#include "exec.h"
+#include "host-utils.h"
+#include "helper.h"
//#define DEBUG_PCALL
//#define DEBUG_MMU
+//#define DEBUG_MXCC
+//#define DEBUG_UNALIGNED
+//#define DEBUG_UNASSIGNED
+//#define DEBUG_ASI
+
+#ifdef DEBUG_MMU
+#define DPRINTF_MMU(fmt, args...) \
+do { printf("MMU: " fmt , ##args); } while (0)
+#else
+#define DPRINTF_MMU(fmt, args...)
+#endif
+
+#ifdef DEBUG_MXCC
+#define DPRINTF_MXCC(fmt, args...) \
+do { printf("MXCC: " fmt , ##args); } while (0)
+#else
+#define DPRINTF_MXCC(fmt, args...)
+#endif
+
+#ifdef DEBUG_ASI
+#define DPRINTF_ASI(fmt, args...) \
+do { printf("ASI: " fmt , ##args); } while (0)
+#else
+#define DPRINTF_ASI(fmt, args...)
+#endif
void raise_exception(int tt)
{
env->exception_index = tt;
cpu_loop_exit();
-}
-
-void check_ieee_exceptions()
-{
- T0 = get_float_exception_flags(&env->fp_status);
- if (T0)
- {
- /* Copy IEEE 754 flags into FSR */
- if (T0 & float_flag_invalid)
- env->fsr |= FSR_NVC;
- if (T0 & float_flag_overflow)
- env->fsr |= FSR_OFC;
- if (T0 & float_flag_underflow)
- env->fsr |= FSR_UFC;
- if (T0 & float_flag_divbyzero)
- env->fsr |= FSR_DZC;
- if (T0 & float_flag_inexact)
- env->fsr |= FSR_NXC;
-
- if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23))
- {
- /* Unmasked exception, generate a trap */
- env->fsr |= FSR_FTT_IEEE_EXCP;
- raise_exception(TT_FP_EXCP);
- }
- else
- {
- /* Accumulate exceptions */
- env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
- }
- }
+}
+
+void helper_trap(target_ulong nb_trap)
+{
+ env->exception_index = TT_TRAP + (nb_trap & 0x7f);
+ cpu_loop_exit();
+}
+
+void helper_trapcc(target_ulong nb_trap, target_ulong do_trap)
+{
+ if (do_trap) {
+ env->exception_index = TT_TRAP + (nb_trap & 0x7f);
+ cpu_loop_exit();
+ }
+}
+
+void helper_check_ieee_exceptions(void)
+{
+ target_ulong status;
+
+ status = get_float_exception_flags(&env->fp_status);
+ if (status) {
+ /* Copy IEEE 754 flags into FSR */
+ if (status & float_flag_invalid)
+ env->fsr |= FSR_NVC;
+ if (status & float_flag_overflow)
+ env->fsr |= FSR_OFC;
+ if (status & float_flag_underflow)
+ env->fsr |= FSR_UFC;
+ if (status & float_flag_divbyzero)
+ env->fsr |= FSR_DZC;
+ if (status & float_flag_inexact)
+ env->fsr |= FSR_NXC;
+
+ if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) {
+ /* Unmasked exception, generate a trap */
+ env->fsr |= FSR_FTT_IEEE_EXCP;
+ raise_exception(TT_FP_EXCP);
+ } else {
+ /* Accumulate exceptions */
+ env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5;
+ }
+ }
+}
+
+void helper_clear_float_exceptions(void)
+{
+ set_float_exception_flags(0, &env->fp_status);
}
#ifdef USE_INT_TO_FLOAT_HELPERS
void do_fitos(void)
{
- set_float_exception_flags(0, &env->fp_status);
FT0 = int32_to_float32(*((int32_t *)&FT1), &env->fp_status);
- check_ieee_exceptions();
}
void do_fitod(void)
{
DT0 = int32_to_float64(*((int32_t *)&FT1), &env->fp_status);
}
+
+#if defined(CONFIG_USER_ONLY)
+void do_fitoq(void)
+{
+ QT0 = int32_to_float128(*((int32_t *)&FT1), &env->fp_status);
+}
#endif
-void do_fabss(void)
+#ifdef TARGET_SPARC64
+void do_fxtos(void)
+{
+ FT0 = int64_to_float32(*((int64_t *)&DT1), &env->fp_status);
+}
+
+void do_fxtod(void)
+{
+ DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status);
+}
+
+#if defined(CONFIG_USER_ONLY)
+void do_fxtoq(void)
+{
+ QT0 = int64_to_float128(*((int32_t *)&DT1), &env->fp_status);
+}
+#endif
+#endif
+#endif
+
+void helper_fabss(void)
{
FT0 = float32_abs(FT1);
}
#ifdef TARGET_SPARC64
-void do_fabsd(void)
+void helper_fabsd(void)
{
DT0 = float64_abs(DT1);
}
+
+#if defined(CONFIG_USER_ONLY)
+void helper_fabsq(void)
+{
+ QT0 = float128_abs(QT1);
+}
+#endif
#endif
-void do_fsqrts(void)
+void helper_fsqrts(void)
{
- set_float_exception_flags(0, &env->fp_status);
FT0 = float32_sqrt(FT1, &env->fp_status);
- check_ieee_exceptions();
}
-void do_fsqrtd(void)
+void helper_fsqrtd(void)
{
- set_float_exception_flags(0, &env->fp_status);
DT0 = float64_sqrt(DT1, &env->fp_status);
- check_ieee_exceptions();
}
+#if defined(CONFIG_USER_ONLY)
+void helper_fsqrtq(void)
+{
+ QT0 = float128_sqrt(QT1, &env->fp_status);
+}
+#endif
+
#define GEN_FCMP(name, size, reg1, reg2, FS, TRAP) \
- void glue(do_, name) (void) \
+ void glue(helper_, name) (void) \
{ \
+ target_ulong new_fsr; \
+ \
env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \
switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \
case float_relation_unordered: \
- T0 = (FSR_FCC1 | FSR_FCC0) << FS; \
+ new_fsr = (FSR_FCC1 | FSR_FCC0) << FS; \
if ((env->fsr & FSR_NVM) || TRAP) { \
- env->fsr |= T0; \
+ env->fsr |= new_fsr; \
env->fsr |= FSR_NVC; \
env->fsr |= FSR_FTT_IEEE_EXCP; \
raise_exception(TT_FP_EXCP); \
} \
break; \
case float_relation_less: \
- T0 = FSR_FCC0 << FS; \
+ new_fsr = FSR_FCC0 << FS; \
break; \
case float_relation_greater: \
- T0 = FSR_FCC1 << FS; \
+ new_fsr = FSR_FCC1 << FS; \
break; \
default: \
- T0 = 0; \
+ new_fsr = 0; \
break; \
} \
- env->fsr |= T0; \
+ env->fsr |= new_fsr; \
}
GEN_FCMP(fcmps, float32, FT0, FT1, 0, 0);
GEN_FCMP(fcmpes, float32, FT0, FT1, 0, 1);
GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1);
+#ifdef CONFIG_USER_ONLY
+GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0);
+GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1);
+#endif
+
#ifdef TARGET_SPARC64
GEN_FCMP(fcmps_fcc1, float32, FT0, FT1, 22, 0);
GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0);
GEN_FCMP(fcmpes_fcc3, float32, FT0, FT1, 26, 1);
GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1);
+#ifdef CONFIG_USER_ONLY
+GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0);
+GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0);
+GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0);
+GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1);
+GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1);
+GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1);
+#endif
#endif
-#if defined(CONFIG_USER_ONLY)
-void helper_ld_asi(int asi, int size, int sign)
+#if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && defined(DEBUG_MXCC)
+static void dump_mxcc(CPUState *env)
{
+ printf("mxccdata: %016llx %016llx %016llx %016llx\n",
+ env->mxccdata[0], env->mxccdata[1], env->mxccdata[2], env->mxccdata[3]);
+ printf("mxccregs: %016llx %016llx %016llx %016llx\n"
+ " %016llx %016llx %016llx %016llx\n",
+ env->mxccregs[0], env->mxccregs[1], env->mxccregs[2], env->mxccregs[3],
+ env->mxccregs[4], env->mxccregs[5], env->mxccregs[6], env->mxccregs[7]);
}
+#endif
-void helper_st_asi(int asi, int size, int sign)
+#if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \
+ && defined(DEBUG_ASI)
+static void dump_asi(const char *txt, target_ulong addr, int asi, int size,
+ uint64_t r1)
{
+ switch (size)
+ {
+ case 1:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt,
+ addr, asi, r1 & 0xff);
+ break;
+ case 2:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt,
+ addr, asi, r1 & 0xffff);
+ break;
+ case 4:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt,
+ addr, asi, r1 & 0xffffffff);
+ break;
+ case 8:
+ DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt,
+ addr, asi, r1);
+ break;
+ }
}
-#else
+#endif
+
#ifndef TARGET_SPARC64
-void helper_ld_asi(int asi, int size, int sign)
+#ifndef CONFIG_USER_ONLY
+uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
- uint32_t ret = 0;
+ uint64_t ret = 0;
+#if defined(DEBUG_MXCC) || defined(DEBUG_ASI)
+ uint32_t last_addr = addr;
+#endif
switch (asi) {
- case 3: /* MMU probe */
- {
- int mmulev;
-
- mmulev = (T0 >> 8) & 15;
- if (mmulev > 4)
- ret = 0;
- else {
- ret = mmu_probe(env, T0, mmulev);
- //bswap32s(&ret);
- }
-#ifdef DEBUG_MMU
- printf("mmu_probe: 0x%08x (lev %d) -> 0x%08x\n", T0, mmulev, ret);
+ case 2: /* SuperSparc MXCC registers */
+ switch (addr) {
+ case 0x01c00a00: /* MXCC control register */
+ if (size == 8)
+ ret = env->mxccregs[3];
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00a04: /* MXCC control register */
+ if (size == 4)
+ ret = env->mxccregs[3];
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00c00: /* Module reset register */
+ if (size == 8) {
+ ret = env->mxccregs[5];
+ // should we do something here?
+ } else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00f00: /* MBus port address register */
+ if (size == 8)
+ ret = env->mxccregs[7];
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ default:
+ DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
+ break;
+ }
+ DPRINTF_MXCC("asi = %d, size = %d, sign = %d, addr = %08x -> ret = %08x,"
+ "addr = %08x\n", asi, size, sign, last_addr, ret, addr);
+#ifdef DEBUG_MXCC
+ dump_mxcc(env);
#endif
- }
- break;
+ break;
+ case 3: /* MMU probe */
+ {
+ int mmulev;
+
+ mmulev = (addr >> 8) & 15;
+ if (mmulev > 4)
+ ret = 0;
+ else
+ ret = mmu_probe(env, addr, mmulev);
+ DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n",
+ addr, mmulev, ret);
+ }
+ break;
case 4: /* read MMU regs */
- {
- int reg = (T0 >> 8) & 0xf;
-
- ret = env->mmuregs[reg];
- if (reg == 3) /* Fault status cleared on read */
- env->mmuregs[reg] = 0;
-#ifdef DEBUG_MMU
- printf("mmu_read: reg[%d] = 0x%08x\n", reg, ret);
-#endif
- }
- break;
- case 0x20 ... 0x2f: /* MMU passthrough */
+ {
+ int reg = (addr >> 8) & 0x1f;
+
+ ret = env->mmuregs[reg];
+ if (reg == 3) /* Fault status cleared on read */
+ env->mmuregs[3] = 0;
+ else if (reg == 0x13) /* Fault status read */
+ ret = env->mmuregs[3];
+ else if (reg == 0x14) /* Fault address read */
+ ret = env->mmuregs[4];
+ DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret);
+ }
+ break;
+ case 5: // Turbosparc ITLB Diagnostic
+ case 6: // Turbosparc DTLB Diagnostic
+ case 7: // Turbosparc IOTLB Diagnostic
+ break;
+ case 9: /* Supervisor code access */
+ switch(size) {
+ case 1:
+ ret = ldub_code(addr);
+ break;
+ case 2:
+ ret = lduw_code(addr & ~1);
+ break;
+ default:
+ case 4:
+ ret = ldl_code(addr & ~3);
+ break;
+ case 8:
+ ret = ldq_code(addr & ~7);
+ break;
+ }
+ break;
+ case 0xa: /* User data access */
+ switch(size) {
+ case 1:
+ ret = ldub_user(addr);
+ break;
+ case 2:
+ ret = lduw_user(addr & ~1);
+ break;
+ default:
+ case 4:
+ ret = ldl_user(addr & ~3);
+ break;
+ case 8:
+ ret = ldq_user(addr & ~7);
+ break;
+ }
+ break;
+ case 0xb: /* Supervisor data access */
switch(size) {
case 1:
- ret = ldub_phys(T0);
+ ret = ldub_kernel(addr);
break;
case 2:
- ret = lduw_phys(T0 & ~1);
+ ret = lduw_kernel(addr & ~1);
break;
default:
case 4:
- ret = ldl_phys(T0 & ~3);
+ ret = ldl_kernel(addr & ~3);
break;
case 8:
- ret = ldl_phys(T0 & ~3);
- T0 = ldl_phys((T0 + 4) & ~3);
- break;
+ ret = ldq_kernel(addr & ~7);
+ break;
}
- break;
+ break;
+ case 0xc: /* I-cache tag */
+ case 0xd: /* I-cache data */
+ case 0xe: /* D-cache tag */
+ case 0xf: /* D-cache data */
+ break;
+ case 0x20: /* MMU passthrough */
+ switch(size) {
+ case 1:
+ ret = ldub_phys(addr);
+ break;
+ case 2:
+ ret = lduw_phys(addr & ~1);
+ break;
+ default:
+ case 4:
+ ret = ldl_phys(addr & ~3);
+ break;
+ case 8:
+ ret = ldq_phys(addr & ~7);
+ break;
+ }
+ break;
+ case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+ switch(size) {
+ case 1:
+ ret = ldub_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ case 2:
+ ret = lduw_phys((target_phys_addr_t)(addr & ~1)
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ default:
+ case 4:
+ ret = ldl_phys((target_phys_addr_t)(addr & ~3)
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ case 8:
+ ret = ldq_phys((target_phys_addr_t)(addr & ~7)
+ | ((target_phys_addr_t)(asi & 0xf) << 32));
+ break;
+ }
+ break;
+ case 0x30: // Turbosparc secondary cache diagnostic
+ case 0x31: // Turbosparc RAM snoop
+ case 0x32: // Turbosparc page table descriptor diagnostic
+ case 0x39: /* data cache diagnostic register */
+ ret = 0;
+ break;
+ case 8: /* User code access, XXX */
default:
- ret = 0;
- break;
+ do_unassigned_access(addr, 0, 0, asi);
+ ret = 0;
+ break;
}
- T1 = ret;
+ if (sign) {
+ switch(size) {
+ case 1:
+ ret = (int8_t) ret;
+ break;
+ case 2:
+ ret = (int16_t) ret;
+ break;
+ case 4:
+ ret = (int32_t) ret;
+ break;
+ default:
+ break;
+ }
+ }
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return ret;
}
-void helper_st_asi(int asi, int size, int sign)
+void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size)
{
switch(asi) {
+ case 2: /* SuperSparc MXCC registers */
+ switch (addr) {
+ case 0x01c00000: /* MXCC stream data register 0 */
+ if (size == 8)
+ env->mxccdata[0] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00008: /* MXCC stream data register 1 */
+ if (size == 8)
+ env->mxccdata[1] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00010: /* MXCC stream data register 2 */
+ if (size == 8)
+ env->mxccdata[2] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00018: /* MXCC stream data register 3 */
+ if (size == 8)
+ env->mxccdata[3] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00100: /* MXCC stream source */
+ if (size == 8)
+ env->mxccregs[0] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 0);
+ env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 8);
+ env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 16);
+ env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + 24);
+ break;
+ case 0x01c00200: /* MXCC stream destination */
+ if (size == 8)
+ env->mxccregs[1] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, env->mxccdata[0]);
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, env->mxccdata[1]);
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, env->mxccdata[2]);
+ stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, env->mxccdata[3]);
+ break;
+ case 0x01c00a00: /* MXCC control register */
+ if (size == 8)
+ env->mxccregs[3] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00a04: /* MXCC control register */
+ if (size == 4)
+ env->mxccregs[3] = (env->mxccregs[0xa] & 0xffffffff00000000ULL) | val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00e00: /* MXCC error register */
+ // writing a 1 bit clears the error
+ if (size == 8)
+ env->mxccregs[6] &= ~val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ case 0x01c00f00: /* MBus port address register */
+ if (size == 8)
+ env->mxccregs[7] = val;
+ else
+ DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, size);
+ break;
+ default:
+ DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, size);
+ break;
+ }
+ DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %08x\n", asi, size, addr, val);
+#ifdef DEBUG_MXCC
+ dump_mxcc(env);
+#endif
+ break;
case 3: /* MMU flush */
- {
- int mmulev;
-
- mmulev = (T0 >> 8) & 15;
-#ifdef DEBUG_MMU
- printf("mmu flush level %d\n", mmulev);
-#endif
- switch (mmulev) {
- case 0: // flush page
- tlb_flush_page(env, T0 & 0xfffff000);
- break;
- case 1: // flush segment (256k)
- case 2: // flush region (16M)
- case 3: // flush context (4G)
- case 4: // flush entire
- tlb_flush(env, 1);
- break;
- default:
- break;
- }
+ {
+ int mmulev;
+
+ mmulev = (addr >> 8) & 15;
+ DPRINTF_MMU("mmu flush level %d\n", mmulev);
+ switch (mmulev) {
+ case 0: // flush page
+ tlb_flush_page(env, addr & 0xfffff000);
+ break;
+ case 1: // flush segment (256k)
+ case 2: // flush region (16M)
+ case 3: // flush context (4G)
+ case 4: // flush entire
+ tlb_flush(env, 1);
+ break;
+ default:
+ break;
+ }
#ifdef DEBUG_MMU
- dump_mmu(env);
+ dump_mmu(env);
#endif
- return;
- }
+ }
+ break;
case 4: /* write MMU regs */
- {
- int reg = (T0 >> 8) & 0xf;
- uint32_t oldreg;
-
- oldreg = env->mmuregs[reg];
+ {
+ int reg = (addr >> 8) & 0x1f;
+ uint32_t oldreg;
+
+ oldreg = env->mmuregs[reg];
switch(reg) {
- case 0:
- env->mmuregs[reg] &= ~(MMU_E | MMU_NF);
- env->mmuregs[reg] |= T1 & (MMU_E | MMU_NF);
- // Mappings generated during no-fault mode or MMU
- // disabled mode are invalid in normal mode
- if (oldreg != env->mmuregs[reg])
+ case 0: // Control Register
+ env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) |
+ (val & 0x00ffffff);
+ // Mappings generated during no-fault mode or MMU
+ // disabled mode are invalid in normal mode
+ if ((oldreg & (MMU_E | MMU_NF | env->mmu_bm)) !=
+ (env->mmuregs[reg] & (MMU_E | MMU_NF | env->mmu_bm)))
tlb_flush(env, 1);
break;
- case 2:
- env->mmuregs[reg] = T1;
+ case 1: // Context Table Pointer Register
+ env->mmuregs[reg] = val & env->mmu_ctpr_mask;
+ break;
+ case 2: // Context Register
+ env->mmuregs[reg] = val & env->mmu_cxr_mask;
if (oldreg != env->mmuregs[reg]) {
/* we flush when the MMU context changes because
QEMU has no MMU context support */
tlb_flush(env, 1);
}
break;
- case 3:
- case 4:
+ case 3: // Synchronous Fault Status Register with Clear
+ case 4: // Synchronous Fault Address Register
+ break;
+ case 0x10: // TLB Replacement Control Register
+ env->mmuregs[reg] = val & env->mmu_trcr_mask;
+ break;
+ case 0x13: // Synchronous Fault Status Register with Read and Clear
+ env->mmuregs[3] = val & env->mmu_sfsr_mask;
+ break;
+ case 0x14: // Synchronous Fault Address Register
+ env->mmuregs[4] = val;
break;
default:
- env->mmuregs[reg] = T1;
+ env->mmuregs[reg] = val;
break;
}
-#ifdef DEBUG_MMU
if (oldreg != env->mmuregs[reg]) {
- printf("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
+ DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", reg, oldreg, env->mmuregs[reg]);
}
- dump_mmu(env);
+#ifdef DEBUG_MMU
+ dump_mmu(env);
#endif
- return;
- }
+ }
+ break;
+ case 5: // Turbosparc ITLB Diagnostic
+ case 6: // Turbosparc DTLB Diagnostic
+ case 7: // Turbosparc IOTLB Diagnostic
+ break;
+ case 0xa: /* User data access */
+ switch(size) {
+ case 1:
+ stb_user(addr, val);
+ break;
+ case 2:
+ stw_user(addr & ~1, val);
+ break;
+ default:
+ case 4:
+ stl_user(addr & ~3, val);
+ break;
+ case 8:
+ stq_user(addr & ~7, val);
+ break;
+ }
+ break;
+ case 0xb: /* Supervisor data access */
+ switch(size) {
+ case 1:
+ stb_kernel(addr, val);
+ break;
+ case 2:
+ stw_kernel(addr & ~1, val);
+ break;
+ default:
+ case 4:
+ stl_kernel(addr & ~3, val);
+ break;
+ case 8:
+ stq_kernel(addr & ~7, val);
+ break;
+ }
+ break;
+ case 0xc: /* I-cache tag */
+ case 0xd: /* I-cache data */
+ case 0xe: /* D-cache tag */
+ case 0xf: /* D-cache data */
+ case 0x10: /* I/D-cache flush page */
+ case 0x11: /* I/D-cache flush segment */
+ case 0x12: /* I/D-cache flush region */
+ case 0x13: /* I/D-cache flush context */
+ case 0x14: /* I/D-cache flush user */
+ break;
case 0x17: /* Block copy, sta access */
- {
- // value (T1) = src
- // address (T0) = dst
- // copy 32 bytes
- uint32_t src = T1, dst = T0;
- uint8_t temp[32];
-
- tswap32s(&src);
-
- cpu_physical_memory_read(src, (void *) &temp, 32);
- cpu_physical_memory_write(dst, (void *) &temp, 32);
- }
- return;
+ {
+ // val = src
+ // addr = dst
+ // copy 32 bytes
+ unsigned int i;
+ uint32_t src = val & ~3, dst = addr & ~3, temp;
+
+ for (i = 0; i < 32; i += 4, src += 4, dst += 4) {
+ temp = ldl_kernel(src);
+ stl_kernel(dst, temp);
+ }
+ }
+ break;
case 0x1f: /* Block fill, stda access */
- {
- // value (T1, T2)
- // address (T0) = dst
- // fill 32 bytes
- int i;
- uint32_t dst = T0;
- uint64_t val;
-
- val = (((uint64_t)T1) << 32) | T2;
- tswap64s(&val);
-
- for (i = 0; i < 32; i += 8, dst += 8) {
- cpu_physical_memory_write(dst, (void *) &val, 8);
- }
- }
- return;
- case 0x20 ... 0x2f: /* MMU passthrough */
- {
+ {
+ // addr = dst
+ // fill 32 bytes with val
+ unsigned int i;
+ uint32_t dst = addr & 7;
+
+ for (i = 0; i < 32; i += 8, dst += 8)
+ stq_kernel(dst, val);
+ }
+ break;
+ case 0x20: /* MMU passthrough */
+ {
switch(size) {
case 1:
- stb_phys(T0, T1);
+ stb_phys(addr, val);
break;
case 2:
- stw_phys(T0 & ~1, T1);
+ stw_phys(addr & ~1, val);
break;
case 4:
default:
- stl_phys(T0 & ~3, T1);
+ stl_phys(addr & ~3, val);
break;
case 8:
- stl_phys(T0 & ~3, T1);
- stl_phys((T0 + 4) & ~3, T2);
+ stq_phys(addr & ~7, val);
break;
}
- }
- return;
+ }
+ break;
+ case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */
+ {
+ switch(size) {
+ case 1:
+ stb_phys((target_phys_addr_t)addr
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ case 2:
+ stw_phys((target_phys_addr_t)(addr & ~1)
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ case 4:
+ default:
+ stl_phys((target_phys_addr_t)(addr & ~3)
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ case 8:
+ stq_phys((target_phys_addr_t)(addr & ~7)
+ | ((target_phys_addr_t)(asi & 0xf) << 32), val);
+ break;
+ }
+ }
+ break;
+ case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic
+ case 0x31: // store buffer data, Ross RT620 I-cache flush or
+ // Turbosparc snoop RAM
+ case 0x32: // store buffer control or Turbosparc page table descriptor diagnostic
+ case 0x36: /* I-cache flash clear */
+ case 0x37: /* D-cache flash clear */
+ case 0x38: /* breakpoint diagnostics */
+ case 0x4c: /* breakpoint action */
+ break;
+ case 8: /* User code access, XXX */
+ case 9: /* Supervisor code access, XXX */
default:
- return;
+ do_unassigned_access(addr, 1, 0, asi);
+ break;
}
+#ifdef DEBUG_ASI
+ dump_asi("write", addr, asi, size, val);
+#endif
}
-#else
+#endif /* CONFIG_USER_ONLY */
+#else /* TARGET_SPARC64 */
+
+#ifdef CONFIG_USER_ONLY
+uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
+{
+ uint64_t ret = 0;
+#if defined(DEBUG_ASI)
+ target_ulong last_addr = addr;
+#endif
+
+ if (asi < 0x80)
+ raise_exception(TT_PRIV_ACT);
+
+ switch (asi) {
+ case 0x80: // Primary
+ case 0x82: // Primary no-fault
+ case 0x88: // Primary LE
+ case 0x8a: // Primary no-fault LE
+ {
+ switch(size) {
+ case 1:
+ ret = ldub_raw(addr);
+ break;
+ case 2:
+ ret = lduw_raw(addr & ~1);
+ break;
+ case 4:
+ ret = ldl_raw(addr & ~3);
+ break;
+ default:
+ case 8:
+ ret = ldq_raw(addr & ~7);
+ break;
+ }
+ }
+ break;
+ case 0x81: // Secondary
+ case 0x83: // Secondary no-fault
+ case 0x89: // Secondary LE
+ case 0x8b: // Secondary no-fault LE
+ // XXX
+ break;
+ default:
+ break;
+ }
+
+ /* Convert from little endian */
+ switch (asi) {
+ case 0x88: // Primary LE
+ case 0x89: // Secondary LE
+ case 0x8a: // Primary no-fault LE
+ case 0x8b: // Secondary no-fault LE
+ switch(size) {
+ case 2:
+ ret = bswap16(ret);
+ break;
+ case 4:
+ ret = bswap32(ret);
+ break;
+ case 8:
+ ret = bswap64(ret);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Convert to signed number */
+ if (sign) {
+ switch(size) {
+ case 1:
+ ret = (int8_t) ret;
+ break;
+ case 2:
+ ret = (int16_t) ret;
+ break;
+ case 4:
+ ret = (int32_t) ret;
+ break;
+ default:
+ break;
+ }
+ }
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return ret;
+}
-void helper_ld_asi(int asi, int size, int sign)
+void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
+{
+#ifdef DEBUG_ASI
+ dump_asi("write", addr, asi, size, val);
+#endif
+ if (asi < 0x80)
+ raise_exception(TT_PRIV_ACT);
+
+ /* Convert to little endian */
+ switch (asi) {
+ case 0x88: // Primary LE
+ case 0x89: // Secondary LE
+ switch(size) {
+ case 2:
+ addr = bswap16(addr);
+ break;
+ case 4:
+ addr = bswap32(addr);
+ break;
+ case 8:
+ addr = bswap64(addr);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
+
+ switch(asi) {
+ case 0x80: // Primary
+ case 0x88: // Primary LE
+ {
+ switch(size) {
+ case 1:
+ stb_raw(addr, val);
+ break;
+ case 2:
+ stw_raw(addr & ~1, val);
+ break;
+ case 4:
+ stl_raw(addr & ~3, val);
+ break;
+ case 8:
+ default:
+ stq_raw(addr & ~7, val);
+ break;
+ }
+ }
+ break;
+ case 0x81: // Secondary
+ case 0x89: // Secondary LE
+ // XXX
+ return;
+
+ case 0x82: // Primary no-fault, RO
+ case 0x83: // Secondary no-fault, RO
+ case 0x8a: // Primary no-fault LE, RO
+ case 0x8b: // Secondary no-fault LE, RO
+ default:
+ do_unassigned_access(addr, 1, 0, 1);
+ return;
+ }
+}
+
+#else /* CONFIG_USER_ONLY */
+
+uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign)
{
uint64_t ret = 0;
+#if defined(DEBUG_ASI)
+ target_ulong last_addr = addr;
+#endif
- if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
- raise_exception(TT_PRIV_ACT);
+ if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+ || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
+ raise_exception(TT_PRIV_ACT);
switch (asi) {
+ case 0x10: // As if user primary
+ case 0x18: // As if user primary LE
+ case 0x80: // Primary
+ case 0x82: // Primary no-fault
+ case 0x88: // Primary LE
+ case 0x8a: // Primary no-fault LE
+ if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+ if (env->hpstate & HS_PRIV) {
+ switch(size) {
+ case 1:
+ ret = ldub_hypv(addr);
+ break;
+ case 2:
+ ret = lduw_hypv(addr & ~1);
+ break;
+ case 4:
+ ret = ldl_hypv(addr & ~3);
+ break;
+ default:
+ case 8:
+ ret = ldq_hypv(addr & ~7);
+ break;
+ }
+ } else {
+ switch(size) {
+ case 1:
+ ret = ldub_kernel(addr);
+ break;
+ case 2:
+ ret = lduw_kernel(addr & ~1);
+ break;
+ case 4:
+ ret = ldl_kernel(addr & ~3);
+ break;
+ default:
+ case 8:
+ ret = ldq_kernel(addr & ~7);
+ break;
+ }
+ }
+ } else {
+ switch(size) {
+ case 1:
+ ret = ldub_user(addr);
+ break;
+ case 2:
+ ret = lduw_user(addr & ~1);
+ break;
+ case 4:
+ ret = ldl_user(addr & ~3);
+ break;
+ default:
+ case 8:
+ ret = ldq_user(addr & ~7);
+ break;
+ }
+ }
+ break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
- {
+ case 0x1c: // Bypass LE
+ case 0x1d: // Bypass, non-cacheable LE
+ {
switch(size) {
case 1:
- ret = ldub_phys(T0);
+ ret = ldub_phys(addr);
break;
case 2:
- ret = lduw_phys(T0 & ~1);
+ ret = lduw_phys(addr & ~1);
break;
case 4:
- ret = ldl_phys(T0 & ~3);
+ ret = ldl_phys(addr & ~3);
break;
default:
case 8:
- ret = ldq_phys(T0 & ~7);
+ ret = ldq_phys(addr & ~7);
break;
}
- break;
- }
+ break;
+ }
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
- case 0x10: // As if user primary
case 0x11: // As if user secondary
- case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
- case 0x1c: // Bypass LE
- case 0x1d: // Bypass, non-cacheable LE
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic
case 0x4a: // UPA config
- case 0x82: // Primary no-fault
+ case 0x81: // Secondary
case 0x83: // Secondary no-fault
- case 0x88: // Primary LE
case 0x89: // Secondary LE
- case 0x8a: // Primary no-fault LE
case 0x8b: // Secondary no-fault LE
- // XXX
- break;
+ // XXX
+ break;
case 0x45: // LSU
- ret = env->lsu;
- break;
+ ret = env->lsu;
+ break;
case 0x50: // I-MMU regs
- {
- int reg = (T0 >> 3) & 0xf;
+ {
+ int reg = (addr >> 3) & 0xf;
- ret = env->immuregs[reg];
- break;
- }
+ ret = env->immuregs[reg];
+ break;
+ }
case 0x51: // I-MMU 8k TSB pointer
case 0x52: // I-MMU 64k TSB pointer
case 0x55: // I-MMU data access
- // XXX
- break;
+ // XXX
+ break;
case 0x56: // I-MMU tag read
- {
- unsigned int i;
-
- for (i = 0; i < 64; i++) {
- // Valid, ctx match, vaddr match
- if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
- env->itlb_tag[i] == T0) {
- ret = env->itlb_tag[i];
- break;
- }
- }
- break;
- }
+ {
+ unsigned int i;
+
+ for (i = 0; i < 64; i++) {
+ // Valid, ctx match, vaddr match
+ if ((env->itlb_tte[i] & 0x8000000000000000ULL) != 0 &&
+ env->itlb_tag[i] == addr) {
+ ret = env->itlb_tag[i];
+ break;
+ }
+ }
+ break;
+ }
case 0x58: // D-MMU regs
- {
- int reg = (T0 >> 3) & 0xf;
+ {
+ int reg = (addr >> 3) & 0xf;
- ret = env->dmmuregs[reg];
- break;
- }
+ ret = env->dmmuregs[reg];
+ break;
+ }
case 0x5e: // D-MMU tag read
- {
- unsigned int i;
-
- for (i = 0; i < 64; i++) {
- // Valid, ctx match, vaddr match
- if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
- env->dtlb_tag[i] == T0) {
- ret = env->dtlb_tag[i];
- break;
- }
- }
- break;
- }
+ {
+ unsigned int i;
+
+ for (i = 0; i < 64; i++) {
+ // Valid, ctx match, vaddr match
+ if ((env->dtlb_tte[i] & 0x8000000000000000ULL) != 0 &&
+ env->dtlb_tag[i] == addr) {
+ ret = env->dtlb_tag[i];
+ break;
+ }
+ }
+ break;
+ }
case 0x59: // D-MMU 8k TSB pointer
case 0x5a: // D-MMU 64k TSB pointer
case 0x5b: // D-MMU data pointer
case 0x48: // Interrupt dispatch, RO
case 0x49: // Interrupt data receive
case 0x7f: // Incoming interrupt vector, RO
- // XXX
- break;
+ // XXX
+ break;
case 0x54: // I-MMU data in, WO
case 0x57: // I-MMU demap, WO
case 0x5c: // D-MMU data in, WO
case 0x5f: // D-MMU demap, WO
case 0x77: // Interrupt vector, WO
default:
- ret = 0;
- break;
+ do_unassigned_access(addr, 0, 0, 1);
+ ret = 0;
+ break;
+ }
+
+ /* Convert from little endian */
+ switch (asi) {
+ case 0x0c: // Nucleus Little Endian (LE)
+ case 0x18: // As if user primary LE
+ case 0x19: // As if user secondary LE
+ case 0x1c: // Bypass LE
+ case 0x1d: // Bypass, non-cacheable LE
+ case 0x88: // Primary LE
+ case 0x89: // Secondary LE
+ case 0x8a: // Primary no-fault LE
+ case 0x8b: // Secondary no-fault LE
+ switch(size) {
+ case 2:
+ ret = bswap16(ret);
+ break;
+ case 4:
+ ret = bswap32(ret);
+ break;
+ case 8:
+ ret = bswap64(ret);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
+
+ /* Convert to signed number */
+ if (sign) {
+ switch(size) {
+ case 1:
+ ret = (int8_t) ret;
+ break;
+ case 2:
+ ret = (int16_t) ret;
+ break;
+ case 4:
+ ret = (int32_t) ret;
+ break;
+ default:
+ break;
+ }
}
- T1 = ret;
+#ifdef DEBUG_ASI
+ dump_asi("read ", last_addr, asi, size, ret);
+#endif
+ return ret;
}
-void helper_st_asi(int asi, int size, int sign)
+void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size)
{
- if (asi < 0x80 && (env->pstate & PS_PRIV) == 0)
- raise_exception(TT_PRIV_ACT);
+#ifdef DEBUG_ASI
+ dump_asi("write", addr, asi, size, val);
+#endif
+ if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0)
+ || (asi >= 0x30 && asi < 0x80 && !(env->hpstate & HS_PRIV)))
+ raise_exception(TT_PRIV_ACT);
+
+ /* Convert to little endian */
+ switch (asi) {
+ case 0x0c: // Nucleus Little Endian (LE)
+ case 0x18: // As if user primary LE
+ case 0x19: // As if user secondary LE
+ case 0x1c: // Bypass LE
+ case 0x1d: // Bypass, non-cacheable LE
+ case 0x88: // Primary LE
+ case 0x89: // Secondary LE
+ switch(size) {
+ case 2:
+ addr = bswap16(addr);
+ break;
+ case 4:
+ addr = bswap32(addr);
+ break;
+ case 8:
+ addr = bswap64(addr);
+ break;
+ default:
+ break;
+ }
+ default:
+ break;
+ }
switch(asi) {
+ case 0x10: // As if user primary
+ case 0x18: // As if user primary LE
+ case 0x80: // Primary
+ case 0x88: // Primary LE
+ if ((asi & 0x80) && (env->pstate & PS_PRIV)) {
+ if (env->hpstate & HS_PRIV) {
+ switch(size) {
+ case 1:
+ stb_hypv(addr, val);
+ break;
+ case 2:
+ stw_hypv(addr & ~1, val);
+ break;
+ case 4:
+ stl_hypv(addr & ~3, val);
+ break;
+ case 8:
+ default:
+ stq_hypv(addr & ~7, val);
+ break;
+ }
+ } else {
+ switch(size) {
+ case 1:
+ stb_kernel(addr, val);
+ break;
+ case 2:
+ stw_kernel(addr & ~1, val);
+ break;
+ case 4:
+ stl_kernel(addr & ~3, val);
+ break;
+ case 8:
+ default:
+ stq_kernel(addr & ~7, val);
+ break;
+ }
+ }
+ } else {
+ switch(size) {
+ case 1:
+ stb_user(addr, val);
+ break;
+ case 2:
+ stw_user(addr & ~1, val);
+ break;
+ case 4:
+ stl_user(addr & ~3, val);
+ break;
+ case 8:
+ default:
+ stq_user(addr & ~7, val);
+ break;
+ }
+ }
+ break;
case 0x14: // Bypass
case 0x15: // Bypass, non-cacheable
- {
+ case 0x1c: // Bypass LE
+ case 0x1d: // Bypass, non-cacheable LE
+ {
switch(size) {
case 1:
- stb_phys(T0, T1);
+ stb_phys(addr, val);
break;
case 2:
- stw_phys(T0 & ~1, T1);
+ stw_phys(addr & ~1, val);
break;
case 4:
- stl_phys(T0 & ~3, T1);
+ stl_phys(addr & ~3, val);
break;
case 8:
default:
- stq_phys(T0 & ~7, T1);
+ stq_phys(addr & ~7, val);
break;
}
- }
- return;
+ }
+ return;
case 0x04: // Nucleus
case 0x0c: // Nucleus Little Endian (LE)
- case 0x10: // As if user primary
case 0x11: // As if user secondary
- case 0x18: // As if user primary LE
case 0x19: // As if user secondary LE
- case 0x1c: // Bypass LE
- case 0x1d: // Bypass, non-cacheable LE
case 0x24: // Nucleus quad LDD 128 bit atomic
case 0x2c: // Nucleus quad LDD 128 bit atomic
case 0x4a: // UPA config
- case 0x88: // Primary LE
+ case 0x81: // Secondary
case 0x89: // Secondary LE
- // XXX
- return;
+ // XXX
+ return;
case 0x45: // LSU
- {
- uint64_t oldreg;
-
- oldreg = env->lsu;
- env->lsu = T1 & (DMMU_E | IMMU_E);
- // Mappings generated during D/I MMU disabled mode are
- // invalid in normal mode
- if (oldreg != env->lsu) {
+ {
+ uint64_t oldreg;
+
+ oldreg = env->lsu;
+ env->lsu = val & (DMMU_E | IMMU_E);
+ // Mappings generated during D/I MMU disabled mode are
+ // invalid in normal mode
+ if (oldreg != env->lsu) {
+ DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
#ifdef DEBUG_MMU
- printf("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", oldreg, env->lsu);
- dump_mmu(env);
+ dump_mmu(env);
#endif
- tlb_flush(env, 1);
- }
- return;
- }
+ tlb_flush(env, 1);
+ }
+ return;
+ }
case 0x50: // I-MMU regs
- {
- int reg = (T0 >> 3) & 0xf;
- uint64_t oldreg;
-
- oldreg = env->immuregs[reg];
+ {
+ int reg = (addr >> 3) & 0xf;
+ uint64_t oldreg;
+
+ oldreg = env->immuregs[reg];
switch(reg) {
case 0: // RO
case 4:
case 8:
return;
case 3: // SFSR
- if ((T1 & 1) == 0)
- T1 = 0; // Clear SFSR
+ if ((val & 1) == 0)
+ val = 0; // Clear SFSR
break;
case 5: // TSB access
case 6: // Tag access
default:
break;
}
- env->immuregs[reg] = T1;
-#ifdef DEBUG_MMU
+ env->immuregs[reg] = val;
if (oldreg != env->immuregs[reg]) {
- printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
+ DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->immuregs[reg]);
}
- dump_mmu(env);
+#ifdef DEBUG_MMU
+ dump_mmu(env);
#endif
- return;
- }
+ return;
+ }
case 0x54: // I-MMU data in
- {
- unsigned int i;
-
- // Try finding an invalid entry
- for (i = 0; i < 64; i++) {
- if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
- env->itlb_tag[i] = env->immuregs[6];
- env->itlb_tte[i] = T1;
- return;
- }
- }
- // Try finding an unlocked entry
- for (i = 0; i < 64; i++) {
- if ((env->itlb_tte[i] & 0x40) == 0) {
- env->itlb_tag[i] = env->immuregs[6];
- env->itlb_tte[i] = T1;
- return;
- }
- }
- // error state?
- return;
- }
+ {
+ unsigned int i;
+
+ // Try finding an invalid entry
+ for (i = 0; i < 64; i++) {
+ if ((env->itlb_tte[i] & 0x8000000000000000ULL) == 0) {
+ env->itlb_tag[i] = env->immuregs[6];
+ env->itlb_tte[i] = val;
+ return;
+ }
+ }
+ // Try finding an unlocked entry
+ for (i = 0; i < 64; i++) {
+ if ((env->itlb_tte[i] & 0x40) == 0) {
+ env->itlb_tag[i] = env->immuregs[6];
+ env->itlb_tte[i] = val;
+ return;
+ }
+ }
+ // error state?
+ return;
+ }
case 0x55: // I-MMU data access
- {
- unsigned int i = (T0 >> 3) & 0x3f;
+ {
+ unsigned int i = (addr >> 3) & 0x3f;
- env->itlb_tag[i] = env->immuregs[6];
- env->itlb_tte[i] = T1;
- return;
- }
+ env->itlb_tag[i] = env->immuregs[6];
+ env->itlb_tte[i] = val;
+ return;
+ }
case 0x57: // I-MMU demap
- // XXX
- return;
+ // XXX
+ return;
case 0x58: // D-MMU regs
- {
- int reg = (T0 >> 3) & 0xf;
- uint64_t oldreg;
-
- oldreg = env->dmmuregs[reg];
+ {
+ int reg = (addr >> 3) & 0xf;
+ uint64_t oldreg;
+
+ oldreg = env->dmmuregs[reg];
switch(reg) {
case 0: // RO
case 4:
return;
case 3: // SFSR
- if ((T1 & 1) == 0) {
- T1 = 0; // Clear SFSR, Fault address
- env->dmmuregs[4] = 0;
- }
- env->dmmuregs[reg] = T1;
+ if ((val & 1) == 0) {
+ val = 0; // Clear SFSR, Fault address
+ env->dmmuregs[4] = 0;
+ }
+ env->dmmuregs[reg] = val;
break;
case 1: // Primary context
case 2: // Secondary context
default:
break;
}
- env->dmmuregs[reg] = T1;
-#ifdef DEBUG_MMU
+ env->dmmuregs[reg] = val;
if (oldreg != env->dmmuregs[reg]) {
- printf("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
+ DPRINTF_MMU("mmu change reg[%d]: 0x%08" PRIx64 " -> 0x%08" PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]);
}
- dump_mmu(env);
+#ifdef DEBUG_MMU
+ dump_mmu(env);
#endif
- return;
- }
+ return;
+ }
case 0x5c: // D-MMU data in
- {
- unsigned int i;
-
- // Try finding an invalid entry
- for (i = 0; i < 64; i++) {
- if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
- env->dtlb_tag[i] = env->dmmuregs[6];
- env->dtlb_tte[i] = T1;
- return;
- }
- }
- // Try finding an unlocked entry
- for (i = 0; i < 64; i++) {
- if ((env->dtlb_tte[i] & 0x40) == 0) {
- env->dtlb_tag[i] = env->dmmuregs[6];
- env->dtlb_tte[i] = T1;
- return;
- }
- }
- // error state?
- return;
- }
+ {
+ unsigned int i;
+
+ // Try finding an invalid entry
+ for (i = 0; i < 64; i++) {
+ if ((env->dtlb_tte[i] & 0x8000000000000000ULL) == 0) {
+ env->dtlb_tag[i] = env->dmmuregs[6];
+ env->dtlb_tte[i] = val;
+ return;
+ }
+ }
+ // Try finding an unlocked entry
+ for (i = 0; i < 64; i++) {
+ if ((env->dtlb_tte[i] & 0x40) == 0) {
+ env->dtlb_tag[i] = env->dmmuregs[6];
+ env->dtlb_tte[i] = val;
+ return;
+ }
+ }
+ // error state?
+ return;
+ }
case 0x5d: // D-MMU data access
- {
- unsigned int i = (T0 >> 3) & 0x3f;
+ {
+ unsigned int i = (addr >> 3) & 0x3f;
- env->dtlb_tag[i] = env->dmmuregs[6];
- env->dtlb_tte[i] = T1;
- return;
- }
+ env->dtlb_tag[i] = env->dmmuregs[6];
+ env->dtlb_tte[i] = val;
+ return;
+ }
case 0x5f: // D-MMU demap
case 0x49: // Interrupt data receive
- // XXX
- return;
+ // XXX
+ return;
case 0x51: // I-MMU 8k TSB pointer, RO
case 0x52: // I-MMU 64k TSB pointer, RO
case 0x56: // I-MMU tag read, RO
case 0x8a: // Primary no-fault LE, RO
case 0x8b: // Secondary no-fault LE, RO
default:
- return;
+ do_unassigned_access(addr, 1, 0, 1);
+ return;
+ }
+}
+#endif /* CONFIG_USER_ONLY */
+
+void helper_ldf_asi(target_ulong addr, int asi, int size, int rd)
+{
+ unsigned int i;
+ target_ulong val;
+
+ switch (asi) {
+ case 0xf0: // Block load primary
+ case 0xf1: // Block load secondary
+ case 0xf8: // Block load primary LE
+ case 0xf9: // Block load secondary LE
+ if (rd & 7) {
+ raise_exception(TT_ILL_INSN);
+ return;
+ }
+ if (addr & 0x3f) {
+ raise_exception(TT_UNALIGNED);
+ return;
+ }
+ for (i = 0; i < 16; i++) {
+ *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, 0);
+ addr += 4;
+ }
+
+ return;
+ default:
+ break;
+ }
+
+ val = helper_ld_asi(addr, asi, size, 0);
+ switch(size) {
+ default:
+ case 4:
+ *((uint32_t *)&FT0) = val;
+ break;
+ case 8:
+ *((int64_t *)&DT0) = val;
+ break;
+#if defined(CONFIG_USER_ONLY)
+ case 16:
+ // XXX
+ break;
+#endif
}
}
+
+void helper_stf_asi(target_ulong addr, int asi, int size, int rd)
+{
+ unsigned int i;
+ target_ulong val = 0;
+
+ switch (asi) {
+ case 0xf0: // Block store primary
+ case 0xf1: // Block store secondary
+ case 0xf8: // Block store primary LE
+ case 0xf9: // Block store secondary LE
+ if (rd & 7) {
+ raise_exception(TT_ILL_INSN);
+ return;
+ }
+ if (addr & 0x3f) {
+ raise_exception(TT_UNALIGNED);
+ return;
+ }
+ for (i = 0; i < 16; i++) {
+ val = *(uint32_t *)&env->fpr[rd++];
+ helper_st_asi(addr, val, asi & 0x8f, 4);
+ addr += 4;
+ }
+
+ return;
+ default:
+ break;
+ }
+
+ switch(size) {
+ default:
+ case 4:
+ val = *((uint32_t *)&FT0);
+ break;
+ case 8:
+ val = *((int64_t *)&DT0);
+ break;
+#if defined(CONFIG_USER_ONLY)
+ case 16:
+ // XXX
+ break;
#endif
-#endif /* !CONFIG_USER_ONLY */
+ }
+ helper_st_asi(addr, val, asi, size);
+}
+
+target_ulong helper_cas_asi(target_ulong addr, target_ulong val1,
+ target_ulong val2, uint32_t asi)
+{
+ target_ulong ret;
+
+ val1 &= 0xffffffffUL;
+ ret = helper_ld_asi(addr, asi, 4, 0);
+ ret &= 0xffffffffUL;
+ if (val1 == ret)
+ helper_st_asi(addr, val2 & 0xffffffffUL, asi, 4);
+ return ret;
+}
+
+target_ulong helper_casx_asi(target_ulong addr, target_ulong val1,
+ target_ulong val2, uint32_t asi)
+{
+ target_ulong ret;
+
+ ret = helper_ld_asi(addr, asi, 8, 0);
+ if (val1 == ret)
+ helper_st_asi(addr, val2, asi, 8);
+ return ret;
+}
+#endif /* TARGET_SPARC64 */
#ifndef TARGET_SPARC64
-void helper_rett()
+void helper_rett(void)
{
unsigned int cwp;
raise_exception(TT_ILL_INSN);
env->psret = 1;
- cwp = (env->cwp + 1) & (NWINDOWS - 1);
+ cwp = (env->cwp + 1) & (NWINDOWS - 1);
if (env->wim & (1 << cwp)) {
raise_exception(TT_WIN_UNF);
}
}
#endif
+target_ulong helper_udiv(target_ulong a, target_ulong b)
+{
+ uint64_t x0;
+ uint32_t x1;
+
+ x0 = a | ((uint64_t) (env->y) << 32);
+ x1 = b;
+
+ if (x1 == 0) {
+ raise_exception(TT_DIV_ZERO);
+ }
+
+ x0 = x0 / x1;
+ if (x0 > 0xffffffff) {
+ env->cc_src2 = 1;
+ return 0xffffffff;
+ } else {
+ env->cc_src2 = 0;
+ return x0;
+ }
+}
+
+target_ulong helper_sdiv(target_ulong a, target_ulong b)
+{
+ int64_t x0;
+ int32_t x1;
+
+ x0 = a | ((int64_t) (env->y) << 32);
+ x1 = b;
+
+ if (x1 == 0) {
+ raise_exception(TT_DIV_ZERO);
+ }
+
+ x0 = x0 / x1;
+ if ((int32_t) x0 != x0) {
+ env->cc_src2 = 1;
+ return x0 < 0? 0x80000000: 0x7fffffff;
+ } else {
+ env->cc_src2 = 0;
+ return x0;
+ }
+}
+
+uint64_t helper_pack64(target_ulong high, target_ulong low)
+{
+ return ((uint64_t)high << 32) | (uint64_t)(low & 0xffffffff);
+}
+
void helper_ldfsr(void)
{
int rnd_mode;
+
+ PUT_FSR32(env, *((uint32_t *) &FT0));
switch (env->fsr & FSR_RD_MASK) {
case FSR_RD_NEAREST:
rnd_mode = float_round_nearest_even;
- break;
+ break;
default:
case FSR_RD_ZERO:
rnd_mode = float_round_to_zero;
- break;
+ break;
case FSR_RD_POS:
rnd_mode = float_round_up;
- break;
+ break;
case FSR_RD_NEG:
rnd_mode = float_round_down;
- break;
+ break;
}
set_float_rounding_mode(rnd_mode, &env->fp_status);
}
-void helper_debug()
+void helper_stfsr(void)
+{
+ *((uint32_t *) &FT0) = GET_FSR32(env);
+}
+
+void helper_debug(void)
{
env->exception_index = EXCP_DEBUG;
cpu_loop_exit();
}
#ifndef TARGET_SPARC64
-void do_wrpsr()
+void helper_wrpsr(target_ulong new_psr)
{
- if ((T0 & PSR_CWP) >= NWINDOWS)
+ if ((new_psr & PSR_CWP) >= NWINDOWS)
raise_exception(TT_ILL_INSN);
else
- PUT_PSR(env, T0);
+ PUT_PSR(env, new_psr);
}
-void do_rdpsr()
+target_ulong helper_rdpsr(void)
{
- T0 = GET_PSR(env);
+ return GET_PSR(env);
}
#else
+target_ulong helper_rdccr(void)
+{
+ return GET_CCR(env);
+}
+
+void helper_wrccr(target_ulong new_ccr)
+{
+ PUT_CCR(env, new_ccr);
+}
+
+// CWP handling is reversed in V9, but we still use the V8 register
+// order.
+target_ulong helper_rdcwp(void)
+{
+ return GET_CWP64(env);
+}
+
+void helper_wrcwp(target_ulong new_cwp)
+{
+ PUT_CWP64(env, new_cwp);
+}
+
+// This function uses non-native bit order
+#define GET_FIELD(X, FROM, TO) \
+ ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1))
+
+// This function uses the order in the manuals, i.e. bit 0 is 2^0
+#define GET_FIELD_SP(X, FROM, TO) \
+ GET_FIELD(X, 63 - (TO), 63 - (FROM))
+
+target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize)
+{
+ return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) |
+ (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) |
+ (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) |
+ (GET_FIELD_SP(pixel_addr, 56, 59) << 13) |
+ (GET_FIELD_SP(pixel_addr, 35, 38) << 9) |
+ (GET_FIELD_SP(pixel_addr, 13, 16) << 5) |
+ (((pixel_addr >> 55) & 1) << 4) |
+ (GET_FIELD_SP(pixel_addr, 33, 34) << 2) |
+ GET_FIELD_SP(pixel_addr, 11, 12);
+}
+
+target_ulong helper_alignaddr(target_ulong addr, target_ulong offset)
+{
+ uint64_t tmp;
+
+ tmp = addr + offset;
+ env->gsr &= ~7ULL;
+ env->gsr |= tmp & 7ULL;
+ return tmp & ~7ULL;
+}
-void do_popc()
+target_ulong helper_popc(target_ulong val)
{
- T0 = (T1 & 0x5555555555555555ULL) + ((T1 >> 1) & 0x5555555555555555ULL);
- T0 = (T0 & 0x3333333333333333ULL) + ((T0 >> 2) & 0x3333333333333333ULL);
- T0 = (T0 & 0x0f0f0f0f0f0f0f0fULL) + ((T0 >> 4) & 0x0f0f0f0f0f0f0f0fULL);
- T0 = (T0 & 0x00ff00ff00ff00ffULL) + ((T0 >> 8) & 0x00ff00ff00ff00ffULL);
- T0 = (T0 & 0x0000ffff0000ffffULL) + ((T0 >> 16) & 0x0000ffff0000ffffULL);
- T0 = (T0 & 0x00000000ffffffffULL) + ((T0 >> 32) & 0x00000000ffffffffULL);
+ return ctpop64(val);
}
static inline uint64_t *get_gregset(uint64_t pstate)
switch (pstate) {
default:
case 0:
- return env->bgregs;
+ return env->bgregs;
case PS_AG:
- return env->agregs;
+ return env->agregs;
case PS_MG:
- return env->mgregs;
+ return env->mgregs;
case PS_IG:
- return env->igregs;
+ return env->igregs;
}
}
-void do_wrpstate()
+static inline void change_pstate(uint64_t new_pstate)
{
- uint64_t new_pstate, pstate_regs, new_pstate_regs;
+ uint64_t pstate_regs, new_pstate_regs;
uint64_t *src, *dst;
- new_pstate = T0 & 0xf3f;
pstate_regs = env->pstate & 0xc01;
new_pstate_regs = new_pstate & 0xc01;
if (new_pstate_regs != pstate_regs) {
- // Switch global register bank
- src = get_gregset(new_pstate_regs);
- dst = get_gregset(pstate_regs);
- memcpy32(dst, env->gregs);
- memcpy32(env->gregs, src);
+ // Switch global register bank
+ src = get_gregset(new_pstate_regs);
+ dst = get_gregset(pstate_regs);
+ memcpy32(dst, env->gregs);
+ memcpy32(env->gregs, src);
}
env->pstate = new_pstate;
}
-void do_done(void)
+void helper_wrpstate(target_ulong new_state)
+{
+ change_pstate(new_state & 0xf3f);
+}
+
+void helper_done(void)
{
env->tl--;
- env->pc = env->tnpc[env->tl];
- env->npc = env->tnpc[env->tl] + 4;
- PUT_CCR(env, env->tstate[env->tl] >> 32);
- env->asi = (env->tstate[env->tl] >> 24) & 0xff;
- env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
- set_cwp(env->tstate[env->tl] & 0xff);
+ env->tsptr = &env->ts[env->tl];
+ env->pc = env->tsptr->tpc;
+ env->npc = env->tsptr->tnpc + 4;
+ PUT_CCR(env, env->tsptr->tstate >> 32);
+ env->asi = (env->tsptr->tstate >> 24) & 0xff;
+ change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
+ PUT_CWP64(env, env->tsptr->tstate & 0xff);
}
-void do_retry(void)
+void helper_retry(void)
{
env->tl--;
- env->pc = env->tpc[env->tl];
- env->npc = env->tnpc[env->tl];
- PUT_CCR(env, env->tstate[env->tl] >> 32);
- env->asi = (env->tstate[env->tl] >> 24) & 0xff;
- env->pstate = (env->tstate[env->tl] >> 8) & 0xfff;
- set_cwp(env->tstate[env->tl] & 0xff);
+ env->tsptr = &env->ts[env->tl];
+ env->pc = env->tsptr->tpc;
+ env->npc = env->tsptr->tnpc;
+ PUT_CCR(env, env->tsptr->tstate >> 32);
+ env->asi = (env->tsptr->tstate >> 24) & 0xff;
+ change_pstate((env->tsptr->tstate >> 8) & 0xf3f);
+ PUT_CWP64(env, env->tsptr->tstate & 0xff);
}
#endif
}
#ifdef TARGET_SPARC64
+#ifdef DEBUG_PCALL
+static const char * const excp_names[0x50] = {
+ [TT_TFAULT] = "Instruction Access Fault",
+ [TT_TMISS] = "Instruction Access MMU Miss",
+ [TT_CODE_ACCESS] = "Instruction Access Error",
+ [TT_ILL_INSN] = "Illegal Instruction",
+ [TT_PRIV_INSN] = "Privileged Instruction",
+ [TT_NFPU_INSN] = "FPU Disabled",
+ [TT_FP_EXCP] = "FPU Exception",
+ [TT_TOVF] = "Tag Overflow",
+ [TT_CLRWIN] = "Clean Windows",
+ [TT_DIV_ZERO] = "Division By Zero",
+ [TT_DFAULT] = "Data Access Fault",
+ [TT_DMISS] = "Data Access MMU Miss",
+ [TT_DATA_ACCESS] = "Data Access Error",
+ [TT_DPROT] = "Data Protection Error",
+ [TT_UNALIGNED] = "Unaligned Memory Access",
+ [TT_PRIV_ACT] = "Privileged Action",
+ [TT_EXTINT | 0x1] = "External Interrupt 1",
+ [TT_EXTINT | 0x2] = "External Interrupt 2",
+ [TT_EXTINT | 0x3] = "External Interrupt 3",
+ [TT_EXTINT | 0x4] = "External Interrupt 4",
+ [TT_EXTINT | 0x5] = "External Interrupt 5",
+ [TT_EXTINT | 0x6] = "External Interrupt 6",
+ [TT_EXTINT | 0x7] = "External Interrupt 7",
+ [TT_EXTINT | 0x8] = "External Interrupt 8",
+ [TT_EXTINT | 0x9] = "External Interrupt 9",
+ [TT_EXTINT | 0xa] = "External Interrupt 10",
+ [TT_EXTINT | 0xb] = "External Interrupt 11",
+ [TT_EXTINT | 0xc] = "External Interrupt 12",
+ [TT_EXTINT | 0xd] = "External Interrupt 13",
+ [TT_EXTINT | 0xe] = "External Interrupt 14",
+ [TT_EXTINT | 0xf] = "External Interrupt 15",
+};
+#endif
+
void do_interrupt(int intno)
{
#ifdef DEBUG_PCALL
if (loglevel & CPU_LOG_INT) {
- static int count;
- fprintf(logfile, "%6d: v=%04x pc=%016" PRIx64 " npc=%016" PRIx64 " SP=%016" PRIx64 "\n",
- count, intno,
+ static int count;
+ const char *name;
+
+ if (intno < 0 || intno >= 0x180 || (intno > 0x4f && intno < 0x80))
+ name = "Unknown";
+ else if (intno >= 0x100)
+ name = "Trap Instruction";
+ else if (intno >= 0xc0)
+ name = "Window Fill";
+ else if (intno >= 0x80)
+ name = "Window Spill";
+ else {
+ name = excp_names[intno];
+ if (!name)
+ name = "Unknown";
+ }
+
+ fprintf(logfile, "%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64
+ " SP=%016" PRIx64 "\n",
+ count, name, intno,
env->pc,
env->npc, env->regwptr[6]);
- cpu_dump_state(env, logfile, fprintf, 0);
+ cpu_dump_state(env, logfile, fprintf, 0);
#if 0
- {
- int i;
- uint8_t *ptr;
-
- fprintf(logfile, " code=");
- ptr = (uint8_t *)env->pc;
- for(i = 0; i < 16; i++) {
- fprintf(logfile, " %02x", ldub(ptr + i));
- }
- fprintf(logfile, "\n");
- }
+ {
+ int i;
+ uint8_t *ptr;
+
+ fprintf(logfile, " code=");
+ ptr = (uint8_t *)env->pc;
+ for(i = 0; i < 16; i++) {
+ fprintf(logfile, " %02x", ldub(ptr + i));
+ }
+ fprintf(logfile, "\n");
+ }
#endif
- count++;
+ count++;
}
#endif
-#if !defined(CONFIG_USER_ONLY)
+#if !defined(CONFIG_USER_ONLY)
if (env->tl == MAXTL) {
cpu_abort(env, "Trap 0x%04x while trap level is MAXTL, Error state", env->exception_index);
- return;
+ return;
}
#endif
- env->tstate[env->tl] = ((uint64_t)GET_CCR(env) << 32) | ((env->asi & 0xff) << 24) |
- ((env->pstate & 0xfff) << 8) | (env->cwp & 0xff);
- env->tpc[env->tl] = env->pc;
- env->tnpc[env->tl] = env->npc;
- env->tt[env->tl] = intno;
- env->pstate = PS_PEF | PS_PRIV | PS_AG;
+ env->tsptr->tstate = ((uint64_t)GET_CCR(env) << 32) |
+ ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) |
+ GET_CWP64(env);
+ env->tsptr->tpc = env->pc;
+ env->tsptr->tnpc = env->npc;
+ env->tsptr->tt = intno;
+ change_pstate(PS_PEF | PS_PRIV | PS_AG);
+
+ if (intno == TT_CLRWIN)
+ set_cwp((env->cwp - 1) & (NWINDOWS - 1));
+ else if ((intno & 0x1c0) == TT_SPILL)
+ set_cwp((env->cwp - env->cansave - 2) & (NWINDOWS - 1));
+ else if ((intno & 0x1c0) == TT_FILL)
+ set_cwp((env->cwp + 1) & (NWINDOWS - 1));
env->tbr &= ~0x7fffULL;
env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5);
if (env->tl < MAXTL - 1) {
- env->tl++;
+ env->tl++;
} else {
- env->pstate |= PS_RED;
- if (env->tl != MAXTL)
- env->tl++;
+ env->pstate |= PS_RED;
+ if (env->tl != MAXTL)
+ env->tl++;
}
+ env->tsptr = &env->ts[env->tl];
env->pc = env->tbr;
env->npc = env->pc + 4;
env->exception_index = 0;
}
#else
+#ifdef DEBUG_PCALL
+static const char * const excp_names[0x80] = {
+ [TT_TFAULT] = "Instruction Access Fault",
+ [TT_ILL_INSN] = "Illegal Instruction",
+ [TT_PRIV_INSN] = "Privileged Instruction",
+ [TT_NFPU_INSN] = "FPU Disabled",
+ [TT_WIN_OVF] = "Window Overflow",
+ [TT_WIN_UNF] = "Window Underflow",
+ [TT_UNALIGNED] = "Unaligned Memory Access",
+ [TT_FP_EXCP] = "FPU Exception",
+ [TT_DFAULT] = "Data Access Fault",
+ [TT_TOVF] = "Tag Overflow",
+ [TT_EXTINT | 0x1] = "External Interrupt 1",
+ [TT_EXTINT | 0x2] = "External Interrupt 2",
+ [TT_EXTINT | 0x3] = "External Interrupt 3",
+ [TT_EXTINT | 0x4] = "External Interrupt 4",
+ [TT_EXTINT | 0x5] = "External Interrupt 5",
+ [TT_EXTINT | 0x6] = "External Interrupt 6",
+ [TT_EXTINT | 0x7] = "External Interrupt 7",
+ [TT_EXTINT | 0x8] = "External Interrupt 8",
+ [TT_EXTINT | 0x9] = "External Interrupt 9",
+ [TT_EXTINT | 0xa] = "External Interrupt 10",
+ [TT_EXTINT | 0xb] = "External Interrupt 11",
+ [TT_EXTINT | 0xc] = "External Interrupt 12",
+ [TT_EXTINT | 0xd] = "External Interrupt 13",
+ [TT_EXTINT | 0xe] = "External Interrupt 14",
+ [TT_EXTINT | 0xf] = "External Interrupt 15",
+ [TT_TOVF] = "Tag Overflow",
+ [TT_CODE_ACCESS] = "Instruction Access Error",
+ [TT_DATA_ACCESS] = "Data Access Error",
+ [TT_DIV_ZERO] = "Division By Zero",
+ [TT_NCP_INSN] = "Coprocessor Disabled",
+};
+#endif
+
void do_interrupt(int intno)
{
int cwp;
#ifdef DEBUG_PCALL
if (loglevel & CPU_LOG_INT) {
- static int count;
- fprintf(logfile, "%6d: v=%02x pc=%08x npc=%08x SP=%08x\n",
- count, intno,
+ static int count;
+ const char *name;
+
+ if (intno < 0 || intno >= 0x100)
+ name = "Unknown";
+ else if (intno >= 0x80)
+ name = "Trap Instruction";
+ else {
+ name = excp_names[intno];
+ if (!name)
+ name = "Unknown";
+ }
+
+ fprintf(logfile, "%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n",
+ count, name, intno,
env->pc,
env->npc, env->regwptr[6]);
- cpu_dump_state(env, logfile, fprintf, 0);
+ cpu_dump_state(env, logfile, fprintf, 0);
#if 0
- {
- int i;
- uint8_t *ptr;
-
- fprintf(logfile, " code=");
- ptr = (uint8_t *)env->pc;
- for(i = 0; i < 16; i++) {
- fprintf(logfile, " %02x", ldub(ptr + i));
- }
- fprintf(logfile, "\n");
- }
+ {
+ int i;
+ uint8_t *ptr;
+
+ fprintf(logfile, " code=");
+ ptr = (uint8_t *)env->pc;
+ for(i = 0; i < 16; i++) {
+ fprintf(logfile, " %02x", ldub(ptr + i));
+ }
+ fprintf(logfile, "\n");
+ }
#endif
- count++;
+ count++;
}
#endif
-#if !defined(CONFIG_USER_ONLY)
+#if !defined(CONFIG_USER_ONLY)
if (env->psret == 0) {
cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", env->exception_index);
- return;
+ return;
}
#endif
env->psret = 0;
- cwp = (env->cwp - 1) & (NWINDOWS - 1);
+ cwp = (env->cwp - 1) & (NWINDOWS - 1);
set_cwp(cwp);
env->regwptr[9] = env->pc;
env->regwptr[10] = env->npc;
}
#endif
-#if !defined(CONFIG_USER_ONLY)
+#if !defined(CONFIG_USER_ONLY)
+
+static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
+ void *retaddr);
#define MMUSUFFIX _mmu
-#define GETPC() (__builtin_return_address(0))
+#define ALIGNED_ONLY
+#ifdef __s390__
+# define GETPC() ((void*)((unsigned long)__builtin_return_address(0) & 0x7fffffffUL))
+#else
+# define GETPC() (__builtin_return_address(0))
+#endif
#define SHIFT 0
#include "softmmu_template.h"
#define SHIFT 3
#include "softmmu_template.h"
+static void do_unaligned_access(target_ulong addr, int is_write, int is_user,
+ void *retaddr)
+{
+#ifdef DEBUG_UNALIGNED
+ printf("Unaligned access to 0x%x from 0x%x\n", addr, env->pc);
+#endif
+ raise_exception(TT_UNALIGNED);
+}
/* try to fill the TLB and return an exception if error. If retaddr is
NULL, it means that the function was called in C code (i.e. not
from generated code or from helper.c) */
/* XXX: fix it to restore all registers */
-void tlb_fill(target_ulong addr, int is_write, int is_user, void *retaddr)
+void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr)
{
TranslationBlock *tb;
int ret;
saved_env = env;
env = cpu_single_env;
- ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, is_user, 1);
+ ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
if (ret) {
if (retaddr) {
/* now we have a real cpu fault */
}
#endif
+
+#ifndef TARGET_SPARC64
+void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
+ int is_asi)
+{
+ CPUState *saved_env;
+
+ /* XXX: hack to restore env in all cases, even if not called from
+ generated code */
+ saved_env = env;
+ env = cpu_single_env;
+#ifdef DEBUG_UNASSIGNED
+ if (is_asi)
+ printf("Unassigned mem %s access to " TARGET_FMT_plx " asi 0x%02x from "
+ TARGET_FMT_lx "\n",
+ is_exec ? "exec" : is_write ? "write" : "read", addr, is_asi,
+ env->pc);
+ else
+ printf("Unassigned mem %s access to " TARGET_FMT_plx " from "
+ TARGET_FMT_lx "\n",
+ is_exec ? "exec" : is_write ? "write" : "read", addr, env->pc);
+#endif
+ if (env->mmuregs[3]) /* Fault status register */
+ env->mmuregs[3] = 1; /* overflow (not read before another fault) */
+ if (is_asi)
+ env->mmuregs[3] |= 1 << 16;
+ if (env->psrs)
+ env->mmuregs[3] |= 1 << 5;
+ if (is_exec)
+ env->mmuregs[3] |= 1 << 6;
+ if (is_write)
+ env->mmuregs[3] |= 1 << 7;
+ env->mmuregs[3] |= (5 << 2) | 2;
+ env->mmuregs[4] = addr; /* Fault address register */
+ if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) {
+ if (is_exec)
+ raise_exception(TT_CODE_ACCESS);
+ else
+ raise_exception(TT_DATA_ACCESS);
+ }
+ env = saved_env;
+}
+#else
+void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
+ int is_asi)
+{
+#ifdef DEBUG_UNASSIGNED
+ CPUState *saved_env;
+
+ /* XXX: hack to restore env in all cases, even if not called from
+ generated code */
+ saved_env = env;
+ env = cpu_single_env;
+ printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx "\n",
+ addr, env->pc);
+ env = saved_env;
+#endif
+ if (is_exec)
+ raise_exception(TT_CODE_ACCESS);
+ else
+ raise_exception(TT_DATA_ACCESS);
+}
+#endif
+