* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
-#include "qemu/timer.h"
-#include "exec/address-spaces.h"
-#include "exec/memory.h"
-
-#define DATA_SIZE (1 << SHIFT)
-
#if DATA_SIZE == 8
#define SUFFIX q
#define LSUFFIX q
# define BSWAP(X) (X)
#endif
-#ifdef TARGET_WORDS_BIGENDIAN
-# define TGT_BE(X) (X)
-# define TGT_LE(X) BSWAP(X)
-#else
-# define TGT_BE(X) BSWAP(X)
-# define TGT_LE(X) (X)
-#endif
-
#if DATA_SIZE == 1
# define helper_le_ld_name glue(glue(helper_ret_ld, USUFFIX), MMUSUFFIX)
# define helper_be_ld_name helper_le_ld_name
# define helper_be_st_name glue(glue(helper_be_st, SUFFIX), MMUSUFFIX)
#endif
-#ifdef TARGET_WORDS_BIGENDIAN
-# define helper_te_ld_name helper_be_ld_name
-# define helper_te_st_name helper_be_st_name
-#else
-# define helper_te_ld_name helper_le_ld_name
-# define helper_te_st_name helper_le_st_name
-#endif
-
#ifndef SOFTMMU_CODE_ACCESS
static inline DATA_TYPE glue(io_read, SUFFIX)(CPUArchState *env,
- CPUIOTLBEntry *iotlbentry,
+ size_t mmu_idx, size_t index,
target_ulong addr,
uintptr_t retaddr)
{
- uint64_t val;
- CPUState *cpu = ENV_GET_CPU(env);
- hwaddr physaddr = iotlbentry->addr;
- MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
-
- physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
- cpu->mem_io_pc = retaddr;
- if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
- cpu_io_recompile(cpu, retaddr);
- }
-
- cpu->mem_io_vaddr = addr;
- memory_region_dispatch_read(mr, physaddr, &val, 1 << SHIFT,
- iotlbentry->attrs);
- return val;
+ CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
+ return io_readx(env, iotlbentry, addr, retaddr, DATA_SIZE);
}
#endif
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
- int a_bits = get_alignment_bits(get_memop(oi));
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
DATA_TYPE res;
- /* Adjust the given return address. */
- retaddr -= GETPC_ADJ;
-
- if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
+ if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
- CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
- iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
- res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
+ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
res = TGT_LE(res);
return res;
}
do_unaligned_access:
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
- /* Note the adjustment at the beginning of the function.
- Undo that for the recursion. */
- res1 = helper_le_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
- res2 = helper_le_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
+ res1 = helper_le_ld_name(env, addr1, oi, retaddr);
+ res2 = helper_le_ld_name(env, addr2, oi, retaddr);
shift = (addr & (DATA_SIZE - 1)) * 8;
/* Little-endian combine. */
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].ADDR_READ;
- int a_bits = get_alignment_bits(get_memop(oi));
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
DATA_TYPE res;
- /* Adjust the given return address. */
- retaddr -= GETPC_ADJ;
-
- if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
+ if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, READ_ACCESS_TYPE,
mmu_idx, retaddr);
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
- CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
- iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
- res = glue(io_read, SUFFIX)(env, iotlbentry, addr, retaddr);
+ res = glue(io_read, SUFFIX)(env, mmu_idx, index, addr, retaddr);
res = TGT_BE(res);
return res;
}
do_unaligned_access:
addr1 = addr & ~(DATA_SIZE - 1);
addr2 = addr1 + DATA_SIZE;
- /* Note the adjustment at the beginning of the function.
- Undo that for the recursion. */
- res1 = helper_be_ld_name(env, addr1, oi, retaddr + GETPC_ADJ);
- res2 = helper_be_ld_name(env, addr2, oi, retaddr + GETPC_ADJ);
+ res1 = helper_be_ld_name(env, addr1, oi, retaddr);
+ res2 = helper_be_ld_name(env, addr2, oi, retaddr);
shift = (addr & (DATA_SIZE - 1)) * 8;
/* Big-endian combine. */
#endif
static inline void glue(io_write, SUFFIX)(CPUArchState *env,
- CPUIOTLBEntry *iotlbentry,
+ size_t mmu_idx, size_t index,
DATA_TYPE val,
target_ulong addr,
uintptr_t retaddr)
{
- CPUState *cpu = ENV_GET_CPU(env);
- hwaddr physaddr = iotlbentry->addr;
- MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
-
- physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
- if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
- cpu_io_recompile(cpu, retaddr);
- }
-
- cpu->mem_io_vaddr = addr;
- cpu->mem_io_pc = retaddr;
- memory_region_dispatch_write(mr, physaddr, val, 1 << SHIFT,
- iotlbentry->attrs);
+ CPUIOTLBEntry *iotlbentry = &env->iotlb[mmu_idx][index];
+ return io_writex(env, iotlbentry, val, addr, retaddr, DATA_SIZE);
}
void helper_le_st_name(CPUArchState *env, target_ulong addr, DATA_TYPE val,
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
- int a_bits = get_alignment_bits(get_memop(oi));
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
- /* Adjust the given return address. */
- retaddr -= GETPC_ADJ;
-
- if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
+ if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
- CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
- iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
val = TGT_LE(val);
- glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
+ glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
return;
}
for (i = 0; i < DATA_SIZE; ++i) {
/* Little-endian extract. */
uint8_t val8 = val >> (i * 8);
- /* Note the adjustment at the beginning of the function.
- Undo that for the recursion. */
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
- oi, retaddr + GETPC_ADJ);
+ oi, retaddr);
}
return;
}
unsigned mmu_idx = get_mmuidx(oi);
int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
- int a_bits = get_alignment_bits(get_memop(oi));
+ unsigned a_bits = get_alignment_bits(get_memop(oi));
uintptr_t haddr;
- /* Adjust the given return address. */
- retaddr -= GETPC_ADJ;
-
- if (a_bits > 0 && (addr & ((1 << a_bits) - 1)) != 0) {
+ if (addr & ((1 << a_bits) - 1)) {
cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
mmu_idx, retaddr);
}
/* Handle an IO access. */
if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
- CPUIOTLBEntry *iotlbentry;
if ((addr & (DATA_SIZE - 1)) != 0) {
goto do_unaligned_access;
}
- iotlbentry = &env->iotlb[mmu_idx][index];
/* ??? Note that the io helpers always read data in the target
byte ordering. We should push the LE/BE request down into io. */
val = TGT_BE(val);
- glue(io_write, SUFFIX)(env, iotlbentry, val, addr, retaddr);
+ glue(io_write, SUFFIX)(env, mmu_idx, index, val, addr, retaddr);
return;
}
for (i = 0; i < DATA_SIZE; ++i) {
/* Big-endian extract. */
uint8_t val8 = val >> (((DATA_SIZE - 1) * 8) - (i * 8));
- /* Note the adjustment at the beginning of the function.
- Undo that for the recursion. */
glue(helper_ret_stb, MMUSUFFIX)(env, addr + i, val8,
- oi, retaddr + GETPC_ADJ);
+ oi, retaddr);
}
return;
}
glue(glue(st, SUFFIX), _be_p)((uint8_t *)haddr, val);
}
#endif /* DATA_SIZE > 1 */
-
-#if DATA_SIZE == 1
-/* Probe for whether the specified guest write access is permitted.
- * If it is not permitted then an exception will be taken in the same
- * way as if this were a real write access (and we will not return).
- * Otherwise the function will return, and there will be a valid
- * entry in the TLB for this access.
- */
-void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
- uintptr_t retaddr)
-{
- int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
-
- if ((addr & TARGET_PAGE_MASK)
- != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
- /* TLB entry is for a different page */
- if (!VICTIM_TLB_HIT(addr_write, addr)) {
- tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
- }
- }
-}
-#endif
#endif /* !defined(SOFTMMU_CODE_ACCESS) */
#undef READ_ACCESS_TYPE
-#undef SHIFT
#undef DATA_TYPE
#undef SUFFIX
#undef LSUFFIX
#undef USUFFIX
#undef SSUFFIX
#undef BSWAP
-#undef TGT_BE
-#undef TGT_LE
-#undef CPU_BE
-#undef CPU_LE
#undef helper_le_ld_name
#undef helper_be_ld_name
#undef helper_le_lds_name
#undef helper_be_lds_name
#undef helper_le_st_name
#undef helper_be_st_name
-#undef helper_te_ld_name
-#undef helper_te_st_name