#ifndef BSWAP_H
#define BSWAP_H
-#include "config-host.h"
-#include <inttypes.h>
-#include <limits.h>
-#include <string.h>
-#include "fpu/softfloat.h"
-
#ifdef CONFIG_MACHINE_BSWAP_H
# include <sys/endian.h>
-# include <sys/types.h>
# include <machine/bswap.h>
+#elif defined(__FreeBSD__)
+# include <sys/endian.h>
+#elif defined(__HAIKU__)
+# include <endian.h>
#elif defined(CONFIG_BYTESWAP_H)
# include <byteswap.h>
+#define BSWAP_FROM_BYTESWAP
+# else
+#define BSWAP_FROM_FALLBACKS
+#endif /* ! CONFIG_MACHINE_BSWAP_H */
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+#ifdef BSWAP_FROM_BYTESWAP
static inline uint16_t bswap16(uint16_t x)
{
return bswap_16(x);
{
return bswap_64(x);
}
-# else
+#endif
+
+#ifdef BSWAP_FROM_FALLBACKS
static inline uint16_t bswap16(uint16_t x)
{
return (((x & 0x00ff) << 8) |
((x & 0x00ff000000000000ULL) >> 40) |
((x & 0xff00000000000000ULL) >> 56));
}
-#endif /* ! CONFIG_MACHINE_BSWAP_H */
+#endif
+
+#undef BSWAP_FROM_BYTESWAP
+#undef BSWAP_FROM_FALLBACKS
static inline void bswap16s(uint16_t *s)
{
*s = bswap64(*s);
}
-#if defined(HOST_WORDS_BIGENDIAN)
+#if HOST_BIG_ENDIAN
#define be_bswap(v, size) (v)
#define le_bswap(v, size) glue(bswap, size)(v)
#define be_bswaps(v, size)
#define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
#endif
+/**
+ * Endianness conversion functions between host cpu and specified endianness.
+ * (We list the complete set of prototypes produced by the macros below
+ * to assist people who search the headers to find their definitions.)
+ *
+ * uint16_t le16_to_cpu(uint16_t v);
+ * uint32_t le32_to_cpu(uint32_t v);
+ * uint64_t le64_to_cpu(uint64_t v);
+ * uint16_t be16_to_cpu(uint16_t v);
+ * uint32_t be32_to_cpu(uint32_t v);
+ * uint64_t be64_to_cpu(uint64_t v);
+ *
+ * Convert the value @v from the specified format to the native
+ * endianness of the host CPU by byteswapping if necessary, and
+ * return the converted value.
+ *
+ * uint16_t cpu_to_le16(uint16_t v);
+ * uint32_t cpu_to_le32(uint32_t v);
+ * uint64_t cpu_to_le64(uint64_t v);
+ * uint16_t cpu_to_be16(uint16_t v);
+ * uint32_t cpu_to_be32(uint32_t v);
+ * uint64_t cpu_to_be64(uint64_t v);
+ *
+ * Convert the value @v from the native endianness of the host CPU to
+ * the specified format by byteswapping if necessary, and return
+ * the converted value.
+ *
+ * void le16_to_cpus(uint16_t *v);
+ * void le32_to_cpus(uint32_t *v);
+ * void le64_to_cpus(uint64_t *v);
+ * void be16_to_cpus(uint16_t *v);
+ * void be32_to_cpus(uint32_t *v);
+ * void be64_to_cpus(uint64_t *v);
+ *
+ * Do an in-place conversion of the value pointed to by @v from the
+ * specified format to the native endianness of the host CPU.
+ *
+ * void cpu_to_le16s(uint16_t *v);
+ * void cpu_to_le32s(uint32_t *v);
+ * void cpu_to_le64s(uint64_t *v);
+ * void cpu_to_be16s(uint16_t *v);
+ * void cpu_to_be32s(uint32_t *v);
+ * void cpu_to_be64s(uint64_t *v);
+ *
+ * Do an in-place conversion of the value pointed to by @v from the
+ * native endianness of the host CPU to the specified format.
+ *
+ * Both X_to_cpu() and cpu_to_X() perform the same operation; you
+ * should use whichever one is better documenting of the function your
+ * code is performing.
+ *
+ * Do not use these functions for conversion of values which are in guest
+ * memory, since the data may not be sufficiently aligned for the host CPU's
+ * load and store instructions. Instead you should use the ld*_p() and
+ * st*_p() functions, which perform loads and stores of data of any
+ * required size and endianness and handle possible misalignment.
+ */
+
#define CPU_CONVERT(endian, size, type)\
static inline type endian ## size ## _to_cpu(type v)\
{\
static inline void cpu_to_ ## endian ## size ## s(type *p)\
{\
glue(endian, _bswaps)(p, size);\
-}\
-\
-static inline type endian ## size ## _to_cpup(const type *p)\
-{\
- return glue(glue(endian, size), _to_cpu)(*p);\
-}\
-\
-static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
-{\
- *p = glue(glue(cpu_to_, endian), size)(v);\
}
CPU_CONVERT(be, 16, uint16_t)
CPU_CONVERT(le, 32, uint32_t)
CPU_CONVERT(le, 64, uint64_t)
-/* len must be one of 1, 2, 4 */
-static inline uint32_t qemu_bswap_len(uint32_t value, int len)
-{
- return bswap32(value) >> (32 - 8 * len);
-}
-
-/* Unions for reinterpreting between floats and integers. */
-
-typedef union {
- float32 f;
- uint32_t l;
-} CPU_FloatU;
-
-typedef union {
- float64 d;
-#if defined(HOST_WORDS_BIGENDIAN)
- struct {
- uint32_t upper;
- uint32_t lower;
- } l;
-#else
- struct {
- uint32_t lower;
- uint32_t upper;
- } l;
-#endif
- uint64_t ll;
-} CPU_DoubleU;
-
-typedef union {
- floatx80 d;
- struct {
- uint64_t lower;
- uint16_t upper;
- } l;
-} CPU_LDoubleU;
-
-typedef union {
- float128 q;
-#if defined(HOST_WORDS_BIGENDIAN)
- struct {
- uint32_t upmost;
- uint32_t upper;
- uint32_t lower;
- uint32_t lowest;
- } l;
- struct {
- uint64_t upper;
- uint64_t lower;
- } ll;
+/*
+ * Same as cpu_to_le{16,32}, except that gcc will figure the result is
+ * a compile-time constant if you pass in a constant. So this can be
+ * used to initialize static variables.
+ */
+#if HOST_BIG_ENDIAN
+# define const_le32(_x) \
+ ((((_x) & 0x000000ffU) << 24) | \
+ (((_x) & 0x0000ff00U) << 8) | \
+ (((_x) & 0x00ff0000U) >> 8) | \
+ (((_x) & 0xff000000U) >> 24))
+# define const_le16(_x) \
+ ((((_x) & 0x00ff) << 8) | \
+ (((_x) & 0xff00) >> 8))
#else
- struct {
- uint32_t lowest;
- uint32_t lower;
- uint32_t upper;
- uint32_t upmost;
- } l;
- struct {
- uint64_t lower;
- uint64_t upper;
- } ll;
+# define const_le32(_x) (_x)
+# define const_le16(_x) (_x)
#endif
-} CPU_QuadU;
/* unaligned/endian-independent pointer access */
/*
* the generic syntax is:
*
- * load: ld{type}{sign}{size}{endian}_p(ptr)
+ * load: ld{type}{sign}{size}_{endian}_p(ptr)
*
- * store: st{type}{size}{endian}_p(ptr, val)
+ * store: st{type}{size}_{endian}_p(ptr, val)
*
* Note there are small differences with the softmmu access API!
*
* f : float access
*
* sign is:
- * (empty): for floats or 32 bit size
+ * (empty): for 32 or 64 bit sizes (including floats and doubles)
* u : unsigned
* s : signed
*
* q: 64 bits
*
* endian is:
- * (empty): host endian
+ * he : host endian
* be : big endian
* le : little endian
+ * te : target endian
+ * (except for byte accesses, which have no endian infix).
+ *
+ * The target endian accessors are obviously only available to source
+ * files which are built per-target; they are defined in cpu-all.h.
+ *
+ * In all cases these functions take a host pointer.
+ * For accessors that take a guest address rather than a
+ * host address, see the cpu_{ld,st}_* accessors defined in
+ * cpu_ldst.h.
+ *
+ * For cases where the size to be used is not fixed at compile time,
+ * there are
+ * stn_{endian}_p(ptr, sz, val)
+ * which stores @val to @ptr as an @endian-order number @sz bytes in size
+ * and
+ * ldn_{endian}_p(ptr, sz)
+ * which loads @sz bytes from @ptr as an unsigned @endian-order number
+ * and returns it in a uint64_t.
*/
static inline int ldub_p(const void *ptr)
return *(int8_t *)ptr;
}
-static inline void stb_p(void *ptr, int v)
+static inline void stb_p(void *ptr, uint8_t v)
{
*(uint8_t *)ptr = v;
}
-/* Any compiler worth its salt will turn these memcpy into native unaligned
- operations. Thus we don't need to play games with packed attributes, or
- inline byte-by-byte stores. */
+/*
+ * Any compiler worth its salt will turn these memcpy into native unaligned
+ * operations. Thus we don't need to play games with packed attributes, or
+ * inline byte-by-byte stores.
+ * Some compilation environments (eg some fortify-source implementations)
+ * may intercept memcpy() in a way that defeats the compiler optimization,
+ * though, so we use __builtin_memcpy() to give ourselves the best chance
+ * of good performance.
+ */
-static inline int lduw_p(const void *ptr)
+static inline int lduw_he_p(const void *ptr)
{
uint16_t r;
- memcpy(&r, ptr, sizeof(r));
+ __builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
-static inline int ldsw_p(const void *ptr)
+static inline int ldsw_he_p(const void *ptr)
{
int16_t r;
- memcpy(&r, ptr, sizeof(r));
+ __builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
-static inline void stw_p(void *ptr, uint16_t v)
+static inline void stw_he_p(void *ptr, uint16_t v)
{
- memcpy(ptr, &v, sizeof(v));
+ __builtin_memcpy(ptr, &v, sizeof(v));
}
-static inline int ldl_p(const void *ptr)
+static inline int ldl_he_p(const void *ptr)
{
int32_t r;
- memcpy(&r, ptr, sizeof(r));
+ __builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
-static inline void stl_p(void *ptr, uint32_t v)
+static inline void stl_he_p(void *ptr, uint32_t v)
{
- memcpy(ptr, &v, sizeof(v));
+ __builtin_memcpy(ptr, &v, sizeof(v));
}
-static inline uint64_t ldq_p(const void *ptr)
+static inline uint64_t ldq_he_p(const void *ptr)
{
uint64_t r;
- memcpy(&r, ptr, sizeof(r));
+ __builtin_memcpy(&r, ptr, sizeof(r));
return r;
}
-static inline void stq_p(void *ptr, uint64_t v)
+static inline void stq_he_p(void *ptr, uint64_t v)
{
- memcpy(ptr, &v, sizeof(v));
+ __builtin_memcpy(ptr, &v, sizeof(v));
}
static inline int lduw_le_p(const void *ptr)
{
- return (uint16_t)le_bswap(lduw_p(ptr), 16);
+ return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
}
static inline int ldsw_le_p(const void *ptr)
{
- return (int16_t)le_bswap(lduw_p(ptr), 16);
+ return (int16_t)le_bswap(lduw_he_p(ptr), 16);
}
static inline int ldl_le_p(const void *ptr)
{
- return le_bswap(ldl_p(ptr), 32);
+ return le_bswap(ldl_he_p(ptr), 32);
}
static inline uint64_t ldq_le_p(const void *ptr)
{
- return le_bswap(ldq_p(ptr), 64);
+ return le_bswap(ldq_he_p(ptr), 64);
}
-static inline void stw_le_p(void *ptr, int v)
+static inline void stw_le_p(void *ptr, uint16_t v)
{
- stw_p(ptr, le_bswap(v, 16));
+ stw_he_p(ptr, le_bswap(v, 16));
}
-static inline void stl_le_p(void *ptr, int v)
+static inline void stl_le_p(void *ptr, uint32_t v)
{
- stl_p(ptr, le_bswap(v, 32));
+ stl_he_p(ptr, le_bswap(v, 32));
}
static inline void stq_le_p(void *ptr, uint64_t v)
{
- stq_p(ptr, le_bswap(v, 64));
-}
-
-/* float access */
-
-static inline float32 ldfl_le_p(const void *ptr)
-{
- CPU_FloatU u;
- u.l = ldl_le_p(ptr);
- return u.f;
-}
-
-static inline void stfl_le_p(void *ptr, float32 v)
-{
- CPU_FloatU u;
- u.f = v;
- stl_le_p(ptr, u.l);
-}
-
-static inline float64 ldfq_le_p(const void *ptr)
-{
- CPU_DoubleU u;
- u.ll = ldq_le_p(ptr);
- return u.d;
-}
-
-static inline void stfq_le_p(void *ptr, float64 v)
-{
- CPU_DoubleU u;
- u.d = v;
- stq_le_p(ptr, u.ll);
+ stq_he_p(ptr, le_bswap(v, 64));
}
static inline int lduw_be_p(const void *ptr)
{
- return (uint16_t)be_bswap(lduw_p(ptr), 16);
+ return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
}
static inline int ldsw_be_p(const void *ptr)
{
- return (int16_t)be_bswap(lduw_p(ptr), 16);
+ return (int16_t)be_bswap(lduw_he_p(ptr), 16);
}
static inline int ldl_be_p(const void *ptr)
{
- return be_bswap(ldl_p(ptr), 32);
+ return be_bswap(ldl_he_p(ptr), 32);
}
static inline uint64_t ldq_be_p(const void *ptr)
{
- return be_bswap(ldq_p(ptr), 64);
+ return be_bswap(ldq_he_p(ptr), 64);
}
-static inline void stw_be_p(void *ptr, int v)
+static inline void stw_be_p(void *ptr, uint16_t v)
{
- stw_p(ptr, be_bswap(v, 16));
+ stw_he_p(ptr, be_bswap(v, 16));
}
-static inline void stl_be_p(void *ptr, int v)
+static inline void stl_be_p(void *ptr, uint32_t v)
{
- stl_p(ptr, be_bswap(v, 32));
+ stl_he_p(ptr, be_bswap(v, 32));
}
static inline void stq_be_p(void *ptr, uint64_t v)
{
- stq_p(ptr, be_bswap(v, 64));
-}
-
-/* float access */
-
-static inline float32 ldfl_be_p(const void *ptr)
-{
- CPU_FloatU u;
- u.l = ldl_be_p(ptr);
- return u.f;
-}
-
-static inline void stfl_be_p(void *ptr, float32 v)
-{
- CPU_FloatU u;
- u.f = v;
- stl_be_p(ptr, u.l);
-}
-
-static inline float64 ldfq_be_p(const void *ptr)
-{
- CPU_DoubleU u;
- u.ll = ldq_be_p(ptr);
- return u.d;
-}
-
-static inline void stfq_be_p(void *ptr, float64 v)
-{
- CPU_DoubleU u;
- u.d = v;
- stq_be_p(ptr, u.ll);
-}
-
-/* Legacy unaligned versions. Note that we never had a complete set. */
-
-static inline void cpu_to_be64wu(uint64_t *p, uint64_t v)
-{
- stq_be_p(p, v);
-}
-
-static inline void cpu_to_32wu(uint32_t *p, uint32_t v)
-{
- stl_p(p, v);
+ stq_he_p(ptr, be_bswap(v, 64));
}
static inline unsigned long leul_to_cpu(unsigned long v)
{
- /* In order to break an include loop between here and
- qemu-common.h, don't rely on HOST_LONG_BITS. */
-#if ULONG_MAX == UINT32_MAX
+#if HOST_LONG_BITS == 32
return le_bswap(v, 32);
-#elif ULONG_MAX == UINT64_MAX
+#elif HOST_LONG_BITS == 64
return le_bswap(v, 64);
#else
# error Unknown sizeof long
#endif
}
+/* Store v to p as a sz byte value in host order */
+#define DO_STN_LDN_P(END) \
+ static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v) \
+ { \
+ switch (sz) { \
+ case 1: \
+ stb_p(ptr, v); \
+ break; \
+ case 2: \
+ stw_ ## END ## _p(ptr, v); \
+ break; \
+ case 4: \
+ stl_ ## END ## _p(ptr, v); \
+ break; \
+ case 8: \
+ stq_ ## END ## _p(ptr, v); \
+ break; \
+ default: \
+ g_assert_not_reached(); \
+ } \
+ } \
+ static inline uint64_t ldn_## END ## _p(const void *ptr, int sz) \
+ { \
+ switch (sz) { \
+ case 1: \
+ return ldub_p(ptr); \
+ case 2: \
+ return lduw_ ## END ## _p(ptr); \
+ case 4: \
+ return (uint32_t)ldl_ ## END ## _p(ptr); \
+ case 8: \
+ return ldq_ ## END ## _p(ptr); \
+ default: \
+ g_assert_not_reached(); \
+ } \
+ }
+
+DO_STN_LDN_P(he)
+DO_STN_LDN_P(le)
+DO_STN_LDN_P(be)
+
+#undef DO_STN_LDN_P
+
#undef le_bswap
#undef be_bswap
#undef le_bswaps
#undef be_bswaps
+#ifdef __cplusplus
+}
+#endif
+
#endif /* BSWAP_H */