#include "isa.h"
#include "fw_cfg.h"
#include "escc.h"
+#include "empty_slot.h"
#include "qdev-addr.h"
#include "loader.h"
#include "elf.h"
-
-//#define DEBUG_IRQ
+#include "blockdev.h"
+#include "trace.h"
/*
* Sun4m architecture was used in the following machines:
* See for example: http://www.sunhelp.org/faq/sunref1.html
*/
-#ifdef DEBUG_IRQ
-#define DPRINTF(fmt, ...) \
- do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
-#else
-#define DPRINTF(fmt, ...)
-#endif
-
#define KERNEL_LOAD_ADDR 0x00004000
#define CMDLINE_ADDR 0x007ff000
#define INITRD_LOAD_ADDR 0x00800000
#define MAX_CPUS 16
#define MAX_PILS 16
+#define MAX_VSIMMS 4
#define ESCC_CLOCK 4915200
struct sun4m_hwdef {
- target_phys_addr_t iommu_base, slavio_base;
+ target_phys_addr_t iommu_base, iommu_pad_base, iommu_pad_len, slavio_base;
target_phys_addr_t intctl_base, counter_base, nvram_base, ms_kb_base;
target_phys_addr_t serial_base, fd_base;
target_phys_addr_t afx_base, idreg_base, dma_base, esp_base, le_base;
target_phys_addr_t tcx_base, cs_base, apc_base, aux1_base, aux2_base;
+ target_phys_addr_t bpp_base, dbri_base, sx_base;
+ struct {
+ target_phys_addr_t reg_base, vram_base;
+ } vsimm[MAX_VSIMMS];
target_phys_addr_t ecc_base;
- uint32_t ecc_version;
- uint8_t nvram_machine_id;
- uint16_t machine_id;
- uint32_t iommu_version;
uint64_t max_mem;
const char * const default_cpu_model;
+ uint32_t ecc_version;
+ uint32_t iommu_version;
+ uint16_t machine_id;
+ uint8_t nvram_machine_id;
};
#define MAX_IOUNITS 5
target_phys_addr_t ledma_base, le_base;
target_phys_addr_t tcx_base;
target_phys_addr_t sbi_base;
- uint8_t nvram_machine_id;
- uint16_t machine_id;
- uint32_t iounit_version;
uint64_t max_mem;
const char * const default_cpu_model;
+ uint32_t iounit_version;
+ uint16_t machine_id;
+ uint8_t nvram_machine_id;
};
struct sun4c_hwdef {
target_phys_addr_t serial_base, fd_base;
target_phys_addr_t idreg_base, dma_base, esp_base, le_base;
target_phys_addr_t tcx_base, aux1_base;
- uint8_t nvram_machine_id;
- uint16_t machine_id;
- uint32_t iommu_version;
uint64_t max_mem;
const char * const default_cpu_model;
+ uint32_t iommu_version;
+ uint16_t machine_id;
+ uint8_t nvram_machine_id;
};
int DMA_get_channel_mode (int nchan)
void DMA_hold_DREQ (int nchan) {}
void DMA_release_DREQ (int nchan) {}
void DMA_schedule(int nchan) {}
-void DMA_init (int high_page_enable) {}
+
+void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
+{
+}
+
void DMA_register_channel (int nchan,
DMA_transfer_handler transfer_handler,
void *opaque)
static DeviceState *slavio_intctl;
-void pic_info(Monitor *mon)
+void sun4m_pic_info(Monitor *mon)
{
if (slavio_intctl)
slavio_pic_info(mon, slavio_intctl);
}
-void irq_info(Monitor *mon)
+void sun4m_irq_info(Monitor *mon)
{
if (slavio_intctl)
slavio_irq_info(mon, slavio_intctl);
}
-void cpu_check_irqs(CPUState *env)
+void cpu_check_irqs(CPUSPARCState *env)
{
if (env->pil_in && (env->interrupt_index == 0 ||
(env->interrupt_index & ~15) == TT_EXTINT)) {
env->interrupt_index = TT_EXTINT | i;
if (old_interrupt != env->interrupt_index) {
- DPRINTF("Set CPU IRQ %d\n", i);
+ trace_sun4m_cpu_interrupt(i);
cpu_interrupt(env, CPU_INTERRUPT_HARD);
}
break;
}
}
} else if (!env->pil_in && (env->interrupt_index & ~15) == TT_EXTINT) {
- DPRINTF("Reset CPU IRQ %d\n", env->interrupt_index & 15);
+ trace_sun4m_cpu_reset_interrupt(env->interrupt_index & 15);
env->interrupt_index = 0;
cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
}
}
+static void cpu_kick_irq(CPUSPARCState *env)
+{
+ env->halted = 0;
+ cpu_check_irqs(env);
+ qemu_cpu_kick(env);
+}
+
static void cpu_set_irq(void *opaque, int irq, int level)
{
- CPUState *env = opaque;
+ CPUSPARCState *env = opaque;
if (level) {
- DPRINTF("Raise CPU IRQ %d\n", irq);
- env->halted = 0;
+ trace_sun4m_cpu_set_irq_raise(irq);
env->pil_in |= 1 << irq;
- cpu_check_irqs(env);
+ cpu_kick_irq(env);
} else {
- DPRINTF("Lower CPU IRQ %d\n", irq);
+ trace_sun4m_cpu_set_irq_lower(irq);
env->pil_in &= ~(1 << irq);
cpu_check_irqs(env);
}
static void main_cpu_reset(void *opaque)
{
- CPUState *env = opaque;
+ SPARCCPU *cpu = opaque;
+ CPUSPARCState *env = &cpu->env;
- cpu_reset(env);
+ cpu_reset(CPU(cpu));
env->halted = 0;
}
static void secondary_cpu_reset(void *opaque)
{
- CPUState *env = opaque;
+ SPARCCPU *cpu = opaque;
+ CPUSPARCState *env = &cpu->env;
- cpu_reset(env);
+ cpu_reset(CPU(cpu));
env->halted = 1;
}
}
static void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
- void *iommu, qemu_irq *dev_irq)
+ void *iommu, qemu_irq *dev_irq, int is_ledma)
{
DeviceState *dev;
SysBusDevice *s;
dev = qdev_create(NULL, "sparc32_dma");
qdev_prop_set_ptr(dev, "iommu_opaque", iommu);
+ qdev_prop_set_uint32(dev, "is_ledma", is_ledma);
qdev_init_nofail(dev);
s = sysbus_from_qdev(dev);
sysbus_connect_irq(s, 0, parent_irq);
}
}
+static qemu_irq slavio_system_powerdown;
+
+static void slavio_powerdown_req(Notifier *n, void *opaque)
+{
+ qemu_irq_raise(slavio_system_powerdown);
+}
+
+static Notifier slavio_system_powerdown_notifier = {
+ .notify = slavio_powerdown_req
+};
+
#define MISC_LEDS 0x01600000
#define MISC_CFG 0x01800000
#define MISC_DIAG 0x01a00000
}
sysbus_connect_irq(s, 0, irq);
sysbus_connect_irq(s, 1, fdc_tc);
- qemu_system_powerdown = qdev_get_gpio_in(dev, 0);
+ slavio_system_powerdown = qdev_get_gpio_in(dev, 0);
+ qemu_register_powerdown_notifier(&slavio_system_powerdown_notifier);
}
static void ecc_init(target_phys_addr_t base, qemu_irq irq, uint32_t version)
cpu_physical_memory_write_rom(addr, idreg_data, sizeof(idreg_data));
}
+typedef struct IDRegState {
+ SysBusDevice busdev;
+ MemoryRegion mem;
+} IDRegState;
+
static int idreg_init1(SysBusDevice *dev)
{
- ram_addr_t idreg_offset;
+ IDRegState *s = FROM_SYSBUS(IDRegState, dev);
- idreg_offset = qemu_ram_alloc(sizeof(idreg_data));
- sysbus_init_mmio(dev, sizeof(idreg_data), idreg_offset | IO_MEM_ROM);
+ memory_region_init_ram(&s->mem, "sun4m.idreg", sizeof(idreg_data));
+ vmstate_register_ram_global(&s->mem);
+ memory_region_set_readonly(&s->mem, true);
+ sysbus_init_mmio(dev, &s->mem);
return 0;
}
-static SysBusDeviceInfo idreg_info = {
- .init = idreg_init1,
- .qdev.name = "macio_idreg",
- .qdev.size = sizeof(SysBusDevice),
-};
-
-static void idreg_register_devices(void)
+static void idreg_class_init(ObjectClass *klass, void *data)
{
- sysbus_register_withprop(&idreg_info);
+ SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
+
+ k->init = idreg_init1;
}
-device_init(idreg_register_devices);
+static TypeInfo idreg_info = {
+ .name = "macio_idreg",
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(IDRegState),
+ .class_init = idreg_class_init,
+};
+
+typedef struct AFXState {
+ SysBusDevice busdev;
+ MemoryRegion mem;
+} AFXState;
/* SS-5 TCX AFX register */
static void afx_init(target_phys_addr_t addr)
static int afx_init1(SysBusDevice *dev)
{
- ram_addr_t afx_offset;
+ AFXState *s = FROM_SYSBUS(AFXState, dev);
- afx_offset = qemu_ram_alloc(4);
- sysbus_init_mmio(dev, 4, afx_offset | IO_MEM_RAM);
+ memory_region_init_ram(&s->mem, "sun4m.afx", 4);
+ vmstate_register_ram_global(&s->mem);
+ sysbus_init_mmio(dev, &s->mem);
return 0;
}
-static SysBusDeviceInfo afx_info = {
- .init = afx_init1,
- .qdev.name = "tcx_afx",
- .qdev.size = sizeof(SysBusDevice),
-};
-
-static void afx_register_devices(void)
+static void afx_class_init(ObjectClass *klass, void *data)
{
- sysbus_register_withprop(&afx_info);
+ SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
+
+ k->init = afx_init1;
}
-device_init(afx_register_devices);
+static TypeInfo afx_info = {
+ .name = "tcx_afx",
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(AFXState),
+ .class_init = afx_class_init,
+};
+
+typedef struct PROMState {
+ SysBusDevice busdev;
+ MemoryRegion prom;
+} PROMState;
/* Boot PROM (OpenBIOS) */
static uint64_t translate_prom_address(void *opaque, uint64_t addr)
if (ret < 0 || ret > PROM_SIZE_MAX) {
ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
}
- qemu_free(filename);
+ g_free(filename);
} else {
ret = -1;
}
static int prom_init1(SysBusDevice *dev)
{
- ram_addr_t prom_offset;
+ PROMState *s = FROM_SYSBUS(PROMState, dev);
- prom_offset = qemu_ram_alloc(PROM_SIZE_MAX);
- sysbus_init_mmio(dev, PROM_SIZE_MAX, prom_offset | IO_MEM_ROM);
+ memory_region_init_ram(&s->prom, "sun4m.prom", PROM_SIZE_MAX);
+ vmstate_register_ram_global(&s->prom);
+ memory_region_set_readonly(&s->prom, true);
+ sysbus_init_mmio(dev, &s->prom);
return 0;
}
-static SysBusDeviceInfo prom_info = {
- .init = prom_init1,
- .qdev.name = "openprom",
- .qdev.size = sizeof(SysBusDevice),
- .qdev.props = (Property[]) {
- {/* end of property list */}
- }
+static Property prom_properties[] = {
+ {/* end of property list */},
};
-static void prom_register_devices(void)
+static void prom_class_init(ObjectClass *klass, void *data)
{
- sysbus_register_withprop(&prom_info);
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
+
+ k->init = prom_init1;
+ dc->props = prom_properties;
}
-device_init(prom_register_devices);
+static TypeInfo prom_info = {
+ .name = "openprom",
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(PROMState),
+ .class_init = prom_class_init,
+};
typedef struct RamDevice
{
SysBusDevice busdev;
+ MemoryRegion ram;
uint64_t size;
} RamDevice;
/* System RAM */
static int ram_init1(SysBusDevice *dev)
{
- ram_addr_t RAM_size, ram_offset;
RamDevice *d = FROM_SYSBUS(RamDevice, dev);
- RAM_size = d->size;
-
- ram_offset = qemu_ram_alloc(RAM_size);
- sysbus_init_mmio(dev, RAM_size, ram_offset);
+ memory_region_init_ram(&d->ram, "sun4m.ram", d->size);
+ vmstate_register_ram_global(&d->ram);
+ sysbus_init_mmio(dev, &d->ram);
return 0;
}
sysbus_mmio_map(s, 0, addr);
}
-static SysBusDeviceInfo ram_info = {
- .init = ram_init1,
- .qdev.name = "memory",
- .qdev.size = sizeof(RamDevice),
- .qdev.props = (Property[]) {
- DEFINE_PROP_UINT64("size", RamDevice, size, 0),
- DEFINE_PROP_END_OF_LIST(),
- }
+static Property ram_properties[] = {
+ DEFINE_PROP_UINT64("size", RamDevice, size, 0),
+ DEFINE_PROP_END_OF_LIST(),
};
-static void ram_register_devices(void)
+static void ram_class_init(ObjectClass *klass, void *data)
{
- sysbus_register_withprop(&ram_info);
+ DeviceClass *dc = DEVICE_CLASS(klass);
+ SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
+
+ k->init = ram_init1;
+ dc->props = ram_properties;
}
-device_init(ram_register_devices);
+static TypeInfo ram_info = {
+ .name = "memory",
+ .parent = TYPE_SYS_BUS_DEVICE,
+ .instance_size = sizeof(RamDevice),
+ .class_init = ram_class_init,
+};
static void cpu_devinit(const char *cpu_model, unsigned int id,
uint64_t prom_addr, qemu_irq **cpu_irqs)
{
- CPUState *env;
+ SPARCCPU *cpu;
+ CPUSPARCState *env;
- env = cpu_init(cpu_model);
- if (!env) {
+ cpu = cpu_sparc_init(cpu_model);
+ if (cpu == NULL) {
fprintf(stderr, "qemu: Unable to find Sparc CPU definition\n");
exit(1);
}
+ env = &cpu->env;
cpu_sparc_set_id(env, id);
if (id == 0) {
- qemu_register_reset(main_cpu_reset, env);
+ qemu_register_reset(main_cpu_reset, cpu);
} else {
- qemu_register_reset(secondary_cpu_reset, env);
+ qemu_register_reset(secondary_cpu_reset, cpu);
env->halted = 1;
}
*cpu_irqs = qemu_allocate_irqs(cpu_set_irq, env, MAX_PILS);
env->prom_addr = prom_addr;
}
+static void dummy_fdc_tc(void *opaque, int irq, int level)
+{
+}
+
static void sun4m_hw_init(const struct sun4m_hwdef *hwdef, ram_addr_t RAM_size,
const char *boot_device,
const char *kernel_filename,
void *iommu, *espdma, *ledma, *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], slavio_irq[32], slavio_cpu_irq[MAX_CPUS],
espdma_irq, ledma_irq;
- qemu_irq esp_reset;
+ qemu_irq esp_reset, dma_enable;
qemu_irq fdc_tc;
qemu_irq *cpu_halt;
unsigned long kernel_size;
DriveInfo *fd[MAX_FD];
void *fw_cfg;
+ unsigned int num_vsimms;
/* init CPUs */
if (!cpu_model)
/* set up devices */
ram_init(0, RAM_size, hwdef->max_mem);
+ /* models without ECC don't trap when missing ram is accessed */
+ if (!hwdef->ecc_base) {
+ empty_slot_init(RAM_size, hwdef->max_mem - RAM_size);
+ }
prom_init(hwdef->slavio_base, bios_name);
iommu = iommu_init(hwdef->iommu_base, hwdef->iommu_version,
slavio_irq[30]);
+ if (hwdef->iommu_pad_base) {
+ /* On the real hardware (SS-5, LX) the MMU is not padded, but aliased.
+ Software shouldn't use aliased addresses, neither should it crash
+ when does. Using empty_slot instead of aliasing can help with
+ debugging such accesses */
+ empty_slot_init(hwdef->iommu_pad_base,hwdef->iommu_pad_len);
+ }
+
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[18],
- iommu, &espdma_irq);
+ iommu, &espdma_irq, 0);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
- slavio_irq[16], iommu, &ledma_irq);
+ slavio_irq[16], iommu, &ledma_irq, 1);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
exit (1);
}
- tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
- graphic_depth);
+ num_vsimms = 0;
+ if (num_vsimms == 0) {
+ tcx_init(hwdef->tcx_base, 0x00100000, graphic_width, graphic_height,
+ graphic_depth);
+ }
+
+ for (i = num_vsimms; i < MAX_VSIMMS; i++) {
+ /* vsimm registers probed by OBP */
+ if (hwdef->vsimm[i].reg_base) {
+ empty_slot_init(hwdef->vsimm[i].reg_base, 0x2000);
+ }
+ }
+
+ if (hwdef->sx_base) {
+ empty_slot_init(hwdef->sx_base, 0x2000);
+ }
lance_init(&nd_table[0], hwdef->le_base, ledma, ledma_irq);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[14],
display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
- // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
- // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
+ /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
+ Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
escc_init(hwdef->serial_base, slavio_irq[15], slavio_irq[15],
serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
cpu_halt = qemu_allocate_irqs(cpu_halt_signal, NULL, 1);
- slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
- slavio_irq[30], fdc_tc);
-
if (hwdef->apc_base) {
apc_init(hwdef->apc_base, cpu_halt[0]);
}
fd[0] = drive_get(IF_FLOPPY, 0, 0);
sun4m_fdctrl_init(slavio_irq[22], hwdef->fd_base, fd,
&fdc_tc);
+ } else {
+ fdc_tc = *qemu_allocate_irqs(dummy_fdc_tc, NULL, 1);
}
+ slavio_misc_init(hwdef->slavio_base, hwdef->aux1_base, hwdef->aux2_base,
+ slavio_irq[30], fdc_tc);
+
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
- esp_reset = qdev_get_gpio_in(espdma, 0);
esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
- espdma, espdma_irq, &esp_reset);
+ espdma, espdma_irq, &esp_reset, &dma_enable);
+ qdev_connect_gpio_out(espdma, 0, esp_reset);
+ qdev_connect_gpio_out(espdma, 1, dma_enable);
if (hwdef->cs_base) {
sysbus_create_simple("SUNW,CS4231", hwdef->cs_base,
slavio_irq[5]);
}
+ if (hwdef->dbri_base) {
+ /* ISDN chip with attached CS4215 audio codec */
+ /* prom space */
+ empty_slot_init(hwdef->dbri_base+0x1000, 0x30);
+ /* reg space */
+ empty_slot_init(hwdef->dbri_base+0x10000, 0x100);
+ }
+
+ if (hwdef->bpp_base) {
+ /* parallel port */
+ empty_slot_init(hwdef->bpp_base, 0x20);
+ }
+
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA,
(uint8_t*)strdup(kernel_cmdline),
strlen(kernel_cmdline) + 1);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
+ strlen(kernel_cmdline) + 1);
} else {
fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_CMDLINE, 0);
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
}
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, INITRD_LOAD_ADDR);
fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, 0); // not used
/* SS-5 */
{
.iommu_base = 0x10000000,
+ .iommu_pad_base = 0x10004000,
+ .iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.cs_base = 0x6c000000,
.slavio_base = 0x70000000,
.dma_base = 0xef0400000ULL,
.esp_base = 0xef0800000ULL,
.le_base = 0xef0c00000ULL,
+ .bpp_base = 0xef4800000ULL,
.apc_base = 0xefa000000ULL, // XXX should not exist
.aux1_base = 0xff1800000ULL,
.aux2_base = 0xff1a01000ULL,
+ .dbri_base = 0xee0000000ULL,
+ .sx_base = 0xf80000000ULL,
+ .vsimm = {
+ {
+ .reg_base = 0x9c000000ULL,
+ .vram_base = 0xfc000000ULL
+ }, {
+ .reg_base = 0x90000000ULL,
+ .vram_base = 0xf0000000ULL
+ }, {
+ .reg_base = 0x94000000ULL
+ }, {
+ .reg_base = 0x98000000ULL
+ }
+ },
.ecc_base = 0xf00000000ULL,
.ecc_version = 0x20000000, // version 0, implementation 2
.nvram_machine_id = 0x72,
/* LX */
{
.iommu_base = 0x10000000,
+ .iommu_pad_base = 0x10004000,
+ .iommu_pad_len = 0x0fffb000,
.tcx_base = 0x50000000,
.slavio_base = 0x70000000,
.ms_kb_base = 0x71000000,
void *iounits[MAX_IOUNITS], *espdma, *ledma, *nvram;
qemu_irq *cpu_irqs[MAX_CPUS], sbi_irq[32], sbi_cpu_irq[MAX_CPUS],
espdma_irq, ledma_irq;
- qemu_irq esp_reset;
+ qemu_irq esp_reset, dma_enable;
unsigned long kernel_size;
void *fw_cfg;
DeviceState *dev;
sbi_irq[0]);
espdma = sparc32_dma_init(hwdef->espdma_base, sbi_irq[3],
- iounits[0], &espdma_irq);
+ iounits[0], &espdma_irq, 0);
+ /* should be lebuffer instead */
ledma = sparc32_dma_init(hwdef->ledma_base, sbi_irq[4],
- iounits[0], &ledma_irq);
+ iounits[0], &ledma_irq, 0);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, sbi_irq[12],
display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
- // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
- // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
+ /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
+ Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
escc_init(hwdef->serial_base, sbi_irq[12], sbi_irq[12],
serial_hds[0], serial_hds[1], ESCC_CLOCK, 1);
exit(1);
}
- esp_reset = qdev_get_gpio_in(espdma, 0);
esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
- espdma, espdma_irq, &esp_reset);
+ espdma, espdma_irq, &esp_reset, &dma_enable);
+
+ qdev_connect_gpio_out(espdma, 0, esp_reset);
+ qdev_connect_gpio_out(espdma, 1, dma_enable);
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
{
void *iommu, *espdma, *ledma, *nvram;
qemu_irq *cpu_irqs, slavio_irq[8], espdma_irq, ledma_irq;
- qemu_irq esp_reset;
+ qemu_irq esp_reset, dma_enable;
qemu_irq fdc_tc;
unsigned long kernel_size;
DriveInfo *fd[MAX_FD];
slavio_irq[1]);
espdma = sparc32_dma_init(hwdef->dma_base, slavio_irq[2],
- iommu, &espdma_irq);
+ iommu, &espdma_irq, 0);
ledma = sparc32_dma_init(hwdef->dma_base + 16ULL,
- slavio_irq[3], iommu, &ledma_irq);
+ slavio_irq[3], iommu, &ledma_irq, 1);
if (graphic_depth != 8 && graphic_depth != 24) {
fprintf(stderr, "qemu: Unsupported depth: %d\n", graphic_depth);
slavio_serial_ms_kbd_init(hwdef->ms_kb_base, slavio_irq[1],
display_type == DT_NOGRAPHIC, ESCC_CLOCK, 1);
- // Slavio TTYA (base+4, Linux ttyS0) is the first Qemu serial device
- // Slavio TTYB (base+0, Linux ttyS1) is the second Qemu serial device
+ /* Slavio TTYA (base+4, Linux ttyS0) is the first QEMU serial device
+ Slavio TTYB (base+0, Linux ttyS1) is the second QEMU serial device */
escc_init(hwdef->serial_base, slavio_irq[1],
slavio_irq[1], serial_hds[0], serial_hds[1],
ESCC_CLOCK, 1);
- slavio_misc_init(0, hwdef->aux1_base, 0, slavio_irq[1], fdc_tc);
-
if (hwdef->fd_base != (target_phys_addr_t)-1) {
/* there is zero or one floppy drive */
memset(fd, 0, sizeof(fd));
fd[0] = drive_get(IF_FLOPPY, 0, 0);
sun4m_fdctrl_init(slavio_irq[1], hwdef->fd_base, fd,
&fdc_tc);
+ } else {
+ fdc_tc = *qemu_allocate_irqs(dummy_fdc_tc, NULL, 1);
}
+ slavio_misc_init(0, hwdef->aux1_base, 0, slavio_irq[1], fdc_tc);
+
if (drive_get_max_bus(IF_SCSI) > 0) {
fprintf(stderr, "qemu: too many SCSI bus\n");
exit(1);
}
- esp_reset = qdev_get_gpio_in(espdma, 0);
esp_init(hwdef->esp_base, 2,
espdma_memory_read, espdma_memory_write,
- espdma, espdma_irq, &esp_reset);
+ espdma, espdma_irq, &esp_reset, &dma_enable);
+
+ qdev_connect_gpio_out(espdma, 0, esp_reset);
+ qdev_connect_gpio_out(espdma, 1, dma_enable);
kernel_size = sun4m_load_kernel(kernel_filename, initrd_filename,
RAM_size);
.use_scsi = 1,
};
+static void sun4m_register_types(void)
+{
+ type_register_static(&idreg_info);
+ type_register_static(&afx_info);
+ type_register_static(&prom_info);
+ type_register_static(&ram_info);
+}
+
static void ss2_machine_init(void)
{
qemu_register_machine(&ss5_machine);
qemu_register_machine(&ss2_machine);
}
+type_init(sun4m_register_types)
machine_init(ss2_machine_init);