*/
#include "config.h"
#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#else
#include <sys/types.h>
#include "cpu.h"
#include "exec-all.h"
+#include "qemu-common.h"
+#include "tcg.h"
+#include "hw/hw.h"
+#include "osdep.h"
#if defined(CONFIG_USER_ONLY)
#include <qemu.h>
#endif
#undef DEBUG_TB_CHECK
#endif
-/* threshold to flush the translated code buffer */
-#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
-
#define SMC_BITMAP_USE_THRESHOLD 10
#define MMAP_AREA_START 0x00000000
#define TARGET_VIRT_ADDR_SPACE_BITS 42
#elif defined(TARGET_PPC64)
#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#elif defined(TARGET_I386) && !defined(USE_KQEMU)
+#define TARGET_PHYS_ADDR_SPACE_BITS 36
#else
/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
#define TARGET_PHYS_ADDR_SPACE_BITS 32
#endif
-TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
+static TranslationBlock *tbs;
+int code_gen_max_blocks;
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
-int nb_tbs;
+static int nb_tbs;
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
-uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
+#if defined(__arm__) || defined(__sparc_v9__)
+/* The prologue must be reachable with a direct jump. ARM and Sparc64
+ have limited branch ranges (possibly also PPC) so place it in a
+ section close to code segment. */
+#define code_gen_section \
+ __attribute__((__section__(".gen_code"))) \
+ __attribute__((aligned (32)))
+#else
+#define code_gen_section \
+ __attribute__((aligned (32)))
+#endif
+
+uint8_t code_gen_prologue[1024] code_gen_section;
+static uint8_t *code_gen_buffer;
+static unsigned long code_gen_buffer_size;
+/* threshold to flush the translated code buffer */
+static unsigned long code_gen_buffer_max_size;
uint8_t *code_gen_ptr;
-int phys_ram_size;
+#if !defined(CONFIG_USER_ONLY)
+ram_addr_t phys_ram_size;
int phys_ram_fd;
uint8_t *phys_ram_base;
uint8_t *phys_ram_dirty;
+static int in_migration;
static ram_addr_t phys_ram_alloc_offset = 0;
+#endif
CPUState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
CPUState *cpu_single_env;
+/* 0 = Do not count executed instructions.
+ 1 = Precise instruction counting.
+ 2 = Adaptive rate instruction counting. */
+int use_icount = 0;
+/* Current instruction counter. While executing translated code this may
+ include some instructions that have not yet been executed. */
+int64_t qemu_icount;
typedef struct PageDesc {
/* list of TBs intersecting this ram page */
} PageDesc;
typedef struct PhysPageDesc {
- /* offset in host memory of the page + io_index in the low 12 bits */
- uint32_t phys_offset;
+ /* offset in host memory of the page + io_index in the low bits */
+ ram_addr_t phys_offset;
} PhysPageDesc;
#define L2_BITS 10
#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)
-static void io_mem_init(void);
-
unsigned long qemu_real_host_page_size;
unsigned long qemu_host_page_bits;
unsigned long qemu_host_page_size;
/* XXX: for system emulation, it could just be an array */
static PageDesc *l1_map[L1_SIZE];
-PhysPageDesc **l1_phys_map;
+static PhysPageDesc **l1_phys_map;
+
+#if !defined(CONFIG_USER_ONLY)
+static void io_mem_init(void);
/* io memory support */
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
static int io_mem_nb;
-#if defined(CONFIG_SOFTMMU)
static int io_mem_watch;
#endif
/* log support */
-char *logfilename = "/tmp/qemu.log";
+static const char *logfilename = "/tmp/qemu.log";
FILE *logfile;
int loglevel;
static int log_append = 0;
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
target_phys_addr_t base;
- CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE];
- CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE];
- void *opaque[TARGET_PAGE_SIZE];
+ CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
+ CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
+ void *opaque[TARGET_PAGE_SIZE][2][4];
} subpage_t;
+#ifdef _WIN32
+static void map_exec(void *addr, long size)
+{
+ DWORD old_protect;
+ VirtualProtect(addr, size,
+ PAGE_EXECUTE_READWRITE, &old_protect);
+
+}
+#else
+static void map_exec(void *addr, long size)
+{
+ unsigned long start, end, page_size;
+
+ page_size = getpagesize();
+ start = (unsigned long)addr;
+ start &= ~(page_size - 1);
+
+ end = (unsigned long)addr + size;
+ end += page_size - 1;
+ end &= ~(page_size - 1);
+
+ mprotect((void *)start, end - start,
+ PROT_READ | PROT_WRITE | PROT_EXEC);
+}
+#endif
+
static void page_init(void)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
GetSystemInfo(&system_info);
qemu_real_host_page_size = system_info.dwPageSize;
-
- VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
- PAGE_EXECUTE_READWRITE, &old_protect);
}
#else
qemu_real_host_page_size = getpagesize();
- {
- unsigned long start, end;
-
- start = (unsigned long)code_gen_buffer;
- start &= ~(qemu_real_host_page_size - 1);
-
- end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
- end += qemu_real_host_page_size - 1;
- end &= ~(qemu_real_host_page_size - 1);
-
- mprotect((void *)start, end - start,
- PROT_READ | PROT_WRITE | PROT_EXEC);
- }
#endif
-
if (qemu_host_page_size == 0)
qemu_host_page_size = qemu_real_host_page_size;
if (qemu_host_page_size < TARGET_PAGE_SIZE)
qemu_host_page_mask = ~(qemu_host_page_size - 1);
l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
+
+#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
+ {
+ long long startaddr, endaddr;
+ FILE *f;
+ int n;
+
+ mmap_lock();
+ last_brk = (unsigned long)sbrk(0);
+ f = fopen("/proc/self/maps", "r");
+ if (f) {
+ do {
+ n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
+ if (n == 2) {
+ startaddr = MIN(startaddr,
+ (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
+ endaddr = MIN(endaddr,
+ (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
+ page_set_flags(startaddr & TARGET_PAGE_MASK,
+ TARGET_PAGE_ALIGN(endaddr),
+ PAGE_RESERVED);
+ }
+ } while (!feof(f));
+ fclose(f);
+ }
+ mmap_unlock();
+ }
+#endif
+}
+
+static inline PageDesc **page_l1_map(target_ulong index)
+{
+#if TARGET_LONG_BITS > 32
+ /* Host memory outside guest VM. For 32-bit targets we have already
+ excluded high addresses. */
+ if (index > ((target_ulong)L2_SIZE * L1_SIZE))
+ return NULL;
+#endif
+ return &l1_map[index >> L2_BITS];
}
-static inline PageDesc *page_find_alloc(unsigned int index)
+static inline PageDesc *page_find_alloc(target_ulong index)
{
PageDesc **lp, *p;
+ lp = page_l1_map(index);
+ if (!lp)
+ return NULL;
- lp = &l1_map[index >> L2_BITS];
p = *lp;
if (!p) {
/* allocate if not found */
- p = qemu_malloc(sizeof(PageDesc) * L2_SIZE);
- memset(p, 0, sizeof(PageDesc) * L2_SIZE);
+#if defined(CONFIG_USER_ONLY)
+ unsigned long addr;
+ size_t len = sizeof(PageDesc) * L2_SIZE;
+ /* Don't use qemu_malloc because it may recurse. */
+ p = mmap(0, len, PROT_READ | PROT_WRITE,
+ MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
+ *lp = p;
+ addr = h2g(p);
+ if (addr == (target_ulong)addr) {
+ page_set_flags(addr & TARGET_PAGE_MASK,
+ TARGET_PAGE_ALIGN(addr + len),
+ PAGE_RESERVED);
+ }
+#else
+ p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
*lp = p;
+#endif
}
return p + (index & (L2_SIZE - 1));
}
-static inline PageDesc *page_find(unsigned int index)
+static inline PageDesc *page_find(target_ulong index)
{
- PageDesc *p;
+ PageDesc **lp, *p;
+ lp = page_l1_map(index);
+ if (!lp)
+ return NULL;
- p = l1_map[index >> L2_BITS];
+ p = *lp;
if (!p)
return 0;
return p + (index & (L2_SIZE - 1));
static void tlb_protect_code(ram_addr_t ram_addr);
static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
target_ulong vaddr);
+#define mmap_lock() do { } while(0)
+#define mmap_unlock() do { } while(0)
+#endif
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
+
+#if defined(CONFIG_USER_ONLY)
+/* Currently it is not recommanded to allocate big chunks of data in
+ user mode. It will change when a dedicated libc will be used */
+#define USE_STATIC_CODE_GEN_BUFFER
+#endif
+
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
+#endif
+
+static void code_gen_alloc(unsigned long tb_size)
+{
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+ code_gen_buffer = static_code_gen_buffer;
+ code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+ map_exec(code_gen_buffer, code_gen_buffer_size);
+#else
+ code_gen_buffer_size = tb_size;
+ if (code_gen_buffer_size == 0) {
+#if defined(CONFIG_USER_ONLY)
+ /* in user mode, phys_ram_size is not meaningful */
+ code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+#else
+ /* XXX: needs ajustments */
+ code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
+#endif
+ }
+ if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
+ code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
+ /* The code gen buffer location may have constraints depending on
+ the host cpu and OS */
+#if defined(__linux__)
+ {
+ int flags;
+ void *start = NULL;
+
+ flags = MAP_PRIVATE | MAP_ANONYMOUS;
+#if defined(__x86_64__)
+ flags |= MAP_32BIT;
+ /* Cannot map more than that */
+ if (code_gen_buffer_size > (800 * 1024 * 1024))
+ code_gen_buffer_size = (800 * 1024 * 1024);
+#elif defined(__sparc_v9__)
+ // Map the buffer below 2G, so we can use direct calls and branches
+ flags |= MAP_FIXED;
+ start = (void *) 0x60000000UL;
+ if (code_gen_buffer_size > (512 * 1024 * 1024))
+ code_gen_buffer_size = (512 * 1024 * 1024);
+#endif
+ code_gen_buffer = mmap(start, code_gen_buffer_size,
+ PROT_WRITE | PROT_READ | PROT_EXEC,
+ flags, -1, 0);
+ if (code_gen_buffer == MAP_FAILED) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+ }
+#elif defined(__FreeBSD__)
+ {
+ int flags;
+ void *addr = NULL;
+ flags = MAP_PRIVATE | MAP_ANONYMOUS;
+#if defined(__x86_64__)
+ /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
+ * 0x40000000 is free */
+ flags |= MAP_FIXED;
+ addr = (void *)0x40000000;
+ /* Cannot map more than that */
+ if (code_gen_buffer_size > (800 * 1024 * 1024))
+ code_gen_buffer_size = (800 * 1024 * 1024);
+#endif
+ code_gen_buffer = mmap(addr, code_gen_buffer_size,
+ PROT_WRITE | PROT_READ | PROT_EXEC,
+ flags, -1, 0);
+ if (code_gen_buffer == MAP_FAILED) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+ }
+#else
+ code_gen_buffer = qemu_malloc(code_gen_buffer_size);
+ if (!code_gen_buffer) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+ map_exec(code_gen_buffer, code_gen_buffer_size);
+#endif
+#endif /* !USE_STATIC_CODE_GEN_BUFFER */
+ map_exec(code_gen_prologue, sizeof(code_gen_prologue));
+ code_gen_buffer_max_size = code_gen_buffer_size -
+ code_gen_max_block_size();
+ code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
+ tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
+}
+
+/* Must be called before using the QEMU cpus. 'tb_size' is the size
+ (in bytes) allocated to the translation buffer. Zero means default
+ size. */
+void cpu_exec_init_all(unsigned long tb_size)
+{
+ cpu_gen_init();
+ code_gen_alloc(tb_size);
+ code_gen_ptr = code_gen_buffer;
+ page_init();
+#if !defined(CONFIG_USER_ONLY)
+ io_mem_init();
+#endif
+}
+
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+
+#define CPU_COMMON_SAVE_VERSION 1
+
+static void cpu_common_save(QEMUFile *f, void *opaque)
+{
+ CPUState *env = opaque;
+
+ qemu_put_be32s(f, &env->halted);
+ qemu_put_be32s(f, &env->interrupt_request);
+}
+
+static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
+{
+ CPUState *env = opaque;
+
+ if (version_id != CPU_COMMON_SAVE_VERSION)
+ return -EINVAL;
+
+ qemu_get_be32s(f, &env->halted);
+ qemu_get_be32s(f, &env->interrupt_request);
+ tlb_flush(env, 1);
+
+ return 0;
+}
#endif
void cpu_exec_init(CPUState *env)
CPUState **penv;
int cpu_index;
- if (!code_gen_ptr) {
- code_gen_ptr = code_gen_buffer;
- page_init();
- io_mem_init();
- }
env->next_cpu = NULL;
penv = &first_cpu;
cpu_index = 0;
env->cpu_index = cpu_index;
env->nb_watchpoints = 0;
*penv = env;
+#if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
+ register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
+ cpu_common_save, cpu_common_load, env);
+ register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
+ cpu_save, cpu_load, env);
+#endif
}
static inline void invalidate_page_bitmap(PageDesc *p)
{
CPUState *env;
#if defined(DEBUG_FLUSH)
- printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
- code_gen_ptr - code_gen_buffer,
- nb_tbs,
- nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
+ printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
+ (unsigned long)(code_gen_ptr - code_gen_buffer),
+ nb_tbs, nb_tbs > 0 ?
+ ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
#endif
+ if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
+ cpu_abort(env1, "Internal error: code buffer overflow\n");
+
nb_tbs = 0;
for(env = first_cpu; env != NULL; env = env->next_cpu) {
}
}
-void tb_jmp_check(TranslationBlock *tb)
+static void tb_jmp_check(TranslationBlock *tb)
{
TranslationBlock *tb1;
unsigned int n1;
tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}
-static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
+void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
{
CPUState *env;
PageDesc *p;
unsigned int h, n1;
- target_ulong phys_pc;
+ target_phys_addr_t phys_pc;
TranslationBlock *tb1, *tb2;
/* remove the TB from the hash list */
int n, tb_start, tb_end;
TranslationBlock *tb;
- p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
+ p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
if (!p->code_bitmap)
return;
- memset(p->code_bitmap, 0, TARGET_PAGE_SIZE / 8);
tb = p->first_tb;
while (tb != NULL) {
}
}
-#ifdef TARGET_HAS_PRECISE_SMC
-
-static void tb_gen_code(CPUState *env,
- target_ulong pc, target_ulong cs_base, int flags,
- int cflags)
+TranslationBlock *tb_gen_code(CPUState *env,
+ target_ulong pc, target_ulong cs_base,
+ int flags, int cflags)
{
TranslationBlock *tb;
uint8_t *tc_ptr;
tb_flush(env);
/* cannot fail at this point */
tb = tb_alloc(pc);
+ /* Don't forget to invalidate previous TB info. */
+ tb_invalidated_flag = 1;
}
tc_ptr = code_gen_ptr;
tb->tc_ptr = tc_ptr;
tb->cs_base = cs_base;
tb->flags = flags;
tb->cflags = cflags;
- cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
+ cpu_gen_code(env, tb, &code_gen_size);
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
phys_page2 = get_phys_addr_code(env, virt_page2);
}
tb_link_phys(tb, phys_pc, phys_page2);
+ return tb;
}
-#endif
/* invalidate all TBs which intersect with the target physical page
starting in range [start;end[. NOTE: start and end must refer to
the same physical page. 'is_cpu_write_access' should be true if called
from a real cpu write access: the virtual CPU will exit the current
TB if code is modified inside this TB. */
-void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
+void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
int is_cpu_write_access)
{
int n, current_tb_modified, current_tb_not_found, current_flags;
if (current_tb_not_found) {
current_tb_not_found = 0;
current_tb = NULL;
- if (env->mem_write_pc) {
+ if (env->mem_io_pc) {
/* now we have a real cpu fault */
- current_tb = tb_find_pc(env->mem_write_pc);
+ current_tb = tb_find_pc(env->mem_io_pc);
}
}
if (current_tb == tb &&
- !(current_tb->cflags & CF_SINGLE_INSN)) {
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
/* If we are modifying the current TB, we must stop
its execution. We could be more precise by checking
that the modification is after the current PC, but it
current_tb_modified = 1;
cpu_restore_state(current_tb, env,
- env->mem_write_pc, NULL);
+ env->mem_io_pc, NULL);
#if defined(TARGET_I386)
current_flags = env->hflags;
current_flags |= (env->eflags & (IOPL_MASK | TF_MASK | VM_MASK));
if (!p->first_tb) {
invalidate_page_bitmap(p);
if (is_cpu_write_access) {
- tlb_unprotect_code_phys(env, start, env->mem_write_vaddr);
+ tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
}
}
#endif
modifying the memory. It will ensure that it cannot modify
itself */
env->current_tb = NULL;
- tb_gen_code(env, current_pc, current_cs_base, current_flags,
- CF_SINGLE_INSN);
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
cpu_resume_from_signal(env, NULL);
}
#endif
}
/* len must be <= 8 and start must be a multiple of len */
-static inline void tb_invalidate_phys_page_fast(target_ulong start, int len)
+static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
{
PageDesc *p;
int offset, b;
if (1) {
if (loglevel) {
fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
- cpu_single_env->mem_write_vaddr, len,
+ cpu_single_env->mem_io_vaddr, len,
cpu_single_env->eip,
cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
}
}
#if !defined(CONFIG_SOFTMMU)
-static void tb_invalidate_phys_page(target_ulong addr,
+static void tb_invalidate_phys_page(target_phys_addr_t addr,
unsigned long pc, void *puc)
{
int n, current_flags, current_tb_modified;
tb = (TranslationBlock *)((long)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
- !(current_tb->cflags & CF_SINGLE_INSN)) {
+ (current_tb->cflags & CF_COUNT_MASK) != 1) {
/* If we are modifying the current TB, we must stop
its execution. We could be more precise by checking
that the modification is after the current PC, but it
modifying the memory. It will ensure that it cannot modify
itself */
env->current_tb = NULL;
- tb_gen_code(env, current_pc, current_cs_base, current_flags,
- CF_SINGLE_INSN);
+ tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
cpu_resume_from_signal(env, puc);
}
#endif
mprotect(g2h(page_addr), qemu_host_page_size,
(prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
- printf("protecting code page: 0x%08lx\n",
+ printf("protecting code page: 0x" TARGET_FMT_lx "\n",
page_addr);
#endif
}
{
TranslationBlock *tb;
- if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
- (code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
+ if (nb_tbs >= code_gen_max_blocks ||
+ (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
return NULL;
tb = &tbs[nb_tbs++];
tb->pc = pc;
return tb;
}
+void tb_free(TranslationBlock *tb)
+{
+ /* In practice this is mostly used for single use temporary TB
+ Ignore the hard cases and just back up if this TB happens to
+ be the last one generated. */
+ if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
+ code_gen_ptr = tb->tc_ptr;
+ nb_tbs--;
+ }
+}
+
/* add a new TB and link it to the physical page tables. phys_page2 is
(-1) to indicate that only one page contains the TB. */
void tb_link_phys(TranslationBlock *tb,
unsigned int h;
TranslationBlock **ptb;
+ /* Grab the mmap lock to stop another thread invalidating this TB
+ before we are done. */
+ mmap_lock();
/* add in the physical hash table */
h = tb_phys_hash_func(phys_pc);
ptb = &tb_phys_hash[h];
tb->jmp_first = (TranslationBlock *)((long)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
-#ifdef USE_CODE_COPY
- tb->cflags &= ~CF_FP_USED;
- if (tb->cflags & CF_TB_FP_USED)
- tb->cflags |= CF_FP_USED;
-#endif
/* init original jump addresses */
if (tb->tb_next_offset[0] != 0xffff)
#ifdef DEBUG_TB_CHECK
tb_page_check();
#endif
+ mmap_unlock();
}
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
#endif
/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr, int type)
{
int i;
i = env->nb_watchpoints++;
env->watchpoint[i].vaddr = addr;
+ env->watchpoint[i].type = type;
tlb_flush_page(env, addr);
/* FIXME: This flush is needed because of the hack to make memory ops
terminate the TB. It can be removed once the proper IO trap and
return -1;
}
+/* Remove all watchpoints. */
+void cpu_watchpoint_remove_all(CPUState *env) {
+ int i;
+
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ tlb_flush_page(env, env->watchpoint[i].vaddr);
+ }
+ env->nb_watchpoints = 0;
+}
+
/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
breakpoint is reached */
int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
#endif
}
+/* remove all breakpoints */
+void cpu_breakpoint_remove_all(CPUState *env) {
+#if defined(TARGET_HAS_ICE)
+ int i;
+ for(i = 0; i < env->nb_breakpoints; i++) {
+ breakpoint_invalidate(env, env->breakpoints[i]);
+ }
+ env->nb_breakpoints = 0;
+#endif
+}
+
/* remove a breakpoint */
int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
{
#if !defined(CONFIG_SOFTMMU)
/* must avoid mmap() usage of glibc by setting a buffer "by hand" */
{
- static uint8_t logfile_buf[4096];
+ static char logfile_buf[4096];
setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
}
#else
/* mask must never be zero, except for A20 change call */
void cpu_interrupt(CPUState *env, int mask)
{
+#if !defined(USE_NPTL)
TranslationBlock *tb;
- static int interrupt_lock;
+ static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
+#endif
+ int old_mask;
+ old_mask = env->interrupt_request;
+ /* FIXME: This is probably not threadsafe. A different thread could
+ be in the middle of a read-modify-write operation. */
env->interrupt_request |= mask;
- /* if the cpu is currently executing code, we must unlink it and
- all the potentially executing TB */
- tb = env->current_tb;
- if (tb && !testandset(&interrupt_lock)) {
- env->current_tb = NULL;
- tb_reset_jump_recursive(tb);
- interrupt_lock = 0;
+#if defined(USE_NPTL)
+ /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
+ problem and hope the cpu will stop of its own accord. For userspace
+ emulation this often isn't actually as bad as it sounds. Often
+ signals are used primarily to interrupt blocking syscalls. */
+#else
+ if (use_icount) {
+ env->icount_decr.u16.high = 0xffff;
+#ifndef CONFIG_USER_ONLY
+ /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
+ an async event happened and we need to process it. */
+ if (!can_do_io(env)
+ && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
+ cpu_abort(env, "Raised interrupt while not in I/O function");
+ }
+#endif
+ } else {
+ tb = env->current_tb;
+ /* if the cpu is currently executing code, we must unlink it and
+ all the potentially executing TB */
+ if (tb && !testandset(&interrupt_lock)) {
+ env->current_tb = NULL;
+ tb_reset_jump_recursive(tb);
+ resetlock(&interrupt_lock);
+ }
}
+#endif
}
void cpu_reset_interrupt(CPUState *env, int mask)
env->interrupt_request &= ~mask;
}
-CPULogItem cpu_log_items[] = {
+const CPULogItem cpu_log_items[] = {
{ CPU_LOG_TB_OUT_ASM, "out_asm",
"show generated host assembly code for each compiled TB" },
{ CPU_LOG_TB_IN_ASM, "in_asm",
"show target assembly code for each compiled TB" },
{ CPU_LOG_TB_OP, "op",
- "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
-#ifdef TARGET_I386
+ "show micro ops for each compiled TB" },
{ CPU_LOG_TB_OP_OPT, "op_opt",
- "show micro ops after optimization for each compiled TB" },
+ "show micro ops "
+#ifdef TARGET_I386
+ "before eflags optimization and "
#endif
+ "after liveness analysis" },
{ CPU_LOG_INT, "int",
"show interrupts/exceptions in short format" },
{ CPU_LOG_EXEC, "exec",
/* takes a comma separated list of log masks. Return 0 if error. */
int cpu_str_to_log_mask(const char *str)
{
- CPULogItem *item;
+ const CPULogItem *item;
int mask;
const char *p, *p1;
void cpu_abort(CPUState *env, const char *fmt, ...)
{
va_list ap;
+ va_list ap2;
va_start(ap, fmt);
+ va_copy(ap2, ap);
fprintf(stderr, "qemu: fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
#ifdef TARGET_I386
- if(env->intercept & INTERCEPT_SVM_MASK) {
- /* most probably the virtual machine should not
- be shut down but rather caught by the VMM */
- vmexit(SVM_EXIT_SHUTDOWN, 0);
- }
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
cpu_dump_state(env, stderr, fprintf, 0);
#endif
if (logfile) {
fprintf(logfile, "qemu: fatal: ");
- vfprintf(logfile, fmt, ap);
+ vfprintf(logfile, fmt, ap2);
fprintf(logfile, "\n");
#ifdef TARGET_I386
cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
fflush(logfile);
fclose(logfile);
}
+ va_end(ap2);
va_end(ap);
abort();
}
CPUState *cpu_copy(CPUState *env)
{
- CPUState *new_env = cpu_init();
+ CPUState *new_env = cpu_init(env->cpu_model_str);
/* preserve chaining and index */
CPUState *next_cpu = new_env->next_cpu;
int cpu_index = new_env->cpu_index;
#if !defined(CONFIG_USER_ONLY)
+static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+{
+ unsigned int i;
+
+ /* Discard jump cache entries for any tb which might potentially
+ overlap the flushed page. */
+ i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
+ memset (&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+
+ i = tb_jmp_cache_hash_page(addr);
+ memset (&env->tb_jmp_cache[i], 0,
+ TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
+}
+
/* NOTE: if flush_global is true, also flush global entries (not
implemented yet) */
void tlb_flush(CPUState *env, int flush_global)
memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
-#if !defined(CONFIG_SOFTMMU)
- munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
-#endif
#ifdef USE_KQEMU
if (env->kqemu_enabled) {
kqemu_flush(env, flush_global);
void tlb_flush_page(CPUState *env, target_ulong addr)
{
int i;
- TranslationBlock *tb;
#if defined(DEBUG_TLB)
printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
#endif
#endif
- /* Discard jump cache entries for any tb which might potentially
- overlap the flushed page. */
- i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
- memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
+ tlb_flush_jmp_cache(env, addr);
- i = tb_jmp_cache_hash_page(addr);
- memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
-
-#if !defined(CONFIG_SOFTMMU)
- if (addr < MMAP_AREA_END)
- munmap((void *)addr, TARGET_PAGE_SIZE);
-#endif
#ifdef USE_KQEMU
if (env->kqemu_enabled) {
kqemu_flush_page(env, addr);
if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
if ((addr - start) < length) {
- tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
+ tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
}
}
}
#endif
#endif
}
+}
-#if !defined(CONFIG_SOFTMMU)
- /* XXX: this is expensive */
- {
- VirtPageDesc *p;
- int j;
- target_ulong addr;
+int cpu_physical_memory_set_dirty_tracking(int enable)
+{
+ in_migration = enable;
+ return 0;
+}
- for(i = 0; i < L1_SIZE; i++) {
- p = l1_virt_map[i];
- if (p) {
- addr = i << (TARGET_PAGE_BITS + L2_BITS);
- for(j = 0; j < L2_SIZE; j++) {
- if (p->valid_tag == virt_valid_tag &&
- p->phys_addr >= start && p->phys_addr < end &&
- (p->prot & PROT_WRITE)) {
- if (addr < MMAP_AREA_END) {
- mprotect((void *)addr, TARGET_PAGE_SIZE,
- p->prot & ~PROT_WRITE);
- }
- }
- addr += TARGET_PAGE_SIZE;
- p++;
- }
- }
- }
- }
-#endif
+int cpu_physical_memory_get_dirty_tracking(void)
+{
+ return in_migration;
}
static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
tlb_entry->addend - (unsigned long)phys_ram_base;
if (!cpu_physical_memory_is_dirty(ram_addr)) {
- tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
+ tlb_entry->addr_write |= TLB_NOTDIRTY;
}
}
}
#endif
}
-static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
- unsigned long start)
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
{
- unsigned long addr;
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
- addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
- if (addr == start) {
- tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
- }
- }
+ if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
+ tlb_entry->addr_write = vaddr;
}
-/* update the TLB corresponding to virtual page vaddr and phys addr
- addr so that it is no longer dirty */
-static inline void tlb_set_dirty(CPUState *env,
- unsigned long addr, target_ulong vaddr)
+/* update the TLB corresponding to virtual page vaddr
+ so that it is no longer dirty */
+static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
{
int i;
- addr &= TARGET_PAGE_MASK;
+ vaddr &= TARGET_PAGE_MASK;
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- tlb_set_dirty1(&env->tlb_table[0][i], addr);
- tlb_set_dirty1(&env->tlb_table[1][i], addr);
+ tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
+ tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
#if (NB_MMU_MODES >= 3)
- tlb_set_dirty1(&env->tlb_table[2][i], addr);
+ tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
#if (NB_MMU_MODES == 4)
- tlb_set_dirty1(&env->tlb_table[3][i], addr);
+ tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
#endif
#endif
}
unsigned long pd;
unsigned int index;
target_ulong address;
+ target_ulong code_address;
target_phys_addr_t addend;
int ret;
CPUTLBEntry *te;
int i;
+ target_phys_addr_t iotlb;
p = phys_page_find(paddr >> TARGET_PAGE_BITS);
if (!p) {
#endif
ret = 0;
-#if !defined(CONFIG_SOFTMMU)
- if (is_softmmu)
-#endif
- {
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
- /* IO memory case */
- address = vaddr | pd;
- addend = paddr;
- } else {
- /* standard memory */
- address = vaddr;
- addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
- }
-
- /* Make accesses to pages with watchpoints go via the
- watchpoint trap routines. */
- for (i = 0; i < env->nb_watchpoints; i++) {
- if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
- if (address & ~TARGET_PAGE_MASK) {
- env->watchpoint[i].addend = 0;
- address = vaddr | io_mem_watch;
- } else {
- env->watchpoint[i].addend = pd - paddr +
- (unsigned long) phys_ram_base;
- /* TODO: Figure out how to make read watchpoints coexist
- with code. */
- pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
- }
- }
+ address = vaddr;
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
+ /* IO memory case (romd handled later) */
+ address |= TLB_MMIO;
+ }
+ addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
+ if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
+ /* Normal RAM. */
+ iotlb = pd & TARGET_PAGE_MASK;
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
+ iotlb |= IO_MEM_NOTDIRTY;
+ else
+ iotlb |= IO_MEM_ROM;
+ } else {
+ /* IO handlers are currently passed a phsical address.
+ It would be nice to pass an offset from the base address
+ of that region. This would avoid having to special case RAM,
+ and avoid full address decoding in every device.
+ We can't use the high bits of pd for this because
+ IO_MEM_ROMD uses these as a ram address. */
+ iotlb = (pd & ~TARGET_PAGE_MASK) + paddr;
+ }
+
+ code_address = address;
+ /* Make accesses to pages with watchpoints go via the
+ watchpoint trap routines. */
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
+ iotlb = io_mem_watch + paddr;
+ /* TODO: The memory case can be optimized by not trapping
+ reads of pages with a write breakpoint. */
+ address |= TLB_MMIO;
}
+ }
- index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- addend -= vaddr;
- te = &env->tlb_table[mmu_idx][index];
- te->addend = addend;
- if (prot & PAGE_READ) {
- te->addr_read = address;
- } else {
- te->addr_read = -1;
- }
- if (prot & PAGE_EXEC) {
- te->addr_code = address;
- } else {
- te->addr_code = -1;
- }
- if (prot & PAGE_WRITE) {
- if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
- (pd & IO_MEM_ROMD)) {
- /* write access calls the I/O callback */
- te->addr_write = vaddr |
- (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
- } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
- !cpu_physical_memory_is_dirty(pd)) {
- te->addr_write = vaddr | IO_MEM_NOTDIRTY;
- } else {
- te->addr_write = address;
- }
- } else {
- te->addr_write = -1;
- }
+ index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+ env->iotlb[mmu_idx][index] = iotlb - vaddr;
+ te = &env->tlb_table[mmu_idx][index];
+ te->addend = addend - vaddr;
+ if (prot & PAGE_READ) {
+ te->addr_read = address;
+ } else {
+ te->addr_read = -1;
}
-#if !defined(CONFIG_SOFTMMU)
- else {
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
- /* IO access: no mapping is done as it will be handled by the
- soft MMU */
- if (!(env->hflags & HF_SOFTMMU_MASK))
- ret = 2;
- } else {
- void *map_addr;
- if (vaddr >= MMAP_AREA_END) {
- ret = 2;
- } else {
- if (prot & PROT_WRITE) {
- if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
-#if defined(TARGET_HAS_SMC) || 1
- first_tb ||
-#endif
- ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
- !cpu_physical_memory_is_dirty(pd))) {
- /* ROM: we do as if code was inside */
- /* if code is present, we only map as read only and save the
- original mapping */
- VirtPageDesc *vp;
-
- vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
- vp->phys_addr = pd;
- vp->prot = prot;
- vp->valid_tag = virt_valid_tag;
- prot &= ~PAGE_WRITE;
- }
- }
- map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
- MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
- if (map_addr == MAP_FAILED) {
- cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
- paddr, vaddr);
- }
- }
+ if (prot & PAGE_EXEC) {
+ te->addr_code = code_address;
+ } else {
+ te->addr_code = -1;
+ }
+ if (prot & PAGE_WRITE) {
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
+ (pd & IO_MEM_ROMD)) {
+ /* Write access calls the I/O callback. */
+ te->addr_write = address | TLB_MMIO;
+ } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+ !cpu_physical_memory_is_dirty(pd)) {
+ te->addr_write = address | TLB_NOTDIRTY;
+ } else {
+ te->addr_write = address;
}
+ } else {
+ te->addr_write = -1;
}
-#endif
return ret;
}
-/* called from signal handler: invalidate the code and unprotect the
- page. Return TRUE if the fault was succesfully handled. */
-int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
-{
-#if !defined(CONFIG_SOFTMMU)
- VirtPageDesc *vp;
-
-#if defined(DEBUG_TLB)
- printf("page_unprotect: addr=0x%08x\n", addr);
-#endif
- addr &= TARGET_PAGE_MASK;
-
- /* if it is not mapped, no need to worry here */
- if (addr >= MMAP_AREA_END)
- return 0;
- vp = virt_page_find(addr >> TARGET_PAGE_BITS);
- if (!vp)
- return 0;
- /* NOTE: in this case, validate_tag is _not_ tested as it
- validates only the code TLB */
- if (vp->valid_tag != virt_valid_tag)
- return 0;
- if (!(vp->prot & PAGE_WRITE))
- return 0;
-#if defined(DEBUG_TLB)
- printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
- addr, vp->phys_addr, vp->prot);
-#endif
- if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
- cpu_abort(cpu_single_env, "error mprotect addr=0x%lx prot=%d\n",
- (unsigned long)addr, vp->prot);
- /* set the dirty bit */
- phys_ram_dirty[vp->phys_addr >> TARGET_PAGE_BITS] = 0xff;
- /* flush the code inside */
- tb_invalidate_phys_page(vp->phys_addr, pc, puc);
- return 1;
-#else
- return 0;
-#endif
-}
-
#else
void tlb_flush(CPUState *env, int flush_global)
PageDesc *p;
target_ulong addr;
+ /* mmap_lock should already be held. */
start = start & TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
if (flags & PAGE_WRITE)
flags |= PAGE_WRITE_ORG;
- spin_lock(&tb_lock);
for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
p = page_find_alloc(addr >> TARGET_PAGE_BITS);
+ /* We may be called for host regions that are outside guest
+ address space. */
+ if (!p)
+ return;
/* if the write protection is set, then we invalidate the code
inside */
if (!(p->flags & PAGE_WRITE) &&
}
p->flags = flags;
}
- spin_unlock(&tb_lock);
+}
+
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+ PageDesc *p;
+ target_ulong end;
+ target_ulong addr;
+
+ if (start + len < start)
+ /* we've wrapped around */
+ return -1;
+
+ end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
+ start = start & TARGET_PAGE_MASK;
+
+ for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if( !p )
+ return -1;
+ if( !(p->flags & PAGE_VALID) )
+ return -1;
+
+ if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
+ return -1;
+ if (flags & PAGE_WRITE) {
+ if (!(p->flags & PAGE_WRITE_ORG))
+ return -1;
+ /* unprotect the page if it was put read-only because it
+ contains translated code */
+ if (!(p->flags & PAGE_WRITE)) {
+ if (!page_unprotect(addr, 0, NULL))
+ return -1;
+ }
+ return 0;
+ }
+ }
+ return 0;
}
/* called from signal handler: invalidate the code and unprotect the
PageDesc *p, *p1;
target_ulong host_start, host_end, addr;
+ /* Technically this isn't safe inside a signal handler. However we
+ know this only ever happens in a synchronous SEGV handler, so in
+ practice it seems to be ok. */
+ mmap_lock();
+
host_start = address & qemu_host_page_mask;
page_index = host_start >> TARGET_PAGE_BITS;
p1 = page_find(page_index);
- if (!p1)
+ if (!p1) {
+ mmap_unlock();
return 0;
+ }
host_end = host_start + qemu_host_page_size;
p = p1;
prot = 0;
#ifdef DEBUG_TB_CHECK
tb_invalidate_check(address);
#endif
+ mmap_unlock();
return 1;
}
}
+ mmap_unlock();
return 0;
}
-/* call this function when system calls directly modify a memory area */
-/* ??? This should be redundant now we have lock_user. */
-void page_unprotect_range(target_ulong data, target_ulong data_size)
-{
- target_ulong start, end, addr;
-
- start = data;
- end = start + data_size;
- start &= TARGET_PAGE_MASK;
- end = TARGET_PAGE_ALIGN(end);
- for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
- page_unprotect(addr, 0, NULL);
- }
-}
-
static inline void tlb_set_dirty(CPUState *env,
unsigned long addr, target_ulong vaddr)
{
}
#endif /* defined(CONFIG_USER_ONLY) */
+#if !defined(CONFIG_USER_ONLY)
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- int memory);
-static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
- int orig_memory);
+ ram_addr_t memory);
+static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+ ram_addr_t orig_memory);
#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
need_subpage) \
do { \
page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
io memory page */
void cpu_register_physical_memory(target_phys_addr_t start_addr,
- unsigned long size,
- unsigned long phys_offset)
+ ram_addr_t size,
+ ram_addr_t phys_offset)
{
target_phys_addr_t addr, end_addr;
PhysPageDesc *p;
CPUState *env;
- unsigned long orig_size = size;
+ ram_addr_t orig_size = size;
void *subpage;
+#ifdef USE_KQEMU
+ /* XXX: should not depend on cpu context */
+ env = first_cpu;
+ if (env->kqemu_enabled) {
+ kqemu_set_phys_mem(start_addr, size, phys_offset);
+ }
+#endif
size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
end_addr = start_addr + (target_phys_addr_t)size;
for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
p = phys_page_find(addr >> TARGET_PAGE_BITS);
if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
- unsigned long orig_memory = p->phys_offset;
+ ram_addr_t orig_memory = p->phys_offset;
target_phys_addr_t start_addr2, end_addr2;
int need_subpage = 0;
CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
need_subpage);
- if (need_subpage) {
+ if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
if (!(orig_memory & IO_MEM_SUBPAGE)) {
subpage = subpage_init((addr & TARGET_PAGE_MASK),
&p->phys_offset, orig_memory);
CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
end_addr2, need_subpage);
- if (need_subpage) {
+ if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
subpage = subpage_init((addr & TARGET_PAGE_MASK),
&p->phys_offset, IO_MEM_UNASSIGNED);
subpage_register(subpage, start_addr2, end_addr2,
}
/* XXX: temporary until new memory mapping API */
-uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
+ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
{
PhysPageDesc *p;
}
/* XXX: better than nothing */
-ram_addr_t qemu_ram_alloc(unsigned int size)
+ram_addr_t qemu_ram_alloc(ram_addr_t size)
{
ram_addr_t addr;
- if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
- fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
- size, phys_ram_size);
+ if ((phys_ram_alloc_offset + size) > phys_ram_size) {
+ fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
+ (uint64_t)size, (uint64_t)phys_ram_size);
abort();
}
addr = phys_ram_alloc_offset;
static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
{
#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem read " TARGET_FMT_lx "\n", addr);
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+ do_unassigned_access(addr, 0, 0, 0, 1);
+#endif
+ return 0;
+}
+
+static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+ do_unassigned_access(addr, 0, 0, 0, 2);
+#endif
+ return 0;
+}
+
+static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
#endif
-#ifdef TARGET_SPARC
- do_unassigned_access(addr, 0, 0, 0);
-#elif TARGET_CRIS
- do_unassigned_access(addr, 0, 0, 0);
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+ do_unassigned_access(addr, 0, 0, 0, 4);
#endif
return 0;
}
static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
#ifdef DEBUG_UNASSIGNED
- printf("Unassigned mem write " TARGET_FMT_lx " = 0x%x\n", addr, val);
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
#endif
-#ifdef TARGET_SPARC
- do_unassigned_access(addr, 1, 0, 0);
-#elif TARGET_CRIS
- do_unassigned_access(addr, 1, 0, 0);
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+ do_unassigned_access(addr, 1, 0, 0, 1);
+#endif
+}
+
+static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+ do_unassigned_access(addr, 1, 0, 0, 2);
+#endif
+}
+
+static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#if defined(TARGET_SPARC) || defined(TARGET_CRIS)
+ do_unassigned_access(addr, 1, 0, 0, 4);
#endif
}
static CPUReadMemoryFunc *unassigned_mem_read[3] = {
unassigned_mem_readb,
- unassigned_mem_readb,
- unassigned_mem_readb,
+ unassigned_mem_readw,
+ unassigned_mem_readl,
};
static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
unassigned_mem_writeb,
- unassigned_mem_writeb,
- unassigned_mem_writeb,
+ unassigned_mem_writew,
+ unassigned_mem_writel,
};
-static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
{
- unsigned long ram_addr;
int dirty_flags;
- ram_addr = addr - (unsigned long)phys_ram_base;
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
#endif
}
- stb_p((uint8_t *)(long)addr, val);
+ stb_p(phys_ram_base + ram_addr, val);
#ifdef USE_KQEMU
if (cpu_single_env->kqemu_enabled &&
(dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
/* we remove the notdirty callback only if the code has been
flushed */
if (dirty_flags == 0xff)
- tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}
-static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
{
- unsigned long ram_addr;
int dirty_flags;
- ram_addr = addr - (unsigned long)phys_ram_base;
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
#endif
}
- stw_p((uint8_t *)(long)addr, val);
+ stw_p(phys_ram_base + ram_addr, val);
#ifdef USE_KQEMU
if (cpu_single_env->kqemu_enabled &&
(dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
/* we remove the notdirty callback only if the code has been
flushed */
if (dirty_flags == 0xff)
- tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}
-static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
+ uint32_t val)
{
- unsigned long ram_addr;
int dirty_flags;
- ram_addr = addr - (unsigned long)phys_ram_base;
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
#endif
}
- stl_p((uint8_t *)(long)addr, val);
+ stl_p(phys_ram_base + ram_addr, val);
#ifdef USE_KQEMU
if (cpu_single_env->kqemu_enabled &&
(dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
/* we remove the notdirty callback only if the code has been
flushed */
if (dirty_flags == 0xff)
- tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
+ tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
}
static CPUReadMemoryFunc *error_mem_read[3] = {
notdirty_mem_writel,
};
-#if defined(CONFIG_SOFTMMU)
+/* Generate a debug exception if a watchpoint has been hit. */
+static void check_watchpoint(int offset, int flags)
+{
+ CPUState *env = cpu_single_env;
+ target_ulong vaddr;
+ int i;
+
+ vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (vaddr == env->watchpoint[i].vaddr
+ && (env->watchpoint[i].type & flags)) {
+ env->watchpoint_hit = i + 1;
+ cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
+ break;
+ }
+ }
+}
+
/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
so these check for a hit then pass through to the normal out-of-line
phys routines. */
static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
return ldub_phys(addr);
}
static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
return lduw_phys(addr);
}
static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
{
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_READ);
return ldl_phys(addr);
}
-/* Generate a debug exception if a watchpoint has been hit.
- Returns the real physical address of the access. addr will be a host
- address in case of a RAM location. */
-static target_ulong check_watchpoint(target_phys_addr_t addr)
-{
- CPUState *env = cpu_single_env;
- target_ulong watch;
- target_ulong retaddr;
- int i;
-
- retaddr = addr;
- for (i = 0; i < env->nb_watchpoints; i++) {
- watch = env->watchpoint[i].vaddr;
- if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
- retaddr = addr - env->watchpoint[i].addend;
- if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
- cpu_single_env->watchpoint_hit = i + 1;
- cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
- break;
- }
- }
- }
- return retaddr;
-}
-
static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
- addr = check_watchpoint(addr);
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
stb_phys(addr, val);
}
static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
- addr = check_watchpoint(addr);
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
stw_phys(addr, val);
}
static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
uint32_t val)
{
- addr = check_watchpoint(addr);
+ check_watchpoint(addr & ~TARGET_PAGE_MASK, PAGE_WRITE);
stl_phys(addr, val);
}
watch_mem_writew,
watch_mem_writel,
};
-#endif
static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
unsigned int len)
{
- CPUReadMemoryFunc **mem_read;
uint32_t ret;
unsigned int idx;
printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
mmio, len, addr, idx);
#endif
- mem_read = mmio->mem_read[idx];
- ret = (*mem_read[len])(mmio->opaque[idx], addr);
+ ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
return ret;
}
static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
uint32_t value, unsigned int len)
{
- CPUWriteMemoryFunc **mem_write;
unsigned int idx;
idx = SUBPAGE_IDX(addr - mmio->base);
printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
mmio, len, addr, idx, value);
#endif
- mem_write = mmio->mem_write[idx];
- (*mem_write[len])(mmio->opaque[idx], addr, value);
+ (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
}
static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
};
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
- int memory)
+ ram_addr_t memory)
{
int idx, eidx;
+ unsigned int i;
if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
return -1;
#endif
memory >>= IO_MEM_SHIFT;
for (; idx <= eidx; idx++) {
- mmio->mem_read[idx] = io_mem_read[memory];
- mmio->mem_write[idx] = io_mem_write[memory];
- mmio->opaque[idx] = io_mem_opaque[memory];
+ for (i = 0; i < 4; i++) {
+ if (io_mem_read[memory][i]) {
+ mmio->mem_read[idx][i] = &io_mem_read[memory][i];
+ mmio->opaque[idx][0][i] = io_mem_opaque[memory];
+ }
+ if (io_mem_write[memory][i]) {
+ mmio->mem_write[idx][i] = &io_mem_write[memory][i];
+ mmio->opaque[idx][1][i] = io_mem_opaque[memory];
+ }
+ }
}
return 0;
}
-static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
- int orig_memory)
+static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
+ ram_addr_t orig_memory)
{
subpage_t *mmio;
int subpage_memory;
cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
io_mem_nb = 5;
-#if defined(CONFIG_SOFTMMU)
- io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
+ io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
watch_mem_write, NULL);
-#endif
/* alloc dirty bits array */
phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
/* mem_read and mem_write are arrays of functions containing the
function to access byte (index 0), word (index 1) and dword (index
- 2). All functions must be supplied. If io_index is non zero, the
- corresponding io zone is modified. If it is zero, a new io zone is
- allocated. The return value can be used with
- cpu_register_physical_memory(). (-1) is returned if error. */
+ 2). Functions can be omitted with a NULL function pointer. The
+ registered functions may be modified dynamically later.
+ If io_index is non zero, the corresponding io zone is
+ modified. If it is zero, a new io zone is allocated. The return
+ value can be used with cpu_register_physical_memory(). (-1) is
+ returned if error. */
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write,
void *opaque)
{
- int i;
+ int i, subwidth = 0;
if (io_index <= 0) {
if (io_mem_nb >= IO_MEM_NB_ENTRIES)
}
for(i = 0;i < 3; i++) {
+ if (!mem_read[i] || !mem_write[i])
+ subwidth = IO_MEM_SUBWIDTH;
io_mem_read[io_index][i] = mem_read[i];
io_mem_write[io_index][i] = mem_write[i];
}
io_mem_opaque[io_index] = opaque;
- return io_index << IO_MEM_SHIFT;
+ return (io_index << IO_MEM_SHIFT) | subwidth;
}
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
return io_mem_read[io_index >> IO_MEM_SHIFT];
}
+#endif /* !defined(CONFIG_USER_ONLY) */
+
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
if (is_write) {
if (!(flags & PAGE_WRITE))
return;
- p = lock_user(addr, len, 0);
- memcpy(p, buf, len);
- unlock_user(p, addr, len);
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
+ /* FIXME - should this return an error rather than just fail? */
+ return;
+ memcpy(p, buf, l);
+ unlock_user(p, addr, l);
} else {
if (!(flags & PAGE_READ))
return;
- p = lock_user(addr, len, 1);
- memcpy(buf, p, len);
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
+ /* FIXME - should this return an error rather than just fail? */
+ return;
+ memcpy(buf, p, l);
unlock_user(p, addr, 0);
}
len -= l;
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
} else {
- ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
- (addr & ~TARGET_PAGE_MASK);
+ unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ ptr = phys_ram_base + addr1;
stl_p(ptr, val);
+
+ if (unlikely(in_migration)) {
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+ /* set dirty bit */
+ phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+ (0xff & ~CODE_DIRTY_FLAG);
+ }
+ }
}
}
return 0;
}
+/* in deterministic execution mode, instructions doing device I/Os
+ must be at the end of the TB */
+void cpu_io_recompile(CPUState *env, void *retaddr)
+{
+ TranslationBlock *tb;
+ uint32_t n, cflags;
+ target_ulong pc, cs_base;
+ uint64_t flags;
+
+ tb = tb_find_pc((unsigned long)retaddr);
+ if (!tb) {
+ cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
+ retaddr);
+ }
+ n = env->icount_decr.u16.low + tb->icount;
+ cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
+ /* Calculate how many instructions had been executed before the fault
+ occurred. */
+ n = n - env->icount_decr.u16.low;
+ /* Generate a new TB ending on the I/O insn. */
+ n++;
+ /* On MIPS and SH, delay slot instructions can only be restarted if
+ they were already the first instruction in the TB. If this is not
+ the first instruction in a TB then re-execute the preceding
+ branch. */
+#if defined(TARGET_MIPS)
+ if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
+ env->active_tc.PC -= 4;
+ env->icount_decr.u16.low++;
+ env->hflags &= ~MIPS_HFLAG_BMASK;
+ }
+#elif defined(TARGET_SH4)
+ if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
+ && n > 1) {
+ env->pc -= 2;
+ env->icount_decr.u16.low++;
+ env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
+ }
+#endif
+ /* This should never happen. */
+ if (n > CF_COUNT_MASK)
+ cpu_abort(env, "TB too big during recompile");
+
+ cflags = n | CF_LAST_IO;
+ pc = tb->pc;
+ cs_base = tb->cs_base;
+ flags = tb->flags;
+ tb_phys_invalidate(tb, -1);
+ /* FIXME: In theory this could raise an exception. In practice
+ we have already translated the block once so it's probably ok. */
+ tb_gen_code(env, pc, cs_base, flags, cflags);
+ /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
+ the first in the TB) then we end up generating a whole new TB and
+ repeating the fault, which is horribly inefficient.
+ Better would be to execute just this insn uncached, or generate a
+ second new TB. */
+ cpu_resume_from_signal(env, NULL);
+}
+
void dump_exec_info(FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
{
}
}
/* XXX: avoid using doubles ? */
- cpu_fprintf(f, "TB count %d\n", nb_tbs);
+ cpu_fprintf(f, "Translation buffer state:\n");
+ cpu_fprintf(f, "gen code size %ld/%ld\n",
+ code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
+ cpu_fprintf(f, "TB count %d/%d\n",
+ nb_tbs, code_gen_max_blocks);
cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
nb_tbs ? target_code_size / nb_tbs : 0,
max_target_code_size);
nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
direct_jmp2_count,
nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "\nStatistics:\n");
cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
+ tcg_dump_info(f, cpu_fprintf);
}
#if !defined(CONFIG_USER_ONLY)