#include "gdbstub.h"
#include "dma.h"
#include "kvm.h"
+#include "qmp-commands.h"
#include "qemu-thread.h"
#include "cpus.h"
+#include "qtest.h"
+#include "main-loop.h"
#ifndef _WIN32
#include "compatfd.h"
#endif
-#ifdef SIGRTMIN
-#define SIG_IPI (SIGRTMIN+4)
-#else
-#define SIG_IPI SIGUSR1
-#endif
-
#ifdef CONFIG_LINUX
#include <sys/prctl.h>
#endif /* CONFIG_LINUX */
-static CPUState *next_cpu;
+static CPUArchState *next_cpu;
+
+/***********************************************************/
+/* guest cycle counter */
+
+/* Conversion factor from emulated instructions to virtual clock ticks. */
+static int icount_time_shift;
+/* Arbitrarily pick 1MIPS as the minimum allowable speed. */
+#define MAX_ICOUNT_SHIFT 10
+/* Compensate for varying guest execution speed. */
+static int64_t qemu_icount_bias;
+static QEMUTimer *icount_rt_timer;
+static QEMUTimer *icount_vm_timer;
+static QEMUTimer *icount_warp_timer;
+static int64_t vm_clock_warp_start;
+static int64_t qemu_icount;
+
+typedef struct TimersState {
+ int64_t cpu_ticks_prev;
+ int64_t cpu_ticks_offset;
+ int64_t cpu_clock_offset;
+ int32_t cpu_ticks_enabled;
+ int64_t dummy;
+} TimersState;
+
+TimersState timers_state;
+
+/* Return the virtual CPU time, based on the instruction counter. */
+int64_t cpu_get_icount(void)
+{
+ int64_t icount;
+ CPUArchState *env = cpu_single_env;
+
+ icount = qemu_icount;
+ if (env) {
+ if (!can_do_io(env)) {
+ fprintf(stderr, "Bad clock read\n");
+ }
+ icount -= (env->icount_decr.u16.low + env->icount_extra);
+ }
+ return qemu_icount_bias + (icount << icount_time_shift);
+}
+
+/* return the host CPU cycle counter and handle stop/restart */
+int64_t cpu_get_ticks(void)
+{
+ if (use_icount) {
+ return cpu_get_icount();
+ }
+ if (!timers_state.cpu_ticks_enabled) {
+ return timers_state.cpu_ticks_offset;
+ } else {
+ int64_t ticks;
+ ticks = cpu_get_real_ticks();
+ if (timers_state.cpu_ticks_prev > ticks) {
+ /* Note: non increasing ticks may happen if the host uses
+ software suspend */
+ timers_state.cpu_ticks_offset += timers_state.cpu_ticks_prev - ticks;
+ }
+ timers_state.cpu_ticks_prev = ticks;
+ return ticks + timers_state.cpu_ticks_offset;
+ }
+}
+
+/* return the host CPU monotonic timer and handle stop/restart */
+int64_t cpu_get_clock(void)
+{
+ int64_t ti;
+ if (!timers_state.cpu_ticks_enabled) {
+ return timers_state.cpu_clock_offset;
+ } else {
+ ti = get_clock();
+ return ti + timers_state.cpu_clock_offset;
+ }
+}
+
+/* enable cpu_get_ticks() */
+void cpu_enable_ticks(void)
+{
+ if (!timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset -= cpu_get_real_ticks();
+ timers_state.cpu_clock_offset -= get_clock();
+ timers_state.cpu_ticks_enabled = 1;
+ }
+}
+
+/* disable cpu_get_ticks() : the clock is stopped. You must not call
+ cpu_get_ticks() after that. */
+void cpu_disable_ticks(void)
+{
+ if (timers_state.cpu_ticks_enabled) {
+ timers_state.cpu_ticks_offset = cpu_get_ticks();
+ timers_state.cpu_clock_offset = cpu_get_clock();
+ timers_state.cpu_ticks_enabled = 0;
+ }
+}
+
+/* Correlation between real and virtual time is always going to be
+ fairly approximate, so ignore small variation.
+ When the guest is idle real and virtual time will be aligned in
+ the IO wait loop. */
+#define ICOUNT_WOBBLE (get_ticks_per_sec() / 10)
+
+static void icount_adjust(void)
+{
+ int64_t cur_time;
+ int64_t cur_icount;
+ int64_t delta;
+ static int64_t last_delta;
+ /* If the VM is not running, then do nothing. */
+ if (!runstate_is_running()) {
+ return;
+ }
+ cur_time = cpu_get_clock();
+ cur_icount = qemu_get_clock_ns(vm_clock);
+ delta = cur_icount - cur_time;
+ /* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
+ if (delta > 0
+ && last_delta + ICOUNT_WOBBLE < delta * 2
+ && icount_time_shift > 0) {
+ /* The guest is getting too far ahead. Slow time down. */
+ icount_time_shift--;
+ }
+ if (delta < 0
+ && last_delta - ICOUNT_WOBBLE > delta * 2
+ && icount_time_shift < MAX_ICOUNT_SHIFT) {
+ /* The guest is getting too far behind. Speed time up. */
+ icount_time_shift++;
+ }
+ last_delta = delta;
+ qemu_icount_bias = cur_icount - (qemu_icount << icount_time_shift);
+}
+
+static void icount_adjust_rt(void *opaque)
+{
+ qemu_mod_timer(icount_rt_timer,
+ qemu_get_clock_ms(rt_clock) + 1000);
+ icount_adjust();
+}
+
+static void icount_adjust_vm(void *opaque)
+{
+ qemu_mod_timer(icount_vm_timer,
+ qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
+ icount_adjust();
+}
+
+static int64_t qemu_icount_round(int64_t count)
+{
+ return (count + (1 << icount_time_shift) - 1) >> icount_time_shift;
+}
+
+static void icount_warp_rt(void *opaque)
+{
+ if (vm_clock_warp_start == -1) {
+ return;
+ }
+
+ if (runstate_is_running()) {
+ int64_t clock = qemu_get_clock_ns(rt_clock);
+ int64_t warp_delta = clock - vm_clock_warp_start;
+ if (use_icount == 1) {
+ qemu_icount_bias += warp_delta;
+ } else {
+ /*
+ * In adaptive mode, do not let the vm_clock run too
+ * far ahead of real time.
+ */
+ int64_t cur_time = cpu_get_clock();
+ int64_t cur_icount = qemu_get_clock_ns(vm_clock);
+ int64_t delta = cur_time - cur_icount;
+ qemu_icount_bias += MIN(warp_delta, delta);
+ }
+ if (qemu_clock_expired(vm_clock)) {
+ qemu_notify_event();
+ }
+ }
+ vm_clock_warp_start = -1;
+}
+
+void qtest_clock_warp(int64_t dest)
+{
+ int64_t clock = qemu_get_clock_ns(vm_clock);
+ assert(qtest_enabled());
+ while (clock < dest) {
+ int64_t deadline = qemu_clock_deadline(vm_clock);
+ int64_t warp = MIN(dest - clock, deadline);
+ qemu_icount_bias += warp;
+ qemu_run_timers(vm_clock);
+ clock = qemu_get_clock_ns(vm_clock);
+ }
+ qemu_notify_event();
+}
+
+void qemu_clock_warp(QEMUClock *clock)
+{
+ int64_t deadline;
+
+ /*
+ * There are too many global variables to make the "warp" behavior
+ * applicable to other clocks. But a clock argument removes the
+ * need for if statements all over the place.
+ */
+ if (clock != vm_clock || !use_icount) {
+ return;
+ }
+
+ /*
+ * If the CPUs have been sleeping, advance the vm_clock timer now. This
+ * ensures that the deadline for the timer is computed correctly below.
+ * This also makes sure that the insn counter is synchronized before the
+ * CPU starts running, in case the CPU is woken by an event other than
+ * the earliest vm_clock timer.
+ */
+ icount_warp_rt(NULL);
+ if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
+ qemu_del_timer(icount_warp_timer);
+ return;
+ }
+
+ if (qtest_enabled()) {
+ /* When testing, qtest commands advance icount. */
+ return;
+ }
+
+ vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
+ deadline = qemu_clock_deadline(vm_clock);
+ if (deadline > 0) {
+ /*
+ * Ensure the vm_clock proceeds even when the virtual CPU goes to
+ * sleep. Otherwise, the CPU might be waiting for a future timer
+ * interrupt to wake it up, but the interrupt never comes because
+ * the vCPU isn't running any insns and thus doesn't advance the
+ * vm_clock.
+ *
+ * An extreme solution for this problem would be to never let VCPUs
+ * sleep in icount mode if there is a pending vm_clock timer; rather
+ * time could just advance to the next vm_clock event. Instead, we
+ * do stop VCPUs and only advance vm_clock after some "real" time,
+ * (related to the time left until the next event) has passed. This
+ * rt_clock timer will do this. This avoids that the warps are too
+ * visible externally---for example, you will not be sending network
+ * packets continuously instead of every 100ms.
+ */
+ qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
+ } else {
+ qemu_notify_event();
+ }
+}
+
+static const VMStateDescription vmstate_timers = {
+ .name = "timer",
+ .version_id = 2,
+ .minimum_version_id = 1,
+ .minimum_version_id_old = 1,
+ .fields = (VMStateField[]) {
+ VMSTATE_INT64(cpu_ticks_offset, TimersState),
+ VMSTATE_INT64(dummy, TimersState),
+ VMSTATE_INT64_V(cpu_clock_offset, TimersState, 2),
+ VMSTATE_END_OF_LIST()
+ }
+};
+
+void configure_icount(const char *option)
+{
+ vmstate_register(NULL, 0, &vmstate_timers, &timers_state);
+ if (!option) {
+ return;
+ }
+
+ icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
+ if (strcmp(option, "auto") != 0) {
+ icount_time_shift = strtol(option, NULL, 0);
+ use_icount = 1;
+ return;
+ }
+
+ use_icount = 2;
+
+ /* 125MIPS seems a reasonable initial guess at the guest speed.
+ It will be corrected fairly quickly anyway. */
+ icount_time_shift = 3;
+
+ /* Have both realtime and virtual time triggers for speed adjustment.
+ The realtime trigger catches emulated time passing too slowly,
+ the virtual time trigger catches emulated time passing too fast.
+ Realtime triggers occur even when idle, so use them less frequently
+ than VM triggers. */
+ icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
+ qemu_mod_timer(icount_rt_timer,
+ qemu_get_clock_ms(rt_clock) + 1000);
+ icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
+ qemu_mod_timer(icount_vm_timer,
+ qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
+}
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
- CPUState *env;
+ CPUArchState *env;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
void cpu_synchronize_all_states(void)
{
- CPUState *cpu;
+ CPUArchState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_state(cpu);
void cpu_synchronize_all_post_reset(void)
{
- CPUState *cpu;
+ CPUArchState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_reset(cpu);
void cpu_synchronize_all_post_init(void)
{
- CPUState *cpu;
+ CPUArchState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_init(cpu);
}
}
-int cpu_is_stopped(CPUState *env)
+int cpu_is_stopped(CPUArchState *env)
{
return !runstate_is_running() || env->stopped;
}
pause_all_vcpus();
runstate_set(state);
vm_state_notify(0, state);
- qemu_aio_flush();
+ bdrv_drain_all();
bdrv_flush_all();
monitor_protocol_event(QEVENT_STOP, NULL);
}
}
-static int cpu_can_run(CPUState *env)
+static int cpu_can_run(CPUArchState *env)
{
if (env->stop) {
return 0;
return 1;
}
-static bool cpu_thread_is_idle(CPUState *env)
+static bool cpu_thread_is_idle(CPUArchState *env)
{
if (env->stop || env->queued_work_first) {
return false;
if (env->stopped || !runstate_is_running()) {
return true;
}
- if (!env->halted || qemu_cpu_has_work(env) ||
- (kvm_enabled() && kvm_irqchip_in_kernel())) {
+ if (!env->halted || qemu_cpu_has_work(env) || kvm_irqchip_in_kernel()) {
return false;
}
return true;
bool all_cpu_threads_idle(void)
{
- CPUState *env;
+ CPUArchState *env;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (!cpu_thread_is_idle(env)) {
return true;
}
-static void cpu_handle_guest_debug(CPUState *env)
+static void cpu_handle_guest_debug(CPUArchState *env)
{
gdb_set_stop_cpu(env);
qemu_system_debug_request();
prctl(PR_MCE_KILL, PR_MCE_KILL_SET, PR_MCE_KILL_EARLY, 0, 0);
}
-static void qemu_kvm_eat_signals(CPUState *env)
+static void qemu_kvm_eat_signals(CPUArchState *env)
{
struct timespec ts = { 0, 0 };
siginfo_t siginfo;
{
}
-static void qemu_kvm_eat_signals(CPUState *env)
+static void qemu_kvm_eat_signals(CPUArchState *env)
{
}
#endif /* !CONFIG_LINUX */
#ifndef _WIN32
-static int io_thread_fd = -1;
-
-static void qemu_event_increment(void)
-{
- /* Write 8 bytes to be compatible with eventfd. */
- static const uint64_t val = 1;
- ssize_t ret;
-
- if (io_thread_fd == -1) {
- return;
- }
- do {
- ret = write(io_thread_fd, &val, sizeof(val));
- } while (ret < 0 && errno == EINTR);
-
- /* EAGAIN is fine, a read must be pending. */
- if (ret < 0 && errno != EAGAIN) {
- fprintf(stderr, "qemu_event_increment: write() failed: %s\n",
- strerror(errno));
- exit (1);
- }
-}
-
-static void qemu_event_read(void *opaque)
-{
- int fd = (intptr_t)opaque;
- ssize_t len;
- char buffer[512];
-
- /* Drain the notify pipe. For eventfd, only 8 bytes will be read. */
- do {
- len = read(fd, buffer, sizeof(buffer));
- } while ((len == -1 && errno == EINTR) || len == sizeof(buffer));
-}
-
-static int qemu_event_init(void)
-{
- int err;
- int fds[2];
-
- err = qemu_eventfd(fds);
- if (err == -1) {
- return -errno;
- }
- err = fcntl_setfl(fds[0], O_NONBLOCK);
- if (err < 0) {
- goto fail;
- }
- err = fcntl_setfl(fds[1], O_NONBLOCK);
- if (err < 0) {
- goto fail;
- }
- qemu_set_fd_handler2(fds[0], NULL, qemu_event_read, NULL,
- (void *)(intptr_t)fds[0]);
-
- io_thread_fd = fds[1];
- return 0;
-
-fail:
- close(fds[0]);
- close(fds[1]);
- return err;
-}
-
static void dummy_signal(int sig)
{
}
-/* If we have signalfd, we mask out the signals we want to handle and then
- * use signalfd to listen for them. We rely on whatever the current signal
- * handler is to dispatch the signals when we receive them.
- */
-static void sigfd_handler(void *opaque)
-{
- int fd = (intptr_t)opaque;
- struct qemu_signalfd_siginfo info;
- struct sigaction action;
- ssize_t len;
-
- while (1) {
- do {
- len = read(fd, &info, sizeof(info));
- } while (len == -1 && errno == EINTR);
-
- if (len == -1 && errno == EAGAIN) {
- break;
- }
-
- if (len != sizeof(info)) {
- printf("read from sigfd returned %zd: %m\n", len);
- return;
- }
-
- sigaction(info.ssi_signo, NULL, &action);
- if ((action.sa_flags & SA_SIGINFO) && action.sa_sigaction) {
- action.sa_sigaction(info.ssi_signo,
- (siginfo_t *)&info, NULL);
- } else if (action.sa_handler) {
- action.sa_handler(info.ssi_signo);
- }
- }
-}
-
-static int qemu_signal_init(void)
-{
- int sigfd;
- sigset_t set;
-
- /*
- * SIG_IPI must be blocked in the main thread and must not be caught
- * by sigwait() in the signal thread. Otherwise, the cpu thread will
- * not catch it reliably.
- */
- sigemptyset(&set);
- sigaddset(&set, SIG_IPI);
- pthread_sigmask(SIG_BLOCK, &set, NULL);
-
- sigemptyset(&set);
- sigaddset(&set, SIGIO);
- sigaddset(&set, SIGALRM);
- sigaddset(&set, SIGBUS);
- pthread_sigmask(SIG_BLOCK, &set, NULL);
-
- sigfd = qemu_signalfd(&set);
- if (sigfd == -1) {
- fprintf(stderr, "failed to create signalfd\n");
- return -errno;
- }
-
- fcntl_setfl(sigfd, O_NONBLOCK);
-
- qemu_set_fd_handler2(sigfd, NULL, sigfd_handler, NULL,
- (void *)(intptr_t)sigfd);
-
- return 0;
-}
-
-static void qemu_kvm_init_cpu_signals(CPUState *env)
+static void qemu_kvm_init_cpu_signals(CPUArchState *env)
{
int r;
sigset_t set;
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
exit(1);
}
-
- sigdelset(&set, SIG_IPI);
- sigdelset(&set, SIGBUS);
- r = kvm_set_signal_mask(env, &set);
- if (r) {
- fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
- exit(1);
- }
}
static void qemu_tcg_init_cpu_signals(void)
}
#else /* _WIN32 */
-
-HANDLE qemu_event_handle;
-
-static void dummy_event_handler(void *opaque)
-{
-}
-
-static int qemu_event_init(void)
-{
- qemu_event_handle = CreateEvent(NULL, FALSE, FALSE, NULL);
- if (!qemu_event_handle) {
- fprintf(stderr, "Failed CreateEvent: %ld\n", GetLastError());
- return -1;
- }
- qemu_add_wait_object(qemu_event_handle, dummy_event_handler, NULL);
- return 0;
-}
-
-static void qemu_event_increment(void)
-{
- if (!SetEvent(qemu_event_handle)) {
- fprintf(stderr, "qemu_event_increment: SetEvent failed: %ld\n",
- GetLastError());
- exit (1);
- }
-}
-
-static int qemu_signal_init(void)
-{
- return 0;
-}
-
-static void qemu_kvm_init_cpu_signals(CPUState *env)
+static void qemu_kvm_init_cpu_signals(CPUArchState *env)
{
abort();
}
static QemuCond qemu_pause_cond;
static QemuCond qemu_work_cond;
-int qemu_init_main_loop(void)
+void qemu_init_cpu_loop(void)
{
- int ret;
-
qemu_init_sigbus();
-
- ret = qemu_signal_init();
- if (ret) {
- return ret;
- }
-
- /* Note eventfd must be drained before signalfd handlers run */
- ret = qemu_event_init();
- if (ret) {
- return ret;
- }
-
qemu_cond_init(&qemu_cpu_cond);
qemu_cond_init(&qemu_pause_cond);
qemu_cond_init(&qemu_work_cond);
qemu_cond_init(&qemu_io_proceeded_cond);
qemu_mutex_init(&qemu_global_mutex);
- qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_get_self(&io_thread);
-
- return 0;
-}
-
-void qemu_main_loop_start(void)
-{
- resume_all_vcpus();
}
-void run_on_cpu(CPUState *env, void (*func)(void *data), void *data)
+void run_on_cpu(CPUArchState *env, void (*func)(void *data), void *data)
{
struct qemu_work_item wi;
qemu_cpu_kick(env);
while (!wi.done) {
- CPUState *self_env = cpu_single_env;
+ CPUArchState *self_env = cpu_single_env;
qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
cpu_single_env = self_env;
}
}
-static void flush_queued_work(CPUState *env)
+static void flush_queued_work(CPUArchState *env)
{
struct qemu_work_item *wi;
qemu_cond_broadcast(&qemu_work_cond);
}
-static void qemu_wait_io_event_common(CPUState *env)
+static void qemu_wait_io_event_common(CPUArchState *env)
{
if (env->stop) {
env->stop = 0;
static void qemu_tcg_wait_io_event(void)
{
- CPUState *env;
+ CPUArchState *env;
while (all_cpu_threads_idle()) {
/* Start accounting real time to the virtual clock if the CPUs
}
}
-static void qemu_kvm_wait_io_event(CPUState *env)
+static void qemu_kvm_wait_io_event(CPUArchState *env)
{
while (cpu_thread_is_idle(env)) {
qemu_cond_wait(env->halt_cond, &qemu_global_mutex);
static void *qemu_kvm_cpu_thread_fn(void *arg)
{
- CPUState *env = arg;
+ CPUArchState *env = arg;
int r;
qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_get_self(env->thread);
env->thread_id = qemu_get_thread_id();
+ cpu_single_env = env;
r = kvm_init_vcpu(env);
if (r < 0) {
return NULL;
}
+static void *qemu_dummy_cpu_thread_fn(void *arg)
+{
+#ifdef _WIN32
+ fprintf(stderr, "qtest is not supported under Windows\n");
+ exit(1);
+#else
+ CPUArchState *env = arg;
+ sigset_t waitset;
+ int r;
+
+ qemu_mutex_lock_iothread();
+ qemu_thread_get_self(env->thread);
+ env->thread_id = qemu_get_thread_id();
+
+ sigemptyset(&waitset);
+ sigaddset(&waitset, SIG_IPI);
+
+ /* signal CPU creation */
+ env->created = 1;
+ qemu_cond_signal(&qemu_cpu_cond);
+
+ cpu_single_env = env;
+ while (1) {
+ cpu_single_env = NULL;
+ qemu_mutex_unlock_iothread();
+ do {
+ int sig;
+ r = sigwait(&waitset, &sig);
+ } while (r == -1 && (errno == EAGAIN || errno == EINTR));
+ if (r == -1) {
+ perror("sigwait");
+ exit(1);
+ }
+ qemu_mutex_lock_iothread();
+ cpu_single_env = env;
+ qemu_wait_io_event_common(env);
+ }
+
+ return NULL;
+#endif
+}
+
+static void tcg_exec_all(void);
+
static void *qemu_tcg_cpu_thread_fn(void *arg)
{
- CPUState *env = arg;
+ CPUArchState *env = arg;
qemu_tcg_init_cpu_signals();
qemu_thread_get_self(env->thread);
/* wait for initial kick-off after machine start */
while (first_cpu->stopped) {
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
+
+ /* process any pending work */
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ qemu_wait_io_event_common(env);
+ }
}
while (1) {
- cpu_exec_all();
- if (use_icount && qemu_next_icount_deadline() <= 0) {
+ tcg_exec_all();
+ if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
qemu_notify_event();
}
qemu_tcg_wait_io_event();
return NULL;
}
-static void qemu_cpu_kick_thread(CPUState *env)
+static void qemu_cpu_kick_thread(CPUArchState *env)
{
#ifndef _WIN32
int err;
}
#else /* _WIN32 */
if (!qemu_cpu_is_self(env)) {
- SuspendThread(env->thread->thread);
+ SuspendThread(env->hThread);
cpu_signal(0);
- ResumeThread(env->thread->thread);
+ ResumeThread(env->hThread);
}
#endif
}
void qemu_cpu_kick(void *_env)
{
- CPUState *env = _env;
+ CPUArchState *env = _env;
qemu_cond_broadcast(env->halt_cond);
- if (kvm_enabled() && !env->thread_kicked) {
+ if (!tcg_enabled() && !env->thread_kicked) {
qemu_cpu_kick_thread(env);
env->thread_kicked = true;
}
int qemu_cpu_is_self(void *_env)
{
- CPUState *env = _env;
+ CPUArchState *env = _env;
return qemu_thread_is_self(env->thread);
}
void qemu_mutex_lock_iothread(void)
{
- if (kvm_enabled()) {
+ if (!tcg_enabled()) {
qemu_mutex_lock(&qemu_global_mutex);
} else {
iothread_requesting_mutex = true;
static int all_vcpus_paused(void)
{
- CPUState *penv = first_cpu;
+ CPUArchState *penv = first_cpu;
while (penv) {
if (!penv->stopped) {
return 0;
}
- penv = (CPUState *)penv->next_cpu;
+ penv = penv->next_cpu;
}
return 1;
void pause_all_vcpus(void)
{
- CPUState *penv = first_cpu;
+ CPUArchState *penv = first_cpu;
+ qemu_clock_enable(vm_clock, false);
while (penv) {
penv->stop = 1;
qemu_cpu_kick(penv);
- penv = (CPUState *)penv->next_cpu;
+ penv = penv->next_cpu;
+ }
+
+ if (!qemu_thread_is_self(&io_thread)) {
+ cpu_stop_current();
+ if (!kvm_enabled()) {
+ while (penv) {
+ penv->stop = 0;
+ penv->stopped = 1;
+ penv = penv->next_cpu;
+ }
+ return;
+ }
}
while (!all_vcpus_paused()) {
penv = first_cpu;
while (penv) {
qemu_cpu_kick(penv);
- penv = (CPUState *)penv->next_cpu;
+ penv = penv->next_cpu;
}
}
}
void resume_all_vcpus(void)
{
- CPUState *penv = first_cpu;
+ CPUArchState *penv = first_cpu;
+ qemu_clock_enable(vm_clock, true);
while (penv) {
penv->stop = 0;
penv->stopped = 0;
qemu_cpu_kick(penv);
- penv = (CPUState *)penv->next_cpu;
+ penv = penv->next_cpu;
}
}
static void qemu_tcg_init_vcpu(void *_env)
{
- CPUState *env = _env;
+ CPUArchState *env = _env;
/* share a single thread for all cpus with TCG */
if (!tcg_cpu_thread) {
env->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
tcg_halt_cond = env->halt_cond;
- qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env);
+ qemu_thread_create(env->thread, qemu_tcg_cpu_thread_fn, env,
+ QEMU_THREAD_JOINABLE);
+#ifdef _WIN32
+ env->hThread = qemu_thread_get_handle(env->thread);
+#endif
while (env->created == 0) {
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
}
}
-static void qemu_kvm_start_vcpu(CPUState *env)
+static void qemu_kvm_start_vcpu(CPUArchState *env)
{
env->thread = g_malloc0(sizeof(QemuThread));
env->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(env->halt_cond);
- qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env);
+ qemu_thread_create(env->thread, qemu_kvm_cpu_thread_fn, env,
+ QEMU_THREAD_JOINABLE);
+ while (env->created == 0) {
+ qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
+ }
+}
+
+static void qemu_dummy_start_vcpu(CPUArchState *env)
+{
+ env->thread = g_malloc0(sizeof(QemuThread));
+ env->halt_cond = g_malloc0(sizeof(QemuCond));
+ qemu_cond_init(env->halt_cond);
+ qemu_thread_create(env->thread, qemu_dummy_cpu_thread_fn, env,
+ QEMU_THREAD_JOINABLE);
while (env->created == 0) {
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
void qemu_init_vcpu(void *_env)
{
- CPUState *env = _env;
+ CPUArchState *env = _env;
env->nr_cores = smp_cores;
env->nr_threads = smp_threads;
env->stopped = 1;
if (kvm_enabled()) {
qemu_kvm_start_vcpu(env);
- } else {
+ } else if (tcg_enabled()) {
qemu_tcg_init_vcpu(env);
+ } else {
+ qemu_dummy_start_vcpu(env);
}
}
-void qemu_notify_event(void)
-{
- qemu_event_increment();
-}
-
void cpu_stop_current(void)
{
if (cpu_single_env) {
}
}
-static int tcg_cpu_exec(CPUState *env)
+static int tcg_cpu_exec(CPUArchState *env)
{
int ret;
#ifdef CONFIG_PROFILER
qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
env->icount_decr.u16.low = 0;
env->icount_extra = 0;
- count = qemu_icount_round(qemu_next_icount_deadline());
+ count = qemu_icount_round(qemu_clock_deadline(vm_clock));
qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
return ret;
}
-bool cpu_exec_all(void)
+static void tcg_exec_all(void)
{
int r;
next_cpu = first_cpu;
}
for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
- CPUState *env = next_cpu;
+ CPUArchState *env = next_cpu;
qemu_clock_enable(vm_clock,
(env->singlestep_enabled & SSTEP_NOTIMER) == 0);
if (cpu_can_run(env)) {
- if (kvm_enabled()) {
- r = kvm_cpu_exec(env);
- qemu_kvm_eat_signals(env);
- } else {
- r = tcg_cpu_exec(env);
- }
+ r = tcg_cpu_exec(env);
if (r == EXCP_DEBUG) {
cpu_handle_guest_debug(env);
break;
}
}
exit_request = 0;
- return !all_cpu_threads_idle();
}
void set_numa_modes(void)
{
- CPUState *env;
+ CPUArchState *env;
int i;
for (env = first_cpu; env != NULL; env = env->next_cpu) {
cpu_set_log_filename(optarg);
}
-/* Return the virtual CPU time, based on the instruction counter. */
-int64_t cpu_get_icount(void)
-{
- int64_t icount;
- CPUState *env = cpu_single_env;;
-
- icount = qemu_icount;
- if (env) {
- if (!can_do_io(env)) {
- fprintf(stderr, "Bad clock read\n");
- }
- icount -= (env->icount_decr.u16.low + env->icount_extra);
- }
- return qemu_icount_bias + (icount << icount_time_shift);
-}
-
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
{
/* XXX: implement xxx_cpu_list for targets that still miss it */
cpu_list(f, cpu_fprintf); /* deprecated */
#endif
}
+
+CpuInfoList *qmp_query_cpus(Error **errp)
+{
+ CpuInfoList *head = NULL, *cur_item = NULL;
+ CPUArchState *env;
+
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ CpuInfoList *info;
+
+ cpu_synchronize_state(env);
+
+ info = g_malloc0(sizeof(*info));
+ info->value = g_malloc0(sizeof(*info->value));
+ info->value->CPU = env->cpu_index;
+ info->value->current = (env == first_cpu);
+ info->value->halted = env->halted;
+ info->value->thread_id = env->thread_id;
+#if defined(TARGET_I386)
+ info->value->has_pc = true;
+ info->value->pc = env->eip + env->segs[R_CS].base;
+#elif defined(TARGET_PPC)
+ info->value->has_nip = true;
+ info->value->nip = env->nip;
+#elif defined(TARGET_SPARC)
+ info->value->has_pc = true;
+ info->value->pc = env->pc;
+ info->value->has_npc = true;
+ info->value->npc = env->npc;
+#elif defined(TARGET_MIPS)
+ info->value->has_PC = true;
+ info->value->PC = env->active_tc.PC;
+#endif
+
+ /* XXX: waiting for the qapi to support GSList */
+ if (!cur_item) {
+ head = cur_item = info;
+ } else {
+ cur_item->next = info;
+ cur_item = info;
+ }
+ }
+
+ return head;
+}
+
+void qmp_memsave(int64_t addr, int64_t size, const char *filename,
+ bool has_cpu, int64_t cpu_index, Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ CPUArchState *env;
+ uint8_t buf[1024];
+
+ if (!has_cpu) {
+ cpu_index = 0;
+ }
+
+ for (env = first_cpu; env; env = env->next_cpu) {
+ if (cpu_index == env->cpu_index) {
+ break;
+ }
+ }
+
+ if (env == NULL) {
+ error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
+ "a CPU number");
+ return;
+ }
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_set(errp, QERR_OPEN_FILE_FAILED, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ cpu_memory_rw_debug(env, addr, buf, l, 0);
+ if (fwrite(buf, 1, l, f) != l) {
+ error_set(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_pmemsave(int64_t addr, int64_t size, const char *filename,
+ Error **errp)
+{
+ FILE *f;
+ uint32_t l;
+ uint8_t buf[1024];
+
+ f = fopen(filename, "wb");
+ if (!f) {
+ error_set(errp, QERR_OPEN_FILE_FAILED, filename);
+ return;
+ }
+
+ while (size != 0) {
+ l = sizeof(buf);
+ if (l > size)
+ l = size;
+ cpu_physical_memory_rw(addr, buf, l, 0);
+ if (fwrite(buf, 1, l, f) != l) {
+ error_set(errp, QERR_IO_ERROR);
+ goto exit;
+ }
+ addr += l;
+ size -= l;
+ }
+
+exit:
+ fclose(f);
+}
+
+void qmp_inject_nmi(Error **errp)
+{
+#if defined(TARGET_I386)
+ CPUArchState *env;
+
+ for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ if (!env->apic_state) {
+ cpu_interrupt(env, CPU_INTERRUPT_NMI);
+ } else {
+ apic_deliver_nmi(env->apic_state);
+ }
+ }
+#else
+ error_set(errp, QERR_UNSUPPORTED);
+#endif
+}