#include "qemu-common.h"
#include "sysemu.h"
#include "kvm.h"
+#include "kvm_i386.h"
#include "cpu.h"
-#include "gdbstub.h"
+#include "exec/gdbstub.h"
#include "host-utils.h"
+#include "qemu-config.h"
#include "hw/pc.h"
#include "hw/apic.h"
-#include "ioport.h"
+#include "exec/ioport.h"
#include "hyperv.h"
+#include "hw/pci/pci.h"
//#define DEBUG_KVM
static bool has_msr_hsave_pa;
static bool has_msr_tsc_deadline;
static bool has_msr_async_pf_en;
+static bool has_msr_pv_eoi_en;
static bool has_msr_misc_enable;
static int lm_capable_kernel;
+bool kvm_allows_irq0_override(void)
+{
+ return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
+}
+
static struct kvm_cpuid2 *try_get_cpuid(KVMState *s, int max)
{
struct kvm_cpuid2 *cpuid;
return cpuid;
}
+/* Run KVM_GET_SUPPORTED_CPUID ioctl(), allocating a buffer large enough
+ * for all entries.
+ */
+static struct kvm_cpuid2 *get_supported_cpuid(KVMState *s)
+{
+ struct kvm_cpuid2 *cpuid;
+ int max = 1;
+ while ((cpuid = try_get_cpuid(s, max)) == NULL) {
+ max *= 2;
+ }
+ return cpuid;
+}
+
struct kvm_para_features {
int cap;
int feature;
}
+/* Returns the value for a specific register on the cpuid entry
+ */
+static uint32_t cpuid_entry_get_reg(struct kvm_cpuid_entry2 *entry, int reg)
+{
+ uint32_t ret = 0;
+ switch (reg) {
+ case R_EAX:
+ ret = entry->eax;
+ break;
+ case R_EBX:
+ ret = entry->ebx;
+ break;
+ case R_ECX:
+ ret = entry->ecx;
+ break;
+ case R_EDX:
+ ret = entry->edx;
+ break;
+ }
+ return ret;
+}
+
+/* Find matching entry for function/index on kvm_cpuid2 struct
+ */
+static struct kvm_cpuid_entry2 *cpuid_find_entry(struct kvm_cpuid2 *cpuid,
+ uint32_t function,
+ uint32_t index)
+{
+ int i;
+ for (i = 0; i < cpuid->nent; ++i) {
+ if (cpuid->entries[i].function == function &&
+ cpuid->entries[i].index == index) {
+ return &cpuid->entries[i];
+ }
+ }
+ /* not found: */
+ return NULL;
+}
+
uint32_t kvm_arch_get_supported_cpuid(KVMState *s, uint32_t function,
uint32_t index, int reg)
{
struct kvm_cpuid2 *cpuid;
- int i, max;
uint32_t ret = 0;
uint32_t cpuid_1_edx;
- int has_kvm_features = 0;
+ bool found = false;
- max = 1;
- while ((cpuid = try_get_cpuid(s, max)) == NULL) {
- max *= 2;
+ cpuid = get_supported_cpuid(s);
+
+ struct kvm_cpuid_entry2 *entry = cpuid_find_entry(cpuid, function, index);
+ if (entry) {
+ found = true;
+ ret = cpuid_entry_get_reg(entry, reg);
}
- for (i = 0; i < cpuid->nent; ++i) {
- if (cpuid->entries[i].function == function &&
- cpuid->entries[i].index == index) {
- if (cpuid->entries[i].function == KVM_CPUID_FEATURES) {
- has_kvm_features = 1;
- }
- switch (reg) {
- case R_EAX:
- ret = cpuid->entries[i].eax;
- break;
- case R_EBX:
- ret = cpuid->entries[i].ebx;
- break;
- case R_ECX:
- ret = cpuid->entries[i].ecx;
- break;
- case R_EDX:
- ret = cpuid->entries[i].edx;
- switch (function) {
- case 1:
- /* KVM before 2.6.30 misreports the following features */
- ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
- break;
- case 0x80000001:
- /* On Intel, kvm returns cpuid according to the Intel spec,
- * so add missing bits according to the AMD spec:
- */
- cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
- ret |= cpuid_1_edx & 0x183f7ff;
- break;
- }
- break;
- }
+ /* Fixups for the data returned by KVM, below */
+
+ if (function == 1 && reg == R_EDX) {
+ /* KVM before 2.6.30 misreports the following features */
+ ret |= CPUID_MTRR | CPUID_PAT | CPUID_MCE | CPUID_MCA;
+ } else if (function == 1 && reg == R_ECX) {
+ /* We can set the hypervisor flag, even if KVM does not return it on
+ * GET_SUPPORTED_CPUID
+ */
+ ret |= CPUID_EXT_HYPERVISOR;
+ /* tsc-deadline flag is not returned by GET_SUPPORTED_CPUID, but it
+ * can be enabled if the kernel has KVM_CAP_TSC_DEADLINE_TIMER,
+ * and the irqchip is in the kernel.
+ */
+ if (kvm_irqchip_in_kernel() &&
+ kvm_check_extension(s, KVM_CAP_TSC_DEADLINE_TIMER)) {
+ ret |= CPUID_EXT_TSC_DEADLINE_TIMER;
}
+
+ /* x2apic is reported by GET_SUPPORTED_CPUID, but it can't be enabled
+ * without the in-kernel irqchip
+ */
+ if (!kvm_irqchip_in_kernel()) {
+ ret &= ~CPUID_EXT_X2APIC;
+ }
+ } else if (function == 0x80000001 && reg == R_EDX) {
+ /* On Intel, kvm returns cpuid according to the Intel spec,
+ * so add missing bits according to the AMD spec:
+ */
+ cpuid_1_edx = kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
+ ret |= cpuid_1_edx & CPUID_EXT2_AMD_ALIASES;
}
g_free(cpuid);
/* fallback for older kernels */
- if (!has_kvm_features && (function == KVM_CPUID_FEATURES)) {
+ if ((function == KVM_CPUID_FEATURES) && !found) {
ret = get_para_features(s);
}
return -ENOSYS;
}
-static void kvm_mce_inject(CPUState *env, target_phys_addr_t paddr, int code)
+static void kvm_mce_inject(X86CPU *cpu, hwaddr paddr, int code)
{
+ CPUX86State *env = &cpu->env;
uint64_t status = MCI_STATUS_VAL | MCI_STATUS_UC | MCI_STATUS_EN |
MCI_STATUS_MISCV | MCI_STATUS_ADDRV | MCI_STATUS_S;
uint64_t mcg_status = MCG_STATUS_MCIP;
status |= 0xc0;
mcg_status |= MCG_STATUS_RIPV;
}
- cpu_x86_inject_mce(NULL, env, 9, status, mcg_status, paddr,
+ cpu_x86_inject_mce(NULL, cpu, 9, status, mcg_status, paddr,
(MCM_ADDR_PHYS << 6) | 0xc,
cpu_x86_support_mca_broadcast(env) ?
MCE_INJECT_BROADCAST : 0);
exit(1);
}
-int kvm_arch_on_sigbus_vcpu(CPUState *env, int code, void *addr)
+int kvm_arch_on_sigbus_vcpu(CPUX86State *env, int code, void *addr)
{
+ X86CPU *cpu = x86_env_get_cpu(env);
ram_addr_t ram_addr;
- target_phys_addr_t paddr;
+ hwaddr paddr;
if ((env->mcg_cap & MCG_SER_P) && addr
&& (code == BUS_MCEERR_AR || code == BUS_MCEERR_AO)) {
}
}
kvm_hwpoison_page_add(ram_addr);
- kvm_mce_inject(env, paddr, code);
+ kvm_mce_inject(cpu, paddr, code);
} else {
if (code == BUS_MCEERR_AO) {
return 0;
{
if ((first_cpu->mcg_cap & MCG_SER_P) && addr && code == BUS_MCEERR_AO) {
ram_addr_t ram_addr;
- target_phys_addr_t paddr;
+ hwaddr paddr;
/* Hope we are lucky for AO MCE */
if (qemu_ram_addr_from_host(addr, &ram_addr) ||
return 0;
}
kvm_hwpoison_page_add(ram_addr);
- kvm_mce_inject(first_cpu, paddr, code);
+ kvm_mce_inject(x86_env_get_cpu(first_cpu), paddr, code);
} else {
if (code == BUS_MCEERR_AO) {
return 0;
return 0;
}
-static int kvm_inject_mce_oldstyle(CPUState *env)
+static int kvm_inject_mce_oldstyle(CPUX86State *env)
{
if (!kvm_has_vcpu_events() && env->exception_injected == EXCP12_MCHK) {
unsigned int bank, bank_num = env->mcg_cap & 0xff;
static void cpu_update_state(void *opaque, int running, RunState state)
{
- CPUState *env = opaque;
+ CPUX86State *env = opaque;
if (running) {
env->tsc_valid = false;
}
}
-int kvm_arch_init_vcpu(CPUState *env)
+int kvm_arch_init_vcpu(CPUX86State *env)
{
struct {
struct kvm_cpuid2 cpuid;
struct kvm_cpuid_entry2 entries[100];
} QEMU_PACKED cpuid_data;
- KVMState *s = env->kvm_state;
uint32_t limit, i, j, cpuid_i;
uint32_t unused;
struct kvm_cpuid_entry2 *c;
uint32_t signature[3];
int r;
- env->cpuid_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_EDX);
-
- i = env->cpuid_ext_features & CPUID_EXT_HYPERVISOR;
- env->cpuid_ext_features &= kvm_arch_get_supported_cpuid(s, 1, 0, R_ECX);
- env->cpuid_ext_features |= i;
-
- env->cpuid_ext2_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
- 0, R_EDX);
- env->cpuid_ext3_features &= kvm_arch_get_supported_cpuid(s, 0x80000001,
- 0, R_ECX);
- env->cpuid_svm_features &= kvm_arch_get_supported_cpuid(s, 0x8000000A,
- 0, R_EDX);
-
cpuid_i = 0;
/* Paravirtualization CPUIDs */
c = &cpuid_data.entries[cpuid_i++];
memset(c, 0, sizeof(*c));
c->function = KVM_CPUID_FEATURES;
- c->eax = env->cpuid_kvm_features &
- kvm_arch_get_supported_cpuid(s, KVM_CPUID_FEATURES, 0, R_EAX);
+ c->eax = env->cpuid_kvm_features;
if (hyperv_enabled()) {
memcpy(signature, "Hv#1\0\0\0\0\0\0\0\0", 12);
has_msr_async_pf_en = c->eax & (1 << KVM_FEATURE_ASYNC_PF);
+ has_msr_pv_eoi_en = c->eax & (1 << KVM_FEATURE_PV_EOI);
+
cpu_x86_cpuid(env, 0, 0, &limit, &unused, &unused, &unused);
for (i = 0; i <= limit; i++) {
/* Call Centaur's CPUID instructions they are supported. */
if (env->cpuid_xlevel2 > 0) {
- env->cpuid_ext4_features &=
- kvm_arch_get_supported_cpuid(s, 0xC0000001, 0, R_EDX);
cpu_x86_cpuid(env, 0xC0000000, 0, &limit, &unused, &unused, &unused);
for (i = 0xC0000000; i <= limit; i++) {
qemu_add_vm_change_state_handler(cpu_update_state, env);
+ cpuid_data.cpuid.padding = 0;
r = kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
if (r) {
return r;
return 0;
}
-void kvm_arch_reset_vcpu(CPUState *env)
+void kvm_arch_reset_vcpu(CPUX86State *env)
{
+ X86CPU *cpu = x86_env_get_cpu(env);
+
env->exception_injected = -1;
env->interrupt_injected = -1;
env->xcr0 = 1;
if (kvm_irqchip_in_kernel()) {
- env->mp_state = cpu_is_bsp(env) ? KVM_MP_STATE_RUNNABLE :
+ env->mp_state = cpu_is_bsp(cpu) ? KVM_MP_STATE_RUNNABLE :
KVM_MP_STATE_UNINITIALIZED;
} else {
env->mp_state = KVM_MP_STATE_RUNNABLE;
lhs->g = (flags & DESC_G_MASK) != 0;
lhs->avl = (flags & DESC_AVL_MASK) != 0;
lhs->unusable = 0;
+ lhs->padding = 0;
}
static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
}
}
-static int kvm_getput_regs(CPUState *env, int set)
+static int kvm_getput_regs(CPUX86State *env, int set)
{
struct kvm_regs regs;
int ret = 0;
return ret;
}
-static int kvm_put_fpu(CPUState *env)
+static int kvm_put_fpu(CPUX86State *env)
{
struct kvm_fpu fpu;
int i;
#define XSAVE_XSTATE_BV 128
#define XSAVE_YMMH_SPACE 144
-static int kvm_put_xsave(CPUState *env)
+static int kvm_put_xsave(CPUX86State *env)
{
struct kvm_xsave* xsave = env->kvm_xsave_buf;
uint16_t cwd, swd, twd;
return r;
}
-static int kvm_put_xcrs(CPUState *env)
+static int kvm_put_xcrs(CPUX86State *env)
{
struct kvm_xcrs xcrs;
return kvm_vcpu_ioctl(env, KVM_SET_XCRS, &xcrs);
}
-static int kvm_put_sregs(CPUState *env)
+static int kvm_put_sregs(CPUX86State *env)
{
struct kvm_sregs sregs;
sregs.idt.limit = env->idt.limit;
sregs.idt.base = env->idt.base;
+ memset(sregs.idt.padding, 0, sizeof sregs.idt.padding);
sregs.gdt.limit = env->gdt.limit;
sregs.gdt.base = env->gdt.base;
+ memset(sregs.gdt.padding, 0, sizeof sregs.gdt.padding);
sregs.cr0 = env->cr[0];
sregs.cr2 = env->cr[2];
entry->data = value;
}
-static int kvm_put_msrs(CPUState *env, int level)
+static int kvm_put_msrs(CPUX86State *env, int level)
{
struct {
struct kvm_msrs info;
kvm_msr_entry_set(&msrs[n++], MSR_KVM_ASYNC_PF_EN,
env->async_pf_en_msr);
}
+ if (has_msr_pv_eoi_en) {
+ kvm_msr_entry_set(&msrs[n++], MSR_KVM_PV_EOI_EN,
+ env->pv_eoi_en_msr);
+ }
if (hyperv_hypercall_available()) {
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_GUEST_OS_ID, 0);
kvm_msr_entry_set(&msrs[n++], HV_X64_MSR_HYPERCALL, 0);
}
-static int kvm_get_fpu(CPUState *env)
+static int kvm_get_fpu(CPUX86State *env)
{
struct kvm_fpu fpu;
int i, ret;
return 0;
}
-static int kvm_get_xsave(CPUState *env)
+static int kvm_get_xsave(CPUX86State *env)
{
struct kvm_xsave* xsave = env->kvm_xsave_buf;
int ret, i;
return 0;
}
-static int kvm_get_xcrs(CPUState *env)
+static int kvm_get_xcrs(CPUX86State *env)
{
int i, ret;
struct kvm_xcrs xcrs;
return 0;
}
-static int kvm_get_sregs(CPUState *env)
+static int kvm_get_sregs(CPUX86State *env)
{
struct kvm_sregs sregs;
uint32_t hflags;
return 0;
}
-static int kvm_get_msrs(CPUState *env)
+static int kvm_get_msrs(CPUX86State *env)
{
struct {
struct kvm_msrs info;
if (has_msr_async_pf_en) {
msrs[n++].index = MSR_KVM_ASYNC_PF_EN;
}
+ if (has_msr_pv_eoi_en) {
+ msrs[n++].index = MSR_KVM_PV_EOI_EN;
+ }
if (env->mcg_cap) {
msrs[n++].index = MSR_MCG_STATUS;
case MSR_KVM_ASYNC_PF_EN:
env->async_pf_en_msr = msrs[i].data;
break;
+ case MSR_KVM_PV_EOI_EN:
+ env->pv_eoi_en_msr = msrs[i].data;
+ break;
}
}
return 0;
}
-static int kvm_put_mp_state(CPUState *env)
+static int kvm_put_mp_state(CPUX86State *env)
{
struct kvm_mp_state mp_state = { .mp_state = env->mp_state };
return kvm_vcpu_ioctl(env, KVM_SET_MP_STATE, &mp_state);
}
-static int kvm_get_mp_state(CPUState *env)
+static int kvm_get_mp_state(X86CPU *cpu)
{
+ CPUX86State *env = &cpu->env;
struct kvm_mp_state mp_state;
int ret;
return 0;
}
-static int kvm_get_apic(CPUState *env)
+static int kvm_get_apic(CPUX86State *env)
{
DeviceState *apic = env->apic_state;
struct kvm_lapic_state kapic;
return 0;
}
-static int kvm_put_apic(CPUState *env)
+static int kvm_put_apic(CPUX86State *env)
{
DeviceState *apic = env->apic_state;
struct kvm_lapic_state kapic;
return 0;
}
-static int kvm_put_vcpu_events(CPUState *env, int level)
+static int kvm_put_vcpu_events(CPUX86State *env, int level)
{
struct kvm_vcpu_events events;
events.exception.nr = env->exception_injected;
events.exception.has_error_code = env->has_error_code;
events.exception.error_code = env->error_code;
+ events.exception.pad = 0;
events.interrupt.injected = (env->interrupt_injected >= 0);
events.interrupt.nr = env->interrupt_injected;
events.nmi.injected = env->nmi_injected;
events.nmi.pending = env->nmi_pending;
events.nmi.masked = !!(env->hflags2 & HF2_NMI_MASK);
+ events.nmi.pad = 0;
events.sipi_vector = env->sipi_vector;
return kvm_vcpu_ioctl(env, KVM_SET_VCPU_EVENTS, &events);
}
-static int kvm_get_vcpu_events(CPUState *env)
+static int kvm_get_vcpu_events(CPUX86State *env)
{
struct kvm_vcpu_events events;
int ret;
return 0;
}
-static int kvm_guest_debug_workarounds(CPUState *env)
+static int kvm_guest_debug_workarounds(CPUX86State *env)
{
int ret = 0;
unsigned long reinject_trap = 0;
return ret;
}
-static int kvm_put_debugregs(CPUState *env)
+static int kvm_put_debugregs(CPUX86State *env)
{
struct kvm_debugregs dbgregs;
int i;
return kvm_vcpu_ioctl(env, KVM_SET_DEBUGREGS, &dbgregs);
}
-static int kvm_get_debugregs(CPUState *env)
+static int kvm_get_debugregs(CPUX86State *env)
{
struct kvm_debugregs dbgregs;
int i, ret;
return 0;
}
-int kvm_arch_put_registers(CPUState *env, int level)
+int kvm_arch_put_registers(CPUX86State *env, int level)
{
+ CPUState *cpu = ENV_GET_CPU(env);
int ret;
- assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
+ assert(cpu_is_stopped(cpu) || qemu_cpu_is_self(cpu));
ret = kvm_getput_regs(env, 1);
if (ret < 0) {
return 0;
}
-int kvm_arch_get_registers(CPUState *env)
+int kvm_arch_get_registers(CPUX86State *env)
{
+ X86CPU *cpu = x86_env_get_cpu(env);
int ret;
- assert(cpu_is_stopped(env) || qemu_cpu_is_self(env));
+ assert(cpu_is_stopped(CPU(cpu)) || qemu_cpu_is_self(CPU(cpu)));
ret = kvm_getput_regs(env, 0);
if (ret < 0) {
if (ret < 0) {
return ret;
}
- ret = kvm_get_mp_state(env);
+ ret = kvm_get_mp_state(cpu);
if (ret < 0) {
return ret;
}
return 0;
}
-void kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
+void kvm_arch_pre_run(CPUX86State *env, struct kvm_run *run)
{
int ret;
}
}
-void kvm_arch_post_run(CPUState *env, struct kvm_run *run)
+void kvm_arch_post_run(CPUX86State *env, struct kvm_run *run)
{
if (run->if_flag) {
env->eflags |= IF_MASK;
cpu_set_apic_base(env->apic_state, run->apic_base);
}
-int kvm_arch_process_async_events(CPUState *env)
+int kvm_arch_process_async_events(CPUX86State *env)
{
+ X86CPU *cpu = x86_env_get_cpu(env);
+
if (env->interrupt_request & CPU_INTERRUPT_MCE) {
/* We must not raise CPU_INTERRUPT_MCE if it's not supported. */
assert(env->mcg_cap);
return 0;
}
+ if (env->interrupt_request & CPU_INTERRUPT_POLL) {
+ env->interrupt_request &= ~CPU_INTERRUPT_POLL;
+ apic_poll_irq(env->apic_state);
+ }
if (((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) ||
(env->interrupt_request & CPU_INTERRUPT_NMI)) {
}
if (env->interrupt_request & CPU_INTERRUPT_INIT) {
kvm_cpu_synchronize_state(env);
- do_cpu_init(env);
+ do_cpu_init(cpu);
}
if (env->interrupt_request & CPU_INTERRUPT_SIPI) {
kvm_cpu_synchronize_state(env);
- do_cpu_sipi(env);
+ do_cpu_sipi(cpu);
}
if (env->interrupt_request & CPU_INTERRUPT_TPR) {
env->interrupt_request &= ~CPU_INTERRUPT_TPR;
return env->halted;
}
-static int kvm_handle_halt(CPUState *env)
+static int kvm_handle_halt(X86CPU *cpu)
{
+ CPUX86State *env = &cpu->env;
+
if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
(env->eflags & IF_MASK)) &&
!(env->interrupt_request & CPU_INTERRUPT_NMI)) {
return 0;
}
-static int kvm_handle_tpr_access(CPUState *env)
+static int kvm_handle_tpr_access(CPUX86State *env)
{
struct kvm_run *run = env->kvm_run;
return 1;
}
-int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
+int kvm_arch_insert_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
{
static const uint8_t int3 = 0xcc;
return 0;
}
-int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
+int kvm_arch_remove_sw_breakpoint(CPUX86State *env, struct kvm_sw_breakpoint *bp)
{
uint8_t int3;
static CPUWatchpoint hw_watchpoint;
-static int kvm_handle_debug(struct kvm_debug_exit_arch *arch_info)
+static int kvm_handle_debug(CPUX86State *env,
+ struct kvm_debug_exit_arch *arch_info)
{
int ret = 0;
int n;
if (arch_info->exception == 1) {
if (arch_info->dr6 & (1 << 14)) {
- if (cpu_single_env->singlestep_enabled) {
+ if (env->singlestep_enabled) {
ret = EXCP_DEBUG;
}
} else {
break;
case 0x1:
ret = EXCP_DEBUG;
- cpu_single_env->watchpoint_hit = &hw_watchpoint;
+ env->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_WRITE;
break;
case 0x3:
ret = EXCP_DEBUG;
- cpu_single_env->watchpoint_hit = &hw_watchpoint;
+ env->watchpoint_hit = &hw_watchpoint;
hw_watchpoint.vaddr = hw_breakpoint[n].addr;
hw_watchpoint.flags = BP_MEM_ACCESS;
break;
}
}
}
- } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc)) {
+ } else if (kvm_find_sw_breakpoint(env, arch_info->pc)) {
ret = EXCP_DEBUG;
}
if (ret == 0) {
- cpu_synchronize_state(cpu_single_env);
- assert(cpu_single_env->exception_injected == -1);
+ cpu_synchronize_state(env);
+ assert(env->exception_injected == -1);
/* pass to guest */
- cpu_single_env->exception_injected = arch_info->exception;
- cpu_single_env->has_error_code = 0;
+ env->exception_injected = arch_info->exception;
+ env->has_error_code = 0;
}
return ret;
}
-void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
+void kvm_arch_update_guest_debug(CPUX86State *env, struct kvm_guest_debug *dbg)
{
const uint8_t type_code[] = {
[GDB_BREAKPOINT_HW] = 0x0,
#define VMX_INVALID_GUEST_STATE 0x80000021
-int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
+int kvm_arch_handle_exit(CPUX86State *env, struct kvm_run *run)
{
+ X86CPU *cpu = x86_env_get_cpu(env);
uint64_t code;
int ret;
switch (run->exit_reason) {
case KVM_EXIT_HLT:
DPRINTF("handle_hlt\n");
- ret = kvm_handle_halt(env);
+ ret = kvm_handle_halt(cpu);
break;
case KVM_EXIT_SET_TPR:
ret = 0;
break;
case KVM_EXIT_DEBUG:
DPRINTF("kvm_exit_debug\n");
- ret = kvm_handle_debug(&run->debug.arch);
+ ret = kvm_handle_debug(env, &run->debug.arch);
break;
default:
fprintf(stderr, "KVM: unknown exit reason %d\n", run->exit_reason);
return ret;
}
-bool kvm_arch_stop_on_emulation_error(CPUState *env)
+bool kvm_arch_stop_on_emulation_error(CPUX86State *env)
{
kvm_cpu_synchronize_state(env);
return !(env->cr[0] & CR0_PE_MASK) ||
*/
no_hpet = 1;
}
+ /* We know at this point that we're using the in-kernel
+ * irqchip, so we can use irqfds, and on x86 we know
+ * we can use msi via irqfd and GSI routing.
+ */
+ kvm_irqfds_allowed = true;
+ kvm_msi_via_irqfd_allowed = true;
+ kvm_gsi_routing_allowed = true;
+}
+
+/* Classic KVM device assignment interface. Will remain x86 only. */
+int kvm_device_pci_assign(KVMState *s, PCIHostDeviceAddress *dev_addr,
+ uint32_t flags, uint32_t *dev_id)
+{
+ struct kvm_assigned_pci_dev dev_data = {
+ .segnr = dev_addr->domain,
+ .busnr = dev_addr->bus,
+ .devfn = PCI_DEVFN(dev_addr->slot, dev_addr->function),
+ .flags = flags,
+ };
+ int ret;
+
+ dev_data.assigned_dev_id =
+ (dev_addr->domain << 16) | (dev_addr->bus << 8) | dev_data.devfn;
+
+ ret = kvm_vm_ioctl(s, KVM_ASSIGN_PCI_DEVICE, &dev_data);
+ if (ret < 0) {
+ return ret;
+ }
+
+ *dev_id = dev_data.assigned_dev_id;
+
+ return 0;
+}
+
+int kvm_device_pci_deassign(KVMState *s, uint32_t dev_id)
+{
+ struct kvm_assigned_pci_dev dev_data = {
+ .assigned_dev_id = dev_id,
+ };
+
+ return kvm_vm_ioctl(s, KVM_DEASSIGN_PCI_DEVICE, &dev_data);
+}
+
+static int kvm_assign_irq_internal(KVMState *s, uint32_t dev_id,
+ uint32_t irq_type, uint32_t guest_irq)
+{
+ struct kvm_assigned_irq assigned_irq = {
+ .assigned_dev_id = dev_id,
+ .guest_irq = guest_irq,
+ .flags = irq_type,
+ };
+
+ if (kvm_check_extension(s, KVM_CAP_ASSIGN_DEV_IRQ)) {
+ return kvm_vm_ioctl(s, KVM_ASSIGN_DEV_IRQ, &assigned_irq);
+ } else {
+ return kvm_vm_ioctl(s, KVM_ASSIGN_IRQ, &assigned_irq);
+ }
+}
+
+int kvm_device_intx_assign(KVMState *s, uint32_t dev_id, bool use_host_msi,
+ uint32_t guest_irq)
+{
+ uint32_t irq_type = KVM_DEV_IRQ_GUEST_INTX |
+ (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX);
+
+ return kvm_assign_irq_internal(s, dev_id, irq_type, guest_irq);
+}
+
+int kvm_device_intx_set_mask(KVMState *s, uint32_t dev_id, bool masked)
+{
+ struct kvm_assigned_pci_dev dev_data = {
+ .assigned_dev_id = dev_id,
+ .flags = masked ? KVM_DEV_ASSIGN_MASK_INTX : 0,
+ };
+
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_INTX_MASK, &dev_data);
+}
+
+static int kvm_deassign_irq_internal(KVMState *s, uint32_t dev_id,
+ uint32_t type)
+{
+ struct kvm_assigned_irq assigned_irq = {
+ .assigned_dev_id = dev_id,
+ .flags = type,
+ };
+
+ return kvm_vm_ioctl(s, KVM_DEASSIGN_DEV_IRQ, &assigned_irq);
+}
+
+int kvm_device_intx_deassign(KVMState *s, uint32_t dev_id, bool use_host_msi)
+{
+ return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_INTX |
+ (use_host_msi ? KVM_DEV_IRQ_HOST_MSI : KVM_DEV_IRQ_HOST_INTX));
+}
+
+int kvm_device_msi_assign(KVMState *s, uint32_t dev_id, int virq)
+{
+ return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSI |
+ KVM_DEV_IRQ_GUEST_MSI, virq);
+}
+
+int kvm_device_msi_deassign(KVMState *s, uint32_t dev_id)
+{
+ return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSI |
+ KVM_DEV_IRQ_HOST_MSI);
+}
+
+bool kvm_device_msix_supported(KVMState *s)
+{
+ /* The kernel lacks a corresponding KVM_CAP, so we probe by calling
+ * KVM_ASSIGN_SET_MSIX_NR with an invalid parameter. */
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, NULL) == -EFAULT;
+}
+
+int kvm_device_msix_init_vectors(KVMState *s, uint32_t dev_id,
+ uint32_t nr_vectors)
+{
+ struct kvm_assigned_msix_nr msix_nr = {
+ .assigned_dev_id = dev_id,
+ .entry_nr = nr_vectors,
+ };
+
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_NR, &msix_nr);
+}
+
+int kvm_device_msix_set_vector(KVMState *s, uint32_t dev_id, uint32_t vector,
+ int virq)
+{
+ struct kvm_assigned_msix_entry msix_entry = {
+ .assigned_dev_id = dev_id,
+ .gsi = virq,
+ .entry = vector,
+ };
+
+ return kvm_vm_ioctl(s, KVM_ASSIGN_SET_MSIX_ENTRY, &msix_entry);
+}
+
+int kvm_device_msix_assign(KVMState *s, uint32_t dev_id)
+{
+ return kvm_assign_irq_internal(s, dev_id, KVM_DEV_IRQ_HOST_MSIX |
+ KVM_DEV_IRQ_GUEST_MSIX, 0);
+}
+
+int kvm_device_msix_deassign(KVMState *s, uint32_t dev_id)
+{
+ return kvm_deassign_irq_internal(s, dev_id, KVM_DEV_IRQ_GUEST_MSIX |
+ KVM_DEV_IRQ_HOST_MSIX);
}