#include "sysemu/kvm.h"
#include "kvm_arm.h"
#include "cpu.h"
-#include "hw/arm.h"
+#include "hw/arm/arm.h"
const KVMCapabilityInfo kvm_arch_required_capabilities[] = {
KVM_CAP_LAST_INFO
};
+bool kvm_arm_create_scratch_host_vcpu(const uint32_t *cpus_to_try,
+ int *fdarray,
+ struct kvm_vcpu_init *init)
+{
+ int ret, kvmfd = -1, vmfd = -1, cpufd = -1;
+
+ kvmfd = qemu_open("/dev/kvm", O_RDWR);
+ if (kvmfd < 0) {
+ goto err;
+ }
+ vmfd = ioctl(kvmfd, KVM_CREATE_VM, 0);
+ if (vmfd < 0) {
+ goto err;
+ }
+ cpufd = ioctl(vmfd, KVM_CREATE_VCPU, 0);
+ if (cpufd < 0) {
+ goto err;
+ }
+
+ ret = ioctl(vmfd, KVM_ARM_PREFERRED_TARGET, init);
+ if (ret >= 0) {
+ ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
+ if (ret < 0) {
+ goto err;
+ }
+ } else {
+ /* Old kernel which doesn't know about the
+ * PREFERRED_TARGET ioctl: we know it will only support
+ * creating one kind of guest CPU which is its preferred
+ * CPU type.
+ */
+ while (*cpus_to_try != QEMU_KVM_ARM_TARGET_NONE) {
+ init->target = *cpus_to_try++;
+ memset(init->features, 0, sizeof(init->features));
+ ret = ioctl(cpufd, KVM_ARM_VCPU_INIT, init);
+ if (ret >= 0) {
+ break;
+ }
+ }
+ if (ret < 0) {
+ goto err;
+ }
+ }
+
+ fdarray[0] = kvmfd;
+ fdarray[1] = vmfd;
+ fdarray[2] = cpufd;
+
+ return true;
+
+err:
+ if (cpufd >= 0) {
+ close(cpufd);
+ }
+ if (vmfd >= 0) {
+ close(vmfd);
+ }
+ if (kvmfd >= 0) {
+ close(kvmfd);
+ }
+
+ return false;
+}
+
+void kvm_arm_destroy_scratch_host_vcpu(int *fdarray)
+{
+ int i;
+
+ for (i = 2; i >= 0; i--) {
+ close(fdarray[i]);
+ }
+}
+
+static void kvm_arm_host_cpu_class_init(ObjectClass *oc, void *data)
+{
+ ARMHostCPUClass *ahcc = ARM_HOST_CPU_CLASS(oc);
+
+ /* All we really need to set up for the 'host' CPU
+ * is the feature bits -- we rely on the fact that the
+ * various ID register values in ARMCPU are only used for
+ * TCG CPUs.
+ */
+ if (!kvm_arm_get_host_cpu_features(ahcc)) {
+ fprintf(stderr, "Failed to retrieve host CPU features!\n");
+ abort();
+ }
+}
+
+static void kvm_arm_host_cpu_initfn(Object *obj)
+{
+ ARMHostCPUClass *ahcc = ARM_HOST_CPU_GET_CLASS(obj);
+ ARMCPU *cpu = ARM_CPU(obj);
+ CPUARMState *env = &cpu->env;
+
+ cpu->kvm_target = ahcc->target;
+ cpu->dtb_compatible = ahcc->dtb_compatible;
+ env->features = ahcc->features;
+}
+
+static const TypeInfo host_arm_cpu_type_info = {
+ .name = TYPE_ARM_HOST_CPU,
+#ifdef TARGET_AARCH64
+ .parent = TYPE_AARCH64_CPU,
+#else
+ .parent = TYPE_ARM_CPU,
+#endif
+ .instance_init = kvm_arm_host_cpu_initfn,
+ .class_init = kvm_arm_host_cpu_class_init,
+ .class_size = sizeof(ARMHostCPUClass),
+};
+
int kvm_arch_init(KVMState *s)
{
/* For ARM interrupt delivery is always asynchronous,
* whether we are using an in-kernel VGIC or not.
*/
kvm_async_interrupts_allowed = true;
+
+ type_register_static(&host_arm_cpu_type_info);
+
return 0;
}
return cpu->cpu_index;
}
-int kvm_arch_init_vcpu(CPUState *cs)
-{
- struct kvm_vcpu_init init;
- int ret;
- uint64_t v;
- struct kvm_one_reg r;
-
- init.target = KVM_ARM_TARGET_CORTEX_A15;
- memset(init.features, 0, sizeof(init.features));
- ret = kvm_vcpu_ioctl(cs, KVM_ARM_VCPU_INIT, &init);
- if (ret) {
- return ret;
- }
- /* Query the kernel to make sure it supports 32 VFP
- * registers: QEMU's "cortex-a15" CPU is always a
- * VFP-D32 core. The simplest way to do this is just
- * to attempt to read register d31.
- */
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP | 31;
- r.addr = (uintptr_t)(&v);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
- if (ret == ENOENT) {
- return EINVAL;
- }
- return ret;
-}
-
/* We track all the KVM devices which need their memory addresses
* passing to the kernel in a list of these structures.
* When board init is complete we run through the list and
*/
typedef struct KVMDevice {
struct kvm_arm_device_addr kda;
+ struct kvm_device_attr kdattr;
MemoryRegion *mr;
QSLIST_ENTRY(KVMDevice) entries;
+ int dev_fd;
} KVMDevice;
static QSLIST_HEAD(kvm_devices_head, KVMDevice) kvm_devices_head;
.region_del = kvm_arm_devlistener_del,
};
+static void kvm_arm_set_device_addr(KVMDevice *kd)
+{
+ struct kvm_device_attr *attr = &kd->kdattr;
+ int ret;
+
+ /* If the device control API is available and we have a device fd on the
+ * KVMDevice struct, let's use the newer API
+ */
+ if (kd->dev_fd >= 0) {
+ uint64_t addr = kd->kda.addr;
+ attr->addr = (uintptr_t)&addr;
+ ret = kvm_device_ioctl(kd->dev_fd, KVM_SET_DEVICE_ATTR, attr);
+ } else {
+ ret = kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR, &kd->kda);
+ }
+
+ if (ret < 0) {
+ fprintf(stderr, "Failed to set device address: %s\n",
+ strerror(-ret));
+ abort();
+ }
+}
+
static void kvm_arm_machine_init_done(Notifier *notifier, void *data)
{
KVMDevice *kd, *tkd;
memory_listener_unregister(&devlistener);
QSLIST_FOREACH_SAFE(kd, &kvm_devices_head, entries, tkd) {
if (kd->kda.addr != -1) {
- if (kvm_vm_ioctl(kvm_state, KVM_ARM_SET_DEVICE_ADDR,
- &kd->kda) < 0) {
- fprintf(stderr, "KVM_ARM_SET_DEVICE_ADDRESS failed: %s\n",
- strerror(errno));
- abort();
- }
+ kvm_arm_set_device_addr(kd);
}
+ memory_region_unref(kd->mr);
g_free(kd);
}
}
.notify = kvm_arm_machine_init_done,
};
-void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid)
+void kvm_arm_register_device(MemoryRegion *mr, uint64_t devid, uint64_t group,
+ uint64_t attr, int dev_fd)
{
KVMDevice *kd;
kd->mr = mr;
kd->kda.id = devid;
kd->kda.addr = -1;
+ kd->kdattr.flags = 0;
+ kd->kdattr.group = group;
+ kd->kdattr.attr = attr;
+ kd->dev_fd = dev_fd;
QSLIST_INSERT_HEAD(&kvm_devices_head, kd, entries);
+ memory_region_ref(kd->mr);
}
-typedef struct Reg {
- uint64_t id;
- int offset;
-} Reg;
-
-#define COREREG(KERNELNAME, QEMUFIELD) \
- { \
- KVM_REG_ARM | KVM_REG_SIZE_U32 | \
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(KERNELNAME), \
- offsetof(CPUARMState, QEMUFIELD) \
- }
-
-#define CP15REG(CRN, CRM, OPC1, OPC2, QEMUFIELD) \
- { \
- KVM_REG_ARM | KVM_REG_SIZE_U32 | \
- (15 << KVM_REG_ARM_COPROC_SHIFT) | \
- ((CRN) << KVM_REG_ARM_32_CRN_SHIFT) | \
- ((CRM) << KVM_REG_ARM_CRM_SHIFT) | \
- ((OPC1) << KVM_REG_ARM_OPC1_SHIFT) | \
- ((OPC2) << KVM_REG_ARM_32_OPC2_SHIFT), \
- offsetof(CPUARMState, QEMUFIELD) \
- }
-
-#define VFPSYSREG(R) \
- { \
- KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP | \
- KVM_REG_ARM_VFP_##R, \
- offsetof(CPUARMState, vfp.xregs[ARM_VFP_##R]) \
- }
-
-static const Reg regs[] = {
- /* R0_usr .. R14_usr */
- COREREG(usr_regs.uregs[0], regs[0]),
- COREREG(usr_regs.uregs[1], regs[1]),
- COREREG(usr_regs.uregs[2], regs[2]),
- COREREG(usr_regs.uregs[3], regs[3]),
- COREREG(usr_regs.uregs[4], regs[4]),
- COREREG(usr_regs.uregs[5], regs[5]),
- COREREG(usr_regs.uregs[6], regs[6]),
- COREREG(usr_regs.uregs[7], regs[7]),
- COREREG(usr_regs.uregs[8], usr_regs[0]),
- COREREG(usr_regs.uregs[9], usr_regs[1]),
- COREREG(usr_regs.uregs[10], usr_regs[2]),
- COREREG(usr_regs.uregs[11], usr_regs[3]),
- COREREG(usr_regs.uregs[12], usr_regs[4]),
- COREREG(usr_regs.uregs[13], banked_r13[0]),
- COREREG(usr_regs.uregs[14], banked_r14[0]),
- /* R13, R14, SPSR for SVC, ABT, UND, IRQ banks */
- COREREG(svc_regs[0], banked_r13[1]),
- COREREG(svc_regs[1], banked_r14[1]),
- COREREG(svc_regs[2], banked_spsr[1]),
- COREREG(abt_regs[0], banked_r13[2]),
- COREREG(abt_regs[1], banked_r14[2]),
- COREREG(abt_regs[2], banked_spsr[2]),
- COREREG(und_regs[0], banked_r13[3]),
- COREREG(und_regs[1], banked_r14[3]),
- COREREG(und_regs[2], banked_spsr[3]),
- COREREG(irq_regs[0], banked_r13[4]),
- COREREG(irq_regs[1], banked_r14[4]),
- COREREG(irq_regs[2], banked_spsr[4]),
- /* R8_fiq .. R14_fiq and SPSR_fiq */
- COREREG(fiq_regs[0], fiq_regs[0]),
- COREREG(fiq_regs[1], fiq_regs[1]),
- COREREG(fiq_regs[2], fiq_regs[2]),
- COREREG(fiq_regs[3], fiq_regs[3]),
- COREREG(fiq_regs[4], fiq_regs[4]),
- COREREG(fiq_regs[5], banked_r13[5]),
- COREREG(fiq_regs[6], banked_r14[5]),
- COREREG(fiq_regs[7], banked_spsr[5]),
- /* R15 */
- COREREG(usr_regs.uregs[15], regs[15]),
- /* A non-comprehensive set of cp15 registers.
- * TODO: drive this from the cp_regs hashtable instead.
- */
- CP15REG(1, 0, 0, 0, cp15.c1_sys), /* SCTLR */
- CP15REG(2, 0, 0, 2, cp15.c2_control), /* TTBCR */
- CP15REG(3, 0, 0, 0, cp15.c3), /* DACR */
- /* VFP system registers */
- VFPSYSREG(FPSID),
- VFPSYSREG(MVFR1),
- VFPSYSREG(MVFR0),
- VFPSYSREG(FPEXC),
- VFPSYSREG(FPINST),
- VFPSYSREG(FPINST2),
-};
-
-int kvm_arch_put_registers(CPUState *cs, int level)
+bool write_kvmstate_to_list(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- struct kvm_one_reg r;
- int mode, bn;
- int ret, i;
- uint32_t cpsr, fpscr;
- uint64_t ttbr;
-
- /* Make sure the banked regs are properly set */
- mode = env->uncached_cpsr & CPSR_M;
- bn = bank_number(mode);
- if (mode == ARM_CPU_MODE_FIQ) {
- memcpy(env->fiq_regs, env->regs + 8, 5 * sizeof(uint32_t));
- } else {
- memcpy(env->usr_regs, env->regs + 8, 5 * sizeof(uint32_t));
- }
- env->banked_r13[bn] = env->regs[13];
- env->banked_r14[bn] = env->regs[14];
- env->banked_spsr[bn] = env->spsr;
-
- /* Now we can safely copy stuff down to the kernel */
- for (i = 0; i < ARRAY_SIZE(regs); i++) {
- r.id = regs[i].id;
- r.addr = (uintptr_t)(env) + regs[i].offset;
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
- if (ret) {
- return ret;
+ CPUState *cs = CPU(cpu);
+ int i;
+ bool ok = true;
+
+ for (i = 0; i < cpu->cpreg_array_len; i++) {
+ struct kvm_one_reg r;
+ uint64_t regidx = cpu->cpreg_indexes[i];
+ uint32_t v32;
+ int ret;
+
+ r.id = regidx;
+
+ switch (regidx & KVM_REG_SIZE_MASK) {
+ case KVM_REG_SIZE_U32:
+ r.addr = (uintptr_t)&v32;
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+ if (!ret) {
+ cpu->cpreg_values[i] = v32;
+ }
+ break;
+ case KVM_REG_SIZE_U64:
+ r.addr = (uintptr_t)(cpu->cpreg_values + i);
+ ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+ break;
+ default:
+ abort();
}
- }
-
- /* Special cases which aren't a single CPUARMState field */
- cpsr = cpsr_read(env);
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
- r.addr = (uintptr_t)(&cpsr);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
- if (ret) {
- return ret;
- }
-
- /* TTBR0: cp15 crm=2 opc1=0 */
- ttbr = ((uint64_t)env->cp15.c2_base0_hi << 32) | env->cp15.c2_base0;
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
- (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
- r.addr = (uintptr_t)(&ttbr);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
- if (ret) {
- return ret;
- }
-
- /* TTBR1: cp15 crm=2 opc1=1 */
- ttbr = ((uint64_t)env->cp15.c2_base1_hi << 32) | env->cp15.c2_base1;
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
- (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
- r.addr = (uintptr_t)(&ttbr);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
- if (ret) {
- return ret;
- }
-
- /* VFP registers */
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
- for (i = 0; i < 32; i++) {
- r.addr = (uintptr_t)(&env->vfp.regs[i]);
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
- return ret;
+ ok = false;
}
- r.id++;
}
-
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
- KVM_REG_ARM_VFP_FPSCR;
- fpscr = vfp_get_fpscr(env);
- r.addr = (uintptr_t)&fpscr;
- ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
-
- return ret;
+ return ok;
}
-int kvm_arch_get_registers(CPUState *cs)
+bool write_list_to_kvmstate(ARMCPU *cpu)
{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- struct kvm_one_reg r;
- int mode, bn;
- int ret, i;
- uint32_t cpsr, fpscr;
- uint64_t ttbr;
-
- for (i = 0; i < ARRAY_SIZE(regs); i++) {
- r.id = regs[i].id;
- r.addr = (uintptr_t)(env) + regs[i].offset;
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
- if (ret) {
- return ret;
+ CPUState *cs = CPU(cpu);
+ int i;
+ bool ok = true;
+
+ for (i = 0; i < cpu->cpreg_array_len; i++) {
+ struct kvm_one_reg r;
+ uint64_t regidx = cpu->cpreg_indexes[i];
+ uint32_t v32;
+ int ret;
+
+ r.id = regidx;
+ switch (regidx & KVM_REG_SIZE_MASK) {
+ case KVM_REG_SIZE_U32:
+ v32 = cpu->cpreg_values[i];
+ r.addr = (uintptr_t)&v32;
+ break;
+ case KVM_REG_SIZE_U64:
+ r.addr = (uintptr_t)(cpu->cpreg_values + i);
+ break;
+ default:
+ abort();
}
- }
-
- /* Special cases which aren't a single CPUARMState field */
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 |
- KVM_REG_ARM_CORE | KVM_REG_ARM_CORE_REG(usr_regs.ARM_cpsr);
- r.addr = (uintptr_t)(&cpsr);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
- if (ret) {
- return ret;
- }
- cpsr_write(env, cpsr, 0xffffffff);
-
- /* TTBR0: cp15 crm=2 opc1=0 */
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
- (2 << KVM_REG_ARM_CRM_SHIFT) | (0 << KVM_REG_ARM_OPC1_SHIFT);
- r.addr = (uintptr_t)(&ttbr);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
- if (ret) {
- return ret;
- }
- env->cp15.c2_base0_hi = ttbr >> 32;
- env->cp15.c2_base0 = ttbr;
-
- /* TTBR1: cp15 crm=2 opc1=1 */
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | (15 << KVM_REG_ARM_COPROC_SHIFT) |
- (2 << KVM_REG_ARM_CRM_SHIFT) | (1 << KVM_REG_ARM_OPC1_SHIFT);
- r.addr = (uintptr_t)(&ttbr);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
- if (ret) {
- return ret;
- }
- env->cp15.c2_base1_hi = ttbr >> 32;
- env->cp15.c2_base1 = ttbr;
-
- /* Make sure the current mode regs are properly set */
- mode = env->uncached_cpsr & CPSR_M;
- bn = bank_number(mode);
- if (mode == ARM_CPU_MODE_FIQ) {
- memcpy(env->regs + 8, env->fiq_regs, 5 * sizeof(uint32_t));
- } else {
- memcpy(env->regs + 8, env->usr_regs, 5 * sizeof(uint32_t));
- }
- env->regs[13] = env->banked_r13[bn];
- env->regs[14] = env->banked_r14[bn];
- env->spsr = env->banked_spsr[bn];
-
- /* The main GET_ONE_REG loop above set c2_control, but we need to
- * update some extra cached precomputed values too.
- * When this is driven from the cp_regs hashtable then this ugliness
- * can disappear because we'll use the access function which sets
- * these values automatically.
- */
- env->cp15.c2_mask = ~(0xffffffffu >> env->cp15.c2_control);
- env->cp15.c2_base_mask = ~(0x3fffu >> env->cp15.c2_control);
-
- /* VFP registers */
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U64 | KVM_REG_ARM_VFP;
- for (i = 0; i < 32; i++) {
- r.addr = (uintptr_t)(&env->vfp.regs[i]);
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
+ ret = kvm_vcpu_ioctl(cs, KVM_SET_ONE_REG, &r);
if (ret) {
- return ret;
+ /* We might fail for "unknown register" and also for
+ * "you tried to set a register which is constant with
+ * a different value from what it actually contains".
+ */
+ ok = false;
}
- r.id++;
- }
-
- r.id = KVM_REG_ARM | KVM_REG_SIZE_U32 | KVM_REG_ARM_VFP |
- KVM_REG_ARM_VFP_FPSCR;
- r.addr = (uintptr_t)&fpscr;
- ret = kvm_vcpu_ioctl(cs, KVM_GET_ONE_REG, &r);
- if (ret) {
- return ret;
}
- vfp_set_fpscr(env, fpscr);
-
- return 0;
+ return ok;
}
void kvm_arch_pre_run(CPUState *cs, struct kvm_run *run)
return 0;
}
-void kvm_arch_reset_vcpu(CPUState *cs)
-{
-}
-
bool kvm_arch_stop_on_emulation_error(CPUState *cs)
{
return true;
{
qemu_log_mask(LOG_UNIMP, "%s: not implemented\n", __func__);
}
+
+void kvm_arch_init_irq_routing(KVMState *s)
+{
+}
+
+int kvm_arch_irqchip_create(KVMState *s)
+{
+ int ret;
+
+ /* If we can create the VGIC using the newer device control API, we
+ * let the device do this when it initializes itself, otherwise we
+ * fall back to the old API */
+
+ ret = kvm_create_device(s, KVM_DEV_TYPE_ARM_VGIC_V2, true);
+ if (ret == 0) {
+ return 1;
+ }
+
+ return 0;
+}