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
- val = io_mem_read(io_index, addr, 2);
+ addr = section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 2);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = lduw_le_p(ptr);
bits are used to track modified PTEs */
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
- io_mem_write(io_index, addr, val, 4);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
+ io_mem_write(section->mr, addr, val, 4);
} else {
- unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + section_addr(section, addr);
ptr = qemu_get_ram_ptr(addr1);
stl_p(ptr, val);
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
#ifdef TARGET_WORDS_BIGENDIAN
- io_mem_write(io_index, addr, val >> 32, 4);
- io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
+ io_mem_write(section->mr, addr, val >> 32, 4);
+ io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
#else
- io_mem_write(io_index, addr, (uint32_t)val, 4);
- io_mem_write(io_index, addr + 4, val >> 32, 4);
+ io_mem_write(section->mr, addr, (uint32_t)val, 4);
+ io_mem_write(section->mr, addr + 4, val >> 32, 4);
#endif
} else {
- ptr = qemu_get_ram_ptr(pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
+ & TARGET_PAGE_MASK)
+ + section_addr(section, addr));
stq_p(ptr, val);
}
}
static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
val = bswap32(val);
}
#endif
- io_mem_write(io_index, addr, val, 4);
+ io_mem_write(section->mr, addr, val, 4);
} else {
unsigned long addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- unsigned long pd;
- PhysPageDesc p;
+ MemoryRegionSection *section;
- p = phys_page_find(addr >> TARGET_PAGE_BITS);
- pd = p.phys_offset;
+ section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if ((pd & ~TARGET_PAGE_MASK) != io_mem_ram.ram_addr) {
- io_index = pd & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + p.region_offset;
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
+ }
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
val = bswap16(val);
}
#endif
- io_mem_write(io_index, addr, val, 2);
+ io_mem_write(section->mr, addr, val, 2);
} else {
unsigned long addr1;
- addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
}
/* virtual memory access for debug (includes writing to ROM) */
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l;
/* in deterministic execution mode, instructions doing device I/Os
must be at the end of the TB */
-void cpu_io_recompile(CPUState *env, void *retaddr)
+void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
{
TranslationBlock *tb;
uint32_t n, cflags;
target_ulong pc, cs_base;
uint64_t flags;
- tb = tb_find_pc((unsigned long)retaddr);
+ tb = tb_find_pc(retaddr);
if (!tb) {
cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
- retaddr);
+ (void *)retaddr);
}
n = env->icount_decr.u16.low + tb->icount;
- cpu_restore_state(tb, env, (unsigned long)retaddr);
+ cpu_restore_state(tb, env, retaddr);
/* Calculate how many instructions had been executed before the fault
occurred. */
n = n - env->icount_decr.u16.low;
/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
is the offset relative to phys_ram_base */
-tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
+tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
{
int mmu_idx, page_index, pd;
void *p;
+ MemoryRegion *mr;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = cpu_mmu_index(env1);
if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
(addr & TARGET_PAGE_MASK))) {
+#ifdef CONFIG_TCG_PASS_AREG0
+ cpu_ldub_code(env1, addr);
+#else
ldub_code(addr);
+#endif
}
- pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
- if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
- && !is_romd(pd)) {
+ pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
+ mr = iotlb_to_region(pd);
+ if (mr != &io_mem_ram && mr != &io_mem_rom
+ && mr != &io_mem_notdirty && !mr->rom_device
+ && mr != &io_mem_watch) {
#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
#else
#define MMUSUFFIX _cmmu
#undef GETPC
-#define GETPC() NULL
+#define GETPC() ((uintptr_t)0)
#define env cpu_single_env
#define SOFTMMU_CODE_ACCESS