+
+=== "tcg" ===
+
+Guest code generated by TCG can be traced by defining an event with the "tcg"
+event property. Internally, this property generates two events:
+"<eventname>_trans" to trace the event at translation time, and
+"<eventname>_exec" to trace the event at execution time.
+
+Instead of using these two events, you should instead use the function
+"trace_<eventname>_tcg" during translation (TCG code generation). This function
+will automatically call "trace_<eventname>_trans", and will generate the
+necessary TCG code to call "trace_<eventname>_exec" during guest code execution.
+
+Events with the "tcg" property can be declared in the "trace-events" file with a
+mix of native and TCG types, and "trace_<eventname>_tcg" will gracefully forward
+them to the "<eventname>_trans" and "<eventname>_exec" events. Since TCG values
+are not known at translation time, these are ignored by the "<eventname>_trans"
+event. Because of this, the entry in the "trace-events" file needs two printing
+formats (separated by a comma):
+
+ tcg foo(uint8_t a1, TCGv_i32 a2) "a1=%d", "a1=%d a2=%d"
+
+For example:
+
+ #include "trace-tcg.h"
+
+ void some_disassembly_func (...)
+ {
+ uint8_t a1 = ...;
+ TCGv_i32 a2 = ...;
+ trace_foo_tcg(a1, a2);
+ }
+
+This will immediately call:
+
+ void trace_foo_trans(uint8_t a1);
+
+and will generate the TCG code to call:
+
+ void trace_foo(uint8_t a1, uint32_t a2);
+
+=== "vcpu" ===
+
+Identifies events that trace vCPU-specific information. It implicitly adds a
+"CPUState*" argument, and extends the tracing print format to show the vCPU
+information. If used together with the "tcg" property, it adds a second
+"TCGv_env" argument that must point to the per-target global TCG register that
+points to the vCPU when guest code is executed (usually the "cpu_env" variable).
+
+The following example events:
+
+ foo(uint32_t a) "a=%x"
+ vcpu bar(uint32_t a) "a=%x"
+ tcg vcpu baz(uint32_t a) "a=%x", "a=%x"
+
+Can be used as:
+
+ #include "trace-tcg.h"
+
+ CPUArchState *env;
+ TCGv_ptr cpu_env;
+
+ void some_disassembly_func(...)
+ {
+ /* trace emitted at this point */
+ trace_foo(0xd1);
+ /* trace emitted at this point */
+ trace_bar(ENV_GET_CPU(env), 0xd2);
+ /* trace emitted at this point (env) and when guest code is executed (cpu_env) */
+ trace_baz_tcg(ENV_GET_CPU(env), cpu_env, 0xd3);
+ }
+
+If the translating vCPU has address 0xc1 and code is later executed by vCPU
+0xc2, this would be an example output:
+
+ // at guest code translation
+ foo a=0xd1
+ bar cpu=0xc1 a=0xd2
+ baz_trans cpu=0xc1 a=0xd3
+ // at guest code execution
+ baz_exec cpu=0xc2 a=0xd3