#include "host-utils.h"
#include <math.h>
+#include "qemu_socket.h"
+#include "iov.h"
+
+void strpadcpy(char *buf, int buf_size, const char *str, char pad)
+{
+ int len = qemu_strnlen(str, buf_size);
+ memcpy(buf, str, len);
+ memset(buf + len, pad, buf_size - len);
+}
+
void pstrcpy(char *buf, int buf_size, const char *str)
{
int c;
m += 12;
y--;
}
- t = 86400 * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
+ t = 86400ULL * (d + (153 * m - 457) / 5 + 365 * y + y / 4 - y / 100 +
y / 400 - 719469);
t += 3600 * tm->tm_hour + 60 * tm->tm_min + tm->tm_sec;
return t;
}
/*
- * Copies iovecs from src to the end of dst. It starts copying after skipping
- * the given number of bytes in src and copies until src is completely copied
- * or the total size of the copied iovec reaches size.The size of the last
- * copied iovec is changed in order to fit the specified total size if it isn't
- * a perfect fit already.
+ * Concatenates (partial) iovecs from src to the end of dst.
+ * It starts copying after skipping `soffset' bytes at the
+ * beginning of src and adds individual vectors from src to
+ * dst copies up to `sbytes' bytes total, or up to the end
+ * of src if it comes first. This way, it is okay to specify
+ * very large value for `sbytes' to indicate "up to the end
+ * of src".
+ * Only vector pointers are processed, not the actual data buffers.
*/
-void qemu_iovec_copy(QEMUIOVector *dst, QEMUIOVector *src, uint64_t skip,
- size_t size)
+void qemu_iovec_concat(QEMUIOVector *dst,
+ QEMUIOVector *src, size_t soffset, size_t sbytes)
{
int i;
size_t done;
- void *iov_base;
- uint64_t iov_len;
-
+ struct iovec *siov = src->iov;
assert(dst->nalloc != -1);
-
- done = 0;
- for (i = 0; (i < src->niov) && (done != size); i++) {
- if (skip >= src->iov[i].iov_len) {
- /* Skip the whole iov */
- skip -= src->iov[i].iov_len;
- continue;
+ assert(src->size >= soffset);
+ for (i = 0, done = 0; done < sbytes && i < src->niov; i++) {
+ if (soffset < siov[i].iov_len) {
+ size_t len = MIN(siov[i].iov_len - soffset, sbytes - done);
+ qemu_iovec_add(dst, siov[i].iov_base + soffset, len);
+ done += len;
+ soffset = 0;
} else {
- /* Skip only part (or nothing) of the iov */
- iov_base = (uint8_t*) src->iov[i].iov_base + skip;
- iov_len = src->iov[i].iov_len - skip;
- skip = 0;
+ soffset -= siov[i].iov_len;
}
-
- if (done + iov_len > size) {
- qemu_iovec_add(dst, iov_base, size - done);
- break;
- } else {
- qemu_iovec_add(dst, iov_base, iov_len);
- }
- done += iov_len;
}
-}
-
-void qemu_iovec_concat(QEMUIOVector *dst, QEMUIOVector *src, size_t size)
-{
- qemu_iovec_copy(dst, src, 0, size);
+ /* return done; */
}
void qemu_iovec_destroy(QEMUIOVector *qiov)
{
assert(qiov->nalloc != -1);
+ qemu_iovec_reset(qiov);
g_free(qiov->iov);
+ qiov->nalloc = 0;
+ qiov->iov = NULL;
}
void qemu_iovec_reset(QEMUIOVector *qiov)
qiov->size = 0;
}
-void qemu_iovec_to_buffer(QEMUIOVector *qiov, void *buf)
+size_t qemu_iovec_to_buf(QEMUIOVector *qiov, size_t offset,
+ void *buf, size_t bytes)
{
- uint8_t *p = (uint8_t *)buf;
- int i;
-
- for (i = 0; i < qiov->niov; ++i) {
- memcpy(p, qiov->iov[i].iov_base, qiov->iov[i].iov_len);
- p += qiov->iov[i].iov_len;
- }
+ return iov_to_buf(qiov->iov, qiov->niov, offset, buf, bytes);
}
-void qemu_iovec_from_buffer(QEMUIOVector *qiov, const void *buf, size_t count)
+size_t qemu_iovec_from_buf(QEMUIOVector *qiov, size_t offset,
+ const void *buf, size_t bytes)
{
- const uint8_t *p = (const uint8_t *)buf;
- size_t copy;
- int i;
-
- for (i = 0; i < qiov->niov && count; ++i) {
- copy = count;
- if (copy > qiov->iov[i].iov_len)
- copy = qiov->iov[i].iov_len;
- memcpy(qiov->iov[i].iov_base, p, copy);
- p += copy;
- count -= copy;
- }
+ return iov_from_buf(qiov->iov, qiov->niov, offset, buf, bytes);
}
-void qemu_iovec_memset(QEMUIOVector *qiov, int c, size_t count)
+size_t qemu_iovec_memset(QEMUIOVector *qiov, size_t offset,
+ int fillc, size_t bytes)
{
- size_t n;
- int i;
-
- for (i = 0; i < qiov->niov && count; ++i) {
- n = MIN(count, qiov->iov[i].iov_len);
- memset(qiov->iov[i].iov_base, c, n);
- count -= n;
- }
+ return iov_memset(qiov->iov, qiov->niov, offset, fillc, bytes);
}
-void qemu_iovec_memset_skip(QEMUIOVector *qiov, int c, size_t count,
- size_t skip)
+/*
+ * Checks if a buffer is all zeroes
+ *
+ * Attention! The len must be a multiple of 4 * sizeof(long) due to
+ * restriction of optimizations in this function.
+ */
+bool buffer_is_zero(const void *buf, size_t len)
{
- int i;
- size_t done;
- void *iov_base;
- uint64_t iov_len;
-
- done = 0;
- for (i = 0; (i < qiov->niov) && (done != count); i++) {
- if (skip >= qiov->iov[i].iov_len) {
- /* Skip the whole iov */
- skip -= qiov->iov[i].iov_len;
- continue;
- } else {
- /* Skip only part (or nothing) of the iov */
- iov_base = (uint8_t*) qiov->iov[i].iov_base + skip;
- iov_len = qiov->iov[i].iov_len - skip;
- skip = 0;
- }
+ /*
+ * Use long as the biggest available internal data type that fits into the
+ * CPU register and unroll the loop to smooth out the effect of memory
+ * latency.
+ */
- if (done + iov_len > count) {
- memset(iov_base, c, count - done);
- break;
- } else {
- memset(iov_base, c, iov_len);
+ size_t i;
+ long d0, d1, d2, d3;
+ const long * const data = buf;
+
+ assert(len % (4 * sizeof(long)) == 0);
+ len /= sizeof(long);
+
+ for (i = 0; i < len; i += 4) {
+ d0 = data[i + 0];
+ d1 = data[i + 1];
+ d2 = data[i + 2];
+ d3 = data[i + 3];
+
+ if (d0 || d1 || d2 || d3) {
+ return false;
}
- done += iov_len;
}
+
+ return true;
}
#ifndef _WIN32
}
#endif
+static int64_t suffix_mul(char suffix, int64_t unit)
+{
+ switch (qemu_toupper(suffix)) {
+ case STRTOSZ_DEFSUFFIX_B:
+ return 1;
+ case STRTOSZ_DEFSUFFIX_KB:
+ return unit;
+ case STRTOSZ_DEFSUFFIX_MB:
+ return unit * unit;
+ case STRTOSZ_DEFSUFFIX_GB:
+ return unit * unit * unit;
+ case STRTOSZ_DEFSUFFIX_TB:
+ return unit * unit * unit * unit;
+ }
+ return -1;
+}
+
/*
* Convert string to bytes, allowing either B/b for bytes, K/k for KB,
- * M/m for MB, G/g for GB or T/t for TB. Default without any postfix
- * is MB. End pointer will be returned in *end, if not NULL. A valid
- * value must be terminated by whitespace, ',' or '\0'. Return -1 on
- * error.
+ * M/m for MB, G/g for GB or T/t for TB. End pointer will be returned
+ * in *end, if not NULL. Return -1 on error.
*/
int64_t strtosz_suffix_unit(const char *nptr, char **end,
const char default_suffix, int64_t unit)
{
int64_t retval = -1;
char *endptr;
- unsigned char c, d;
+ unsigned char c;
int mul_required = 0;
double val, mul, integral, fraction;
if (fraction != 0) {
mul_required = 1;
}
- /*
- * Any whitespace character is fine for terminating the number,
- * in addition we accept ',' to handle strings where the size is
- * part of a multi token argument.
- */
c = *endptr;
- d = c;
- if (qemu_isspace(c) || c == '\0' || c == ',') {
- c = 0;
- if (default_suffix) {
- d = default_suffix;
- } else {
- d = c;
- }
+ mul = suffix_mul(c, unit);
+ if (mul >= 0) {
+ endptr++;
+ } else {
+ mul = suffix_mul(default_suffix, unit);
+ assert(mul >= 0);
}
- switch (qemu_toupper(d)) {
- case STRTOSZ_DEFSUFFIX_B:
- mul = 1;
- if (mul_required) {
- goto fail;
- }
- break;
- case STRTOSZ_DEFSUFFIX_KB:
- mul = unit;
- break;
- case 0:
- if (mul_required) {
- goto fail;
- }
- case STRTOSZ_DEFSUFFIX_MB:
- mul = unit * unit;
- break;
- case STRTOSZ_DEFSUFFIX_GB:
- mul = unit * unit * unit;
- break;
- case STRTOSZ_DEFSUFFIX_TB:
- mul = unit * unit * unit * unit;
- break;
- default:
+ if (mul == 1 && mul_required) {
goto fail;
}
- /*
- * If not terminated by whitespace, ',', or \0, increment endptr
- * to point to next character, then check that we are terminated
- * by an appropriate separating character, ie. whitespace, ',', or
- * \0. If not, we are seeing trailing garbage, thus fail.
- */
- if (c != 0) {
- endptr++;
- if (!qemu_isspace(*endptr) && *endptr != ',' && *endptr != 0) {
- goto fail;
- }
- }
if ((val * mul >= INT64_MAX) || val < 0) {
goto fail;
}
}
return fd;
}
+
+int qemu_parse_fdset(const char *param)
+{
+ return qemu_parse_fd(param);
+}
+
+/* round down to the nearest power of 2*/
+int64_t pow2floor(int64_t value)
+{
+ if (!is_power_of_2(value)) {
+ value = 0x8000000000000000ULL >> clz64(value);
+ }
+ return value;
+}
+
+/*
+ * Implementation of ULEB128 (http://en.wikipedia.org/wiki/LEB128)
+ * Input is limited to 14-bit numbers
+ */
+int uleb128_encode_small(uint8_t *out, uint32_t n)
+{
+ g_assert(n <= 0x3fff);
+ if (n < 0x80) {
+ *out++ = n;
+ return 1;
+ } else {
+ *out++ = (n & 0x7f) | 0x80;
+ *out++ = n >> 7;
+ return 2;
+ }
+}
+
+int uleb128_decode_small(const uint8_t *in, uint32_t *n)
+{
+ if (!(*in & 0x80)) {
+ *n = *in++;
+ return 1;
+ } else {
+ *n = *in++ & 0x7f;
+ /* we exceed 14 bit number */
+ if (*in & 0x80) {
+ return -1;
+ }
+ *n |= *in++ << 7;
+ return 2;
+ }
+}