static TCGv_i64 cpu_pc;
static TCGv_i32 cpu_NF, cpu_ZF, cpu_CF, cpu_VF;
+/* Load/store exclusive handling */
+static TCGv_i64 cpu_exclusive_addr;
+static TCGv_i64 cpu_exclusive_val;
+static TCGv_i64 cpu_exclusive_high;
+#ifdef CONFIG_USER_ONLY
+static TCGv_i64 cpu_exclusive_test;
+static TCGv_i32 cpu_exclusive_info;
+#endif
+
static const char *regnames[] = {
"x0", "x1", "x2", "x3", "x4", "x5", "x6", "x7",
"x8", "x9", "x10", "x11", "x12", "x13", "x14", "x15",
A64_SHIFT_TYPE_ROR = 3
};
+/* Table based decoder typedefs - used when the relevant bits for decode
+ * are too awkwardly scattered across the instruction (eg SIMD).
+ */
+typedef void AArch64DecodeFn(DisasContext *s, uint32_t insn);
+
+typedef struct AArch64DecodeTable {
+ uint32_t pattern;
+ uint32_t mask;
+ AArch64DecodeFn *disas_fn;
+} AArch64DecodeTable;
+
+/* Function prototype for gen_ functions for calling Neon helpers */
+typedef void NeonGenTwoOpFn(TCGv_i32, TCGv_i32, TCGv_i32);
+typedef void NeonGenTwoOpEnvFn(TCGv_i32, TCGv_ptr, TCGv_i32, TCGv_i32);
+typedef void NeonGenNarrowFn(TCGv_i32, TCGv_i64);
+typedef void NeonGenNarrowEnvFn(TCGv_i32, TCGv_ptr, TCGv_i64);
+typedef void NeonGenTwoSingleOPFn(TCGv_i32, TCGv_i32, TCGv_i32, TCGv_ptr);
+typedef void NeonGenTwoDoubleOPFn(TCGv_i64, TCGv_i64, TCGv_i64, TCGv_ptr);
+
/* initialize TCG globals. */
void a64_translate_init(void)
{
cpu_ZF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, ZF), "ZF");
cpu_CF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, CF), "CF");
cpu_VF = tcg_global_mem_new_i32(TCG_AREG0, offsetof(CPUARMState, VF), "VF");
+
+ cpu_exclusive_addr = tcg_global_mem_new_i64(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_addr), "exclusive_addr");
+ cpu_exclusive_val = tcg_global_mem_new_i64(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_val), "exclusive_val");
+ cpu_exclusive_high = tcg_global_mem_new_i64(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_high), "exclusive_high");
+#ifdef CONFIG_USER_ONLY
+ cpu_exclusive_test = tcg_global_mem_new_i64(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_test), "exclusive_test");
+ cpu_exclusive_info = tcg_global_mem_new_i32(TCG_AREG0,
+ offsetof(CPUARMState, exclusive_info), "exclusive_info");
+#endif
}
void aarch64_cpu_dump_state(CPUState *cs, FILE *f,
psr & PSTATE_C ? 'C' : '-',
psr & PSTATE_V ? 'V' : '-');
cpu_fprintf(f, "\n");
+
+ if (flags & CPU_DUMP_FPU) {
+ int numvfpregs = 32;
+ for (i = 0; i < numvfpregs; i += 2) {
+ uint64_t vlo = float64_val(env->vfp.regs[i * 2]);
+ uint64_t vhi = float64_val(env->vfp.regs[(i * 2) + 1]);
+ cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 " ",
+ i, vhi, vlo);
+ vlo = float64_val(env->vfp.regs[(i + 1) * 2]);
+ vhi = float64_val(env->vfp.regs[((i + 1) * 2) + 1]);
+ cpu_fprintf(f, "q%02d=%016" PRIx64 ":%016" PRIx64 "\n",
+ i + 1, vhi, vlo);
+ }
+ cpu_fprintf(f, "FPCR: %08x FPSR: %08x\n",
+ vfp_get_fpcr(env), vfp_get_fpsr(env));
+ }
}
static int get_mem_index(DisasContext *s)
return v;
}
+/* Return the offset into CPUARMState of an element of specified
+ * size, 'element' places in from the least significant end of
+ * the FP/vector register Qn.
+ */
+static inline int vec_reg_offset(int regno, int element, TCGMemOp size)
+{
+ int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
+#ifdef HOST_WORDS_BIGENDIAN
+ /* This is complicated slightly because vfp.regs[2n] is
+ * still the low half and vfp.regs[2n+1] the high half
+ * of the 128 bit vector, even on big endian systems.
+ * Calculate the offset assuming a fully bigendian 128 bits,
+ * then XOR to account for the order of the two 64 bit halves.
+ */
+ offs += (16 - ((element + 1) * (1 << size)));
+ offs ^= 8;
+#else
+ offs += element * (1 << size);
+#endif
+ return offs;
+}
+
+/* Return the offset into CPUARMState of a slice (from
+ * the least significant end) of FP register Qn (ie
+ * Dn, Sn, Hn or Bn).
+ * (Note that this is not the same mapping as for A32; see cpu.h)
+ */
+static inline int fp_reg_offset(int regno, TCGMemOp size)
+{
+ int offs = offsetof(CPUARMState, vfp.regs[regno * 2]);
+#ifdef HOST_WORDS_BIGENDIAN
+ offs += (8 - (1 << size));
+#endif
+ return offs;
+}
+
+/* Offset of the high half of the 128 bit vector Qn */
+static inline int fp_reg_hi_offset(int regno)
+{
+ return offsetof(CPUARMState, vfp.regs[regno * 2 + 1]);
+}
+
+/* Convenience accessors for reading and writing single and double
+ * FP registers. Writing clears the upper parts of the associated
+ * 128 bit vector register, as required by the architecture.
+ * Note that unlike the GP register accessors, the values returned
+ * by the read functions must be manually freed.
+ */
+static TCGv_i64 read_fp_dreg(DisasContext *s, int reg)
+{
+ TCGv_i64 v = tcg_temp_new_i64();
+
+ tcg_gen_ld_i64(v, cpu_env, fp_reg_offset(reg, MO_64));
+ return v;
+}
+
+static TCGv_i32 read_fp_sreg(DisasContext *s, int reg)
+{
+ TCGv_i32 v = tcg_temp_new_i32();
+
+ tcg_gen_ld_i32(v, cpu_env, fp_reg_offset(reg, MO_32));
+ return v;
+}
+
+static void write_fp_dreg(DisasContext *s, int reg, TCGv_i64 v)
+{
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+
+ tcg_gen_st_i64(v, cpu_env, fp_reg_offset(reg, MO_64));
+ tcg_gen_st_i64(tcg_zero, cpu_env, fp_reg_hi_offset(reg));
+ tcg_temp_free_i64(tcg_zero);
+}
+
+static void write_fp_sreg(DisasContext *s, int reg, TCGv_i32 v)
+{
+ TCGv_i64 tmp = tcg_temp_new_i64();
+
+ tcg_gen_extu_i32_i64(tmp, v);
+ write_fp_dreg(s, reg, tmp);
+ tcg_temp_free_i64(tmp);
+}
+
+static TCGv_ptr get_fpstatus_ptr(void)
+{
+ TCGv_ptr statusptr = tcg_temp_new_ptr();
+ int offset;
+
+ /* In A64 all instructions (both FP and Neon) use the FPCR;
+ * there is no equivalent of the A32 Neon "standard FPSCR value"
+ * and all operations use vfp.fp_status.
+ */
+ offset = offsetof(CPUARMState, vfp.fp_status);
+ tcg_gen_addi_ptr(statusptr, cpu_env, offset);
+ return statusptr;
+}
+
/* Set ZF and NF based on a 64 bit result. This is alas fiddlier
* than the 32 bit equivalent.
*/
static void do_fp_st(DisasContext *s, int srcidx, TCGv_i64 tcg_addr, int size)
{
/* This writes the bottom N bits of a 128 bit wide vector to memory */
- int freg_offs = offsetof(CPUARMState, vfp.regs[srcidx * 2]);
TCGv_i64 tmp = tcg_temp_new_i64();
-
+ tcg_gen_ld_i64(tmp, cpu_env, fp_reg_offset(srcidx, MO_64));
if (size < 4) {
- switch (size) {
- case 0:
- tcg_gen_ld8u_i64(tmp, cpu_env, freg_offs);
- break;
- case 1:
- tcg_gen_ld16u_i64(tmp, cpu_env, freg_offs);
- break;
- case 2:
- tcg_gen_ld32u_i64(tmp, cpu_env, freg_offs);
- break;
- case 3:
- tcg_gen_ld_i64(tmp, cpu_env, freg_offs);
- break;
- }
tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TE + size);
} else {
TCGv_i64 tcg_hiaddr = tcg_temp_new_i64();
- tcg_gen_ld_i64(tmp, cpu_env, freg_offs);
tcg_gen_qemu_st_i64(tmp, tcg_addr, get_mem_index(s), MO_TEQ);
tcg_gen_qemu_st64(tmp, tcg_addr, get_mem_index(s));
- tcg_gen_ld_i64(tmp, cpu_env, freg_offs + sizeof(float64));
+ tcg_gen_ld_i64(tmp, cpu_env, fp_reg_hi_offset(srcidx));
tcg_gen_addi_i64(tcg_hiaddr, tcg_addr, 8);
tcg_gen_qemu_st_i64(tmp, tcg_hiaddr, get_mem_index(s), MO_TEQ);
tcg_temp_free_i64(tcg_hiaddr);
static void do_fp_ld(DisasContext *s, int destidx, TCGv_i64 tcg_addr, int size)
{
/* This always zero-extends and writes to a full 128 bit wide vector */
- int freg_offs = offsetof(CPUARMState, vfp.regs[destidx * 2]);
TCGv_i64 tmplo = tcg_temp_new_i64();
TCGv_i64 tmphi;
tcg_temp_free_i64(tcg_hiaddr);
}
- tcg_gen_st_i64(tmplo, cpu_env, freg_offs);
- tcg_gen_st_i64(tmphi, cpu_env, freg_offs + sizeof(float64));
+ tcg_gen_st_i64(tmplo, cpu_env, fp_reg_offset(destidx, MO_64));
+ tcg_gen_st_i64(tmphi, cpu_env, fp_reg_hi_offset(destidx));
tcg_temp_free_i64(tmplo);
tcg_temp_free_i64(tmphi);
}
+/*
+ * Vector load/store helpers.
+ *
+ * The principal difference between this and a FP load is that we don't
+ * zero extend as we are filling a partial chunk of the vector register.
+ * These functions don't support 128 bit loads/stores, which would be
+ * normal load/store operations.
+ *
+ * The _i32 versions are useful when operating on 32 bit quantities
+ * (eg for floating point single or using Neon helper functions).
+ */
+
+/* Get value of an element within a vector register */
+static void read_vec_element(DisasContext *s, TCGv_i64 tcg_dest, int srcidx,
+ int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(srcidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_ld8u_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_ld16u_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_32:
+ tcg_gen_ld32u_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_8|MO_SIGN:
+ tcg_gen_ld8s_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16|MO_SIGN:
+ tcg_gen_ld16s_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_32|MO_SIGN:
+ tcg_gen_ld32s_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_64:
+ case MO_64|MO_SIGN:
+ tcg_gen_ld_i64(tcg_dest, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void read_vec_element_i32(DisasContext *s, TCGv_i32 tcg_dest, int srcidx,
+ int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(srcidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_ld8u_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_ld16u_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_8|MO_SIGN:
+ tcg_gen_ld8s_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_16|MO_SIGN:
+ tcg_gen_ld16s_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ case MO_32:
+ case MO_32|MO_SIGN:
+ tcg_gen_ld_i32(tcg_dest, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/* Set value of an element within a vector register */
+static void write_vec_element(DisasContext *s, TCGv_i64 tcg_src, int destidx,
+ int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(destidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_st8_i64(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_st16_i64(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_32:
+ tcg_gen_st32_i64(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_64:
+ tcg_gen_st_i64(tcg_src, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void write_vec_element_i32(DisasContext *s, TCGv_i32 tcg_src,
+ int destidx, int element, TCGMemOp memop)
+{
+ int vect_off = vec_reg_offset(destidx, element, memop & MO_SIZE);
+ switch (memop) {
+ case MO_8:
+ tcg_gen_st8_i32(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_16:
+ tcg_gen_st16_i32(tcg_src, cpu_env, vect_off);
+ break;
+ case MO_32:
+ tcg_gen_st_i32(tcg_src, cpu_env, vect_off);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/* Clear the high 64 bits of a 128 bit vector (in general non-quad
+ * vector ops all need to do this).
+ */
+static void clear_vec_high(DisasContext *s, int rd)
+{
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+
+ write_vec_element(s, tcg_zero, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_zero);
+}
+
+/* Store from vector register to memory */
+static void do_vec_st(DisasContext *s, int srcidx, int element,
+ TCGv_i64 tcg_addr, int size)
+{
+ TCGMemOp memop = MO_TE + size;
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_tmp, srcidx, element, size);
+ tcg_gen_qemu_st_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
+
+ tcg_temp_free_i64(tcg_tmp);
+}
+
+/* Load from memory to vector register */
+static void do_vec_ld(DisasContext *s, int destidx, int element,
+ TCGv_i64 tcg_addr, int size)
+{
+ TCGMemOp memop = MO_TE + size;
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr, get_mem_index(s), memop);
+ write_vec_element(s, tcg_tmp, destidx, element, size);
+
+ tcg_temp_free_i64(tcg_tmp);
+}
+
/*
* This utility function is for doing register extension with an
* optional shift. You will likely want to pass a temporary for the
*/
}
+/*
+ * This provides a simple table based table lookup decoder. It is
+ * intended to be used when the relevant bits for decode are too
+ * awkwardly placed and switch/if based logic would be confusing and
+ * deeply nested. Since it's a linear search through the table, tables
+ * should be kept small.
+ *
+ * It returns the first handler where insn & mask == pattern, or
+ * NULL if there is no match.
+ * The table is terminated by an empty mask (i.e. 0)
+ */
+static inline AArch64DecodeFn *lookup_disas_fn(const AArch64DecodeTable *table,
+ uint32_t insn)
+{
+ const AArch64DecodeTable *tptr = table;
+
+ while (tptr->mask) {
+ if ((insn & tptr->mask) == tptr->pattern) {
+ return tptr->disas_fn;
+ }
+ tptr++;
+ }
+ return NULL;
+}
+
/*
* the instruction disassembly implemented here matches
* the instruction encoding classifications in chapter 3 (C3)
}
}
+static void gen_clrex(DisasContext *s, uint32_t insn)
+{
+ tcg_gen_movi_i64(cpu_exclusive_addr, -1);
+}
+
/* CLREX, DSB, DMB, ISB */
static void handle_sync(DisasContext *s, uint32_t insn,
unsigned int op1, unsigned int op2, unsigned int crm)
switch (op2) {
case 2: /* CLREX */
- unsupported_encoding(s, insn);
+ gen_clrex(s, insn);
return;
case 4: /* DSB */
case 5: /* DMB */
crn, crm, op0, op1, op2));
if (!ri) {
- /* Unknown register */
+ /* Unknown register; this might be a guest error or a QEMU
+ * unimplemented feature.
+ */
+ qemu_log_mask(LOG_UNIMP, "%s access to unsupported AArch64 "
+ "system register op0:%d op1:%d crn:%d crm:%d op2:%d\n",
+ isread ? "read" : "write", op0, op1, crn, crm, op2);
unallocated_encoding(s);
return;
}
}
}
-/* Load/store exclusive */
+/*
+ * Load/Store exclusive instructions are implemented by remembering
+ * the value/address loaded, and seeing if these are the same
+ * when the store is performed. This is not actually the architecturally
+ * mandated semantics, but it works for typical guest code sequences
+ * and avoids having to monitor regular stores.
+ *
+ * In system emulation mode only one CPU will be running at once, so
+ * this sequence is effectively atomic. In user emulation mode we
+ * throw an exception and handle the atomic operation elsewhere.
+ */
+static void gen_load_exclusive(DisasContext *s, int rt, int rt2,
+ TCGv_i64 addr, int size, bool is_pair)
+{
+ TCGv_i64 tmp = tcg_temp_new_i64();
+ TCGMemOp memop = MO_TE + size;
+
+ g_assert(size <= 3);
+ tcg_gen_qemu_ld_i64(tmp, addr, get_mem_index(s), memop);
+
+ if (is_pair) {
+ TCGv_i64 addr2 = tcg_temp_new_i64();
+ TCGv_i64 hitmp = tcg_temp_new_i64();
+
+ g_assert(size >= 2);
+ tcg_gen_addi_i64(addr2, addr, 1 << size);
+ tcg_gen_qemu_ld_i64(hitmp, addr2, get_mem_index(s), memop);
+ tcg_temp_free_i64(addr2);
+ tcg_gen_mov_i64(cpu_exclusive_high, hitmp);
+ tcg_gen_mov_i64(cpu_reg(s, rt2), hitmp);
+ tcg_temp_free_i64(hitmp);
+ }
+
+ tcg_gen_mov_i64(cpu_exclusive_val, tmp);
+ tcg_gen_mov_i64(cpu_reg(s, rt), tmp);
+
+ tcg_temp_free_i64(tmp);
+ tcg_gen_mov_i64(cpu_exclusive_addr, addr);
+}
+
+#ifdef CONFIG_USER_ONLY
+static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
+ TCGv_i64 addr, int size, int is_pair)
+{
+ tcg_gen_mov_i64(cpu_exclusive_test, addr);
+ tcg_gen_movi_i32(cpu_exclusive_info,
+ size | is_pair << 2 | (rd << 4) | (rt << 9) | (rt2 << 14));
+ gen_exception_insn(s, 4, EXCP_STREX);
+}
+#else
+static void gen_store_exclusive(DisasContext *s, int rd, int rt, int rt2,
+ TCGv_i64 addr, int size, int is_pair)
+{
+ qemu_log_mask(LOG_UNIMP,
+ "%s:%d: system mode store_exclusive unsupported "
+ "at pc=%016" PRIx64 "\n",
+ __FILE__, __LINE__, s->pc - 4);
+}
+#endif
+
+/* C3.3.6 Load/store exclusive
+ *
+ * 31 30 29 24 23 22 21 20 16 15 14 10 9 5 4 0
+ * +-----+-------------+----+---+----+------+----+-------+------+------+
+ * | sz | 0 0 1 0 0 0 | o2 | L | o1 | Rs | o0 | Rt2 | Rn | Rt |
+ * +-----+-------------+----+---+----+------+----+-------+------+------+
+ *
+ * sz: 00 -> 8 bit, 01 -> 16 bit, 10 -> 32 bit, 11 -> 64 bit
+ * L: 0 -> store, 1 -> load
+ * o2: 0 -> exclusive, 1 -> not
+ * o1: 0 -> single register, 1 -> register pair
+ * o0: 1 -> load-acquire/store-release, 0 -> not
+ *
+ * o0 == 0 AND o2 == 1 is un-allocated
+ * o1 == 1 is un-allocated except for 32 and 64 bit sizes
+ */
static void disas_ldst_excl(DisasContext *s, uint32_t insn)
{
- unsupported_encoding(s, insn);
+ int rt = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rt2 = extract32(insn, 10, 5);
+ int is_lasr = extract32(insn, 15, 1);
+ int rs = extract32(insn, 16, 5);
+ int is_pair = extract32(insn, 21, 1);
+ int is_store = !extract32(insn, 22, 1);
+ int is_excl = !extract32(insn, 23, 1);
+ int size = extract32(insn, 30, 2);
+ TCGv_i64 tcg_addr;
+
+ if ((!is_excl && !is_lasr) ||
+ (is_pair && size < 2)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+ tcg_addr = read_cpu_reg_sp(s, rn, 1);
+
+ /* Note that since TCG is single threaded load-acquire/store-release
+ * semantics require no extra if (is_lasr) { ... } handling.
+ */
+
+ if (is_excl) {
+ if (!is_store) {
+ gen_load_exclusive(s, rt, rt2, tcg_addr, size, is_pair);
+ } else {
+ gen_store_exclusive(s, rs, rt, rt2, tcg_addr, size, is_pair);
+ }
+ } else {
+ TCGv_i64 tcg_rt = cpu_reg(s, rt);
+ if (is_store) {
+ do_gpr_st(s, tcg_rt, tcg_addr, size);
+ } else {
+ do_gpr_ld(s, tcg_rt, tcg_addr, size, false, false);
+ }
+ if (is_pair) {
+ TCGv_i64 tcg_rt2 = cpu_reg(s, rt);
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, 1 << size);
+ if (is_store) {
+ do_gpr_st(s, tcg_rt2, tcg_addr, size);
+ } else {
+ do_gpr_ld(s, tcg_rt2, tcg_addr, size, false, false);
+ }
+ }
+ }
}
/*
}
}
-/* AdvSIMD load/store multiple structures */
+/* C3.3.1 AdvSIMD load/store multiple structures
+ *
+ * 31 30 29 23 22 21 16 15 12 11 10 9 5 4 0
+ * +---+---+---------------+---+-------------+--------+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 0 0 | L | 0 0 0 0 0 0 | opcode | size | Rn | Rt |
+ * +---+---+---------------+---+-------------+--------+------+------+------+
+ *
+ * C3.3.2 AdvSIMD load/store multiple structures (post-indexed)
+ *
+ * 31 30 29 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +---+---+---------------+---+---+---------+--------+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 0 1 | L | 0 | Rm | opcode | size | Rn | Rt |
+ * +---+---+---------------+---+---+---------+--------+------+------+------+
+ *
+ * Rt: first (or only) SIMD&FP register to be transferred
+ * Rn: base address or SP
+ * Rm (post-index only): post-index register (when !31) or size dependent #imm
+ */
static void disas_ldst_multiple_struct(DisasContext *s, uint32_t insn)
{
- unsupported_encoding(s, insn);
-}
-
-/* AdvSIMD load/store single structure */
-static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
-{
- unsupported_encoding(s, insn);
-}
+ int rt = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int size = extract32(insn, 10, 2);
+ int opcode = extract32(insn, 12, 4);
+ bool is_store = !extract32(insn, 22, 1);
+ bool is_postidx = extract32(insn, 23, 1);
+ bool is_q = extract32(insn, 30, 1);
+ TCGv_i64 tcg_addr, tcg_rn;
+
+ int ebytes = 1 << size;
+ int elements = (is_q ? 128 : 64) / (8 << size);
+ int rpt; /* num iterations */
+ int selem; /* structure elements */
+ int r;
+
+ if (extract32(insn, 31, 1) || extract32(insn, 21, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
-/* C3.3 Loads and stores */
-static void disas_ldst(DisasContext *s, uint32_t insn)
-{
- switch (extract32(insn, 24, 6)) {
- case 0x08: /* Load/store exclusive */
- disas_ldst_excl(s, insn);
+ /* From the shared decode logic */
+ switch (opcode) {
+ case 0x0:
+ rpt = 1;
+ selem = 4;
break;
- case 0x18: case 0x1c: /* Load register (literal) */
- disas_ld_lit(s, insn);
+ case 0x2:
+ rpt = 4;
+ selem = 1;
break;
- case 0x28: case 0x29:
- case 0x2c: case 0x2d: /* Load/store pair (all forms) */
- disas_ldst_pair(s, insn);
+ case 0x4:
+ rpt = 1;
+ selem = 3;
break;
- case 0x38: case 0x39:
- case 0x3c: case 0x3d: /* Load/store register (all forms) */
- disas_ldst_reg(s, insn);
+ case 0x6:
+ rpt = 3;
+ selem = 1;
break;
- case 0x0c: /* AdvSIMD load/store multiple structures */
- disas_ldst_multiple_struct(s, insn);
+ case 0x7:
+ rpt = 1;
+ selem = 1;
break;
- case 0x0d: /* AdvSIMD load/store single structure */
- disas_ldst_single_struct(s, insn);
+ case 0x8:
+ rpt = 1;
+ selem = 2;
+ break;
+ case 0xa:
+ rpt = 2;
+ selem = 1;
break;
default:
unallocated_encoding(s);
- break;
+ return;
}
-}
-/* C3.4.6 PC-rel. addressing
- * 31 30 29 28 24 23 5 4 0
- * +----+-------+-----------+-------------------+------+
- * | op | immlo | 1 0 0 0 0 | immhi | Rd |
- * +----+-------+-----------+-------------------+------+
- */
-static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
-{
- unsigned int page, rd;
- uint64_t base;
+ if (size == 3 && !is_q && selem != 1) {
+ /* reserved */
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+
+ tcg_rn = cpu_reg_sp(s, rn);
+ tcg_addr = tcg_temp_new_i64();
+ tcg_gen_mov_i64(tcg_addr, tcg_rn);
+
+ for (r = 0; r < rpt; r++) {
+ int e;
+ for (e = 0; e < elements; e++) {
+ int tt = (rt + r) % 32;
+ int xs;
+ for (xs = 0; xs < selem; xs++) {
+ if (is_store) {
+ do_vec_st(s, tt, e, tcg_addr, size);
+ } else {
+ do_vec_ld(s, tt, e, tcg_addr, size);
+
+ /* For non-quad operations, setting a slice of the low
+ * 64 bits of the register clears the high 64 bits (in
+ * the ARM ARM pseudocode this is implicit in the fact
+ * that 'rval' is a 64 bit wide variable). We optimize
+ * by noticing that we only need to do this the first
+ * time we touch a register.
+ */
+ if (!is_q && e == 0 && (r == 0 || xs == selem - 1)) {
+ clear_vec_high(s, tt);
+ }
+ }
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
+ tt = (tt + 1) % 32;
+ }
+ }
+ }
+
+ if (is_postidx) {
+ int rm = extract32(insn, 16, 5);
+ if (rm == 31) {
+ tcg_gen_mov_i64(tcg_rn, tcg_addr);
+ } else {
+ tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
+ }
+ }
+ tcg_temp_free_i64(tcg_addr);
+}
+
+/* C3.3.3 AdvSIMD load/store single structure
+ *
+ * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 1 0 | L R | 0 0 0 0 0 | opc | S | size | Rn | Rt |
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ *
+ * C3.3.4 AdvSIMD load/store single structure (post-indexed)
+ *
+ * 31 30 29 23 22 21 20 16 15 13 12 11 10 9 5 4 0
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ * | 0 | Q | 0 0 1 1 0 1 1 | L R | Rm | opc | S | size | Rn | Rt |
+ * +---+---+---------------+-----+-----------+-----+---+------+------+------+
+ *
+ * Rt: first (or only) SIMD&FP register to be transferred
+ * Rn: base address or SP
+ * Rm (post-index only): post-index register (when !31) or size dependent #imm
+ * index = encoded in Q:S:size dependent on size
+ *
+ * lane_size = encoded in R, opc
+ * transfer width = encoded in opc, S, size
+ */
+static void disas_ldst_single_struct(DisasContext *s, uint32_t insn)
+{
+ int rt = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int size = extract32(insn, 10, 2);
+ int S = extract32(insn, 12, 1);
+ int opc = extract32(insn, 13, 3);
+ int R = extract32(insn, 21, 1);
+ int is_load = extract32(insn, 22, 1);
+ int is_postidx = extract32(insn, 23, 1);
+ int is_q = extract32(insn, 30, 1);
+
+ int scale = extract32(opc, 1, 2);
+ int selem = (extract32(opc, 0, 1) << 1 | R) + 1;
+ bool replicate = false;
+ int index = is_q << 3 | S << 2 | size;
+ int ebytes, xs;
+ TCGv_i64 tcg_addr, tcg_rn;
+
+ switch (scale) {
+ case 3:
+ if (!is_load || S) {
+ unallocated_encoding(s);
+ return;
+ }
+ scale = size;
+ replicate = true;
+ break;
+ case 0:
+ break;
+ case 1:
+ if (extract32(size, 0, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ index >>= 1;
+ break;
+ case 2:
+ if (extract32(size, 1, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ if (!extract32(size, 0, 1)) {
+ index >>= 2;
+ } else {
+ if (S) {
+ unallocated_encoding(s);
+ return;
+ }
+ index >>= 3;
+ scale = 3;
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ ebytes = 1 << scale;
+
+ if (rn == 31) {
+ gen_check_sp_alignment(s);
+ }
+
+ tcg_rn = cpu_reg_sp(s, rn);
+ tcg_addr = tcg_temp_new_i64();
+ tcg_gen_mov_i64(tcg_addr, tcg_rn);
+
+ for (xs = 0; xs < selem; xs++) {
+ if (replicate) {
+ /* Load and replicate to all elements */
+ uint64_t mulconst;
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ tcg_gen_qemu_ld_i64(tcg_tmp, tcg_addr,
+ get_mem_index(s), MO_TE + scale);
+ switch (scale) {
+ case 0:
+ mulconst = 0x0101010101010101ULL;
+ break;
+ case 1:
+ mulconst = 0x0001000100010001ULL;
+ break;
+ case 2:
+ mulconst = 0x0000000100000001ULL;
+ break;
+ case 3:
+ mulconst = 0;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ if (mulconst) {
+ tcg_gen_muli_i64(tcg_tmp, tcg_tmp, mulconst);
+ }
+ write_vec_element(s, tcg_tmp, rt, 0, MO_64);
+ if (is_q) {
+ write_vec_element(s, tcg_tmp, rt, 1, MO_64);
+ } else {
+ clear_vec_high(s, rt);
+ }
+ tcg_temp_free_i64(tcg_tmp);
+ } else {
+ /* Load/store one element per register */
+ if (is_load) {
+ do_vec_ld(s, rt, index, tcg_addr, MO_TE + scale);
+ } else {
+ do_vec_st(s, rt, index, tcg_addr, MO_TE + scale);
+ }
+ }
+ tcg_gen_addi_i64(tcg_addr, tcg_addr, ebytes);
+ rt = (rt + 1) % 32;
+ }
+
+ if (is_postidx) {
+ int rm = extract32(insn, 16, 5);
+ if (rm == 31) {
+ tcg_gen_mov_i64(tcg_rn, tcg_addr);
+ } else {
+ tcg_gen_add_i64(tcg_rn, tcg_rn, cpu_reg(s, rm));
+ }
+ }
+ tcg_temp_free_i64(tcg_addr);
+}
+
+/* C3.3 Loads and stores */
+static void disas_ldst(DisasContext *s, uint32_t insn)
+{
+ switch (extract32(insn, 24, 6)) {
+ case 0x08: /* Load/store exclusive */
+ disas_ldst_excl(s, insn);
+ break;
+ case 0x18: case 0x1c: /* Load register (literal) */
+ disas_ld_lit(s, insn);
+ break;
+ case 0x28: case 0x29:
+ case 0x2c: case 0x2d: /* Load/store pair (all forms) */
+ disas_ldst_pair(s, insn);
+ break;
+ case 0x38: case 0x39:
+ case 0x3c: case 0x3d: /* Load/store register (all forms) */
+ disas_ldst_reg(s, insn);
+ break;
+ case 0x0c: /* AdvSIMD load/store multiple structures */
+ disas_ldst_multiple_struct(s, insn);
+ break;
+ case 0x0d: /* AdvSIMD load/store single structure */
+ disas_ldst_single_struct(s, insn);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.4.6 PC-rel. addressing
+ * 31 30 29 28 24 23 5 4 0
+ * +----+-------+-----------+-------------------+------+
+ * | op | immlo | 1 0 0 0 0 | immhi | Rd |
+ * +----+-------+-----------+-------------------+------+
+ */
+static void disas_pc_rel_adr(DisasContext *s, uint32_t insn)
+{
+ unsigned int page, rd;
+ uint64_t base;
int64_t offset;
page = extract32(insn, 31, 1);
}
}
+static void handle_fp_compare(DisasContext *s, bool is_double,
+ unsigned int rn, unsigned int rm,
+ bool cmp_with_zero, bool signal_all_nans)
+{
+ TCGv_i64 tcg_flags = tcg_temp_new_i64();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ if (is_double) {
+ TCGv_i64 tcg_vn, tcg_vm;
+
+ tcg_vn = read_fp_dreg(s, rn);
+ if (cmp_with_zero) {
+ tcg_vm = tcg_const_i64(0);
+ } else {
+ tcg_vm = read_fp_dreg(s, rm);
+ }
+ if (signal_all_nans) {
+ gen_helper_vfp_cmped_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ } else {
+ gen_helper_vfp_cmpd_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ }
+ tcg_temp_free_i64(tcg_vn);
+ tcg_temp_free_i64(tcg_vm);
+ } else {
+ TCGv_i32 tcg_vn, tcg_vm;
+
+ tcg_vn = read_fp_sreg(s, rn);
+ if (cmp_with_zero) {
+ tcg_vm = tcg_const_i32(0);
+ } else {
+ tcg_vm = read_fp_sreg(s, rm);
+ }
+ if (signal_all_nans) {
+ gen_helper_vfp_cmpes_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ } else {
+ gen_helper_vfp_cmps_a64(tcg_flags, tcg_vn, tcg_vm, fpst);
+ }
+ tcg_temp_free_i32(tcg_vn);
+ tcg_temp_free_i32(tcg_vm);
+ }
+
+ tcg_temp_free_ptr(fpst);
+
+ gen_set_nzcv(tcg_flags);
+
+ tcg_temp_free_i64(tcg_flags);
+}
+
/* C3.6.22 Floating point compare
* 31 30 29 28 24 23 22 21 20 16 15 14 13 10 9 5 4 0
* +---+---+---+-----------+------+---+------+-----+---------+------+-------+
*/
static void disas_fp_compare(DisasContext *s, uint32_t insn)
{
- unsupported_encoding(s, insn);
+ unsigned int mos, type, rm, op, rn, opc, op2r;
+
+ mos = extract32(insn, 29, 3);
+ type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
+ rm = extract32(insn, 16, 5);
+ op = extract32(insn, 14, 2);
+ rn = extract32(insn, 5, 5);
+ opc = extract32(insn, 3, 2);
+ op2r = extract32(insn, 0, 3);
+
+ if (mos || op || op2r || type > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ handle_fp_compare(s, type, rn, rm, opc & 1, opc & 2);
}
/* C3.6.23 Floating point conditional compare
*/
static void disas_fp_ccomp(DisasContext *s, uint32_t insn)
{
- unsupported_encoding(s, insn);
+ unsigned int mos, type, rm, cond, rn, op, nzcv;
+ TCGv_i64 tcg_flags;
+ int label_continue = -1;
+
+ mos = extract32(insn, 29, 3);
+ type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
+ rm = extract32(insn, 16, 5);
+ cond = extract32(insn, 12, 4);
+ rn = extract32(insn, 5, 5);
+ op = extract32(insn, 4, 1);
+ nzcv = extract32(insn, 0, 4);
+
+ if (mos || type > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (cond < 0x0e) { /* not always */
+ int label_match = gen_new_label();
+ label_continue = gen_new_label();
+ arm_gen_test_cc(cond, label_match);
+ /* nomatch: */
+ tcg_flags = tcg_const_i64(nzcv << 28);
+ gen_set_nzcv(tcg_flags);
+ tcg_temp_free_i64(tcg_flags);
+ tcg_gen_br(label_continue);
+ gen_set_label(label_match);
+ }
+
+ handle_fp_compare(s, type, rn, rm, false, op);
+
+ if (cond < 0x0e) {
+ gen_set_label(label_continue);
+ }
+}
+
+/* copy src FP register to dst FP register; type specifies single or double */
+static void gen_mov_fp2fp(DisasContext *s, int type, int dst, int src)
+{
+ if (type) {
+ TCGv_i64 v = read_fp_dreg(s, src);
+ write_fp_dreg(s, dst, v);
+ tcg_temp_free_i64(v);
+ } else {
+ TCGv_i32 v = read_fp_sreg(s, src);
+ write_fp_sreg(s, dst, v);
+ tcg_temp_free_i32(v);
+ }
}
/* C3.6.24 Floating point conditional select
*/
static void disas_fp_csel(DisasContext *s, uint32_t insn)
{
- unsupported_encoding(s, insn);
-}
+ unsigned int mos, type, rm, cond, rn, rd;
+ int label_continue = -1;
-/* C3.6.25 Floating point data-processing (1 source)
- * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
- * +---+---+---+-----------+------+---+--------+-----------+------+------+
- * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
- * +---+---+---+-----------+------+---+--------+-----------+------+------+
- */
-static void disas_fp_1src(DisasContext *s, uint32_t insn)
-{
- unsupported_encoding(s, insn);
-}
+ mos = extract32(insn, 29, 3);
+ type = extract32(insn, 22, 2); /* 0 = single, 1 = double */
+ rm = extract32(insn, 16, 5);
+ cond = extract32(insn, 12, 4);
+ rn = extract32(insn, 5, 5);
+ rd = extract32(insn, 0, 5);
-/* C3.6.26 Floating point data-processing (2 source)
- * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
- * +---+---+---+-----------+------+---+------+--------+-----+------+------+
- * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
- * +---+---+---+-----------+------+---+------+--------+-----+------+------+
- */
-static void disas_fp_2src(DisasContext *s, uint32_t insn)
-{
- unsupported_encoding(s, insn);
-}
+ if (mos || type > 1) {
+ unallocated_encoding(s);
+ return;
+ }
-/* C3.6.27 Floating point data-processing (3 source)
- * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
- * +---+---+---+-----------+------+----+------+----+------+------+------+
- * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
- * +---+---+---+-----------+------+----+------+----+------+------+------+
- */
-static void disas_fp_3src(DisasContext *s, uint32_t insn)
-{
- unsupported_encoding(s, insn);
-}
+ if (cond < 0x0e) { /* not always */
+ int label_match = gen_new_label();
+ label_continue = gen_new_label();
+ arm_gen_test_cc(cond, label_match);
+ /* nomatch: */
+ gen_mov_fp2fp(s, type, rd, rm);
+ tcg_gen_br(label_continue);
+ gen_set_label(label_match);
+ }
-/* C3.6.28 Floating point immediate
- * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
- * +---+---+---+-----------+------+---+------------+-------+------+------+
- * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
- * +---+---+---+-----------+------+---+------------+-------+------+------+
- */
-static void disas_fp_imm(DisasContext *s, uint32_t insn)
-{
- unsupported_encoding(s, insn);
-}
+ gen_mov_fp2fp(s, type, rd, rn);
-/* C3.6.29 Floating point <-> fixed point conversions
- * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
- * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
- * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
- * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
- */
-static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
-{
- unsupported_encoding(s, insn);
+ if (cond < 0x0e) { /* continue */
+ gen_set_label(label_continue);
+ }
}
-static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
+/* C3.6.25 Floating-point data-processing (1 source) - single precision */
+static void handle_fp_1src_single(DisasContext *s, int opcode, int rd, int rn)
{
- /* FMOV: gpr to or from float, double, or top half of quad fp reg,
- * without conversion.
- */
+ TCGv_ptr fpst;
+ TCGv_i32 tcg_op;
+ TCGv_i32 tcg_res;
- if (itof) {
- int freg_offs = offsetof(CPUARMState, vfp.regs[rd * 2]);
- TCGv_i64 tcg_rn = cpu_reg(s, rn);
+ fpst = get_fpstatus_ptr();
+ tcg_op = read_fp_sreg(s, rn);
+ tcg_res = tcg_temp_new_i32();
- switch (type) {
- case 0:
+ switch (opcode) {
+ case 0x0: /* FMOV */
+ tcg_gen_mov_i32(tcg_res, tcg_op);
+ break;
+ case 0x1: /* FABS */
+ gen_helper_vfp_abss(tcg_res, tcg_op);
+ break;
+ case 0x2: /* FNEG */
+ gen_helper_vfp_negs(tcg_res, tcg_op);
+ break;
+ case 0x3: /* FSQRT */
+ gen_helper_vfp_sqrts(tcg_res, tcg_op, cpu_env);
+ break;
+ case 0x8: /* FRINTN */
+ case 0x9: /* FRINTP */
+ case 0xa: /* FRINTM */
+ case 0xb: /* FRINTZ */
+ case 0xc: /* FRINTA */
+ {
+ TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ gen_helper_rints(tcg_res, tcg_op, fpst);
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+ break;
+ }
+ case 0xe: /* FRINTX */
+ gen_helper_rints_exact(tcg_res, tcg_op, fpst);
+ break;
+ case 0xf: /* FRINTI */
+ gen_helper_rints(tcg_res, tcg_op, fpst);
+ break;
+ default:
+ abort();
+ }
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(tcg_op);
+ tcg_temp_free_i32(tcg_res);
+}
+
+/* C3.6.25 Floating-point data-processing (1 source) - double precision */
+static void handle_fp_1src_double(DisasContext *s, int opcode, int rd, int rn)
+{
+ TCGv_ptr fpst;
+ TCGv_i64 tcg_op;
+ TCGv_i64 tcg_res;
+
+ fpst = get_fpstatus_ptr();
+ tcg_op = read_fp_dreg(s, rn);
+ tcg_res = tcg_temp_new_i64();
+
+ switch (opcode) {
+ case 0x0: /* FMOV */
+ tcg_gen_mov_i64(tcg_res, tcg_op);
+ break;
+ case 0x1: /* FABS */
+ gen_helper_vfp_absd(tcg_res, tcg_op);
+ break;
+ case 0x2: /* FNEG */
+ gen_helper_vfp_negd(tcg_res, tcg_op);
+ break;
+ case 0x3: /* FSQRT */
+ gen_helper_vfp_sqrtd(tcg_res, tcg_op, cpu_env);
+ break;
+ case 0x8: /* FRINTN */
+ case 0x9: /* FRINTP */
+ case 0xa: /* FRINTM */
+ case 0xb: /* FRINTZ */
+ case 0xc: /* FRINTA */
+ {
+ TCGv_i32 tcg_rmode = tcg_const_i32(arm_rmode_to_sf(opcode & 7));
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ gen_helper_rintd(tcg_res, tcg_op, fpst);
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+ break;
+ }
+ case 0xe: /* FRINTX */
+ gen_helper_rintd_exact(tcg_res, tcg_op, fpst);
+ break;
+ case 0xf: /* FRINTI */
+ gen_helper_rintd(tcg_res, tcg_op, fpst);
+ break;
+ default:
+ abort();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(tcg_op);
+ tcg_temp_free_i64(tcg_res);
+}
+
+static void handle_fp_fcvt(DisasContext *s, int opcode,
+ int rd, int rn, int dtype, int ntype)
+{
+ switch (ntype) {
+ case 0x0:
+ {
+ TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
+ if (dtype == 1) {
+ /* Single to double */
+ TCGv_i64 tcg_rd = tcg_temp_new_i64();
+ gen_helper_vfp_fcvtds(tcg_rd, tcg_rn, cpu_env);
+ write_fp_dreg(s, rd, tcg_rd);
+ tcg_temp_free_i64(tcg_rd);
+ } else {
+ /* Single to half */
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+ gen_helper_vfp_fcvt_f32_to_f16(tcg_rd, tcg_rn, cpu_env);
+ /* write_fp_sreg is OK here because top half of tcg_rd is zero */
+ write_fp_sreg(s, rd, tcg_rd);
+ tcg_temp_free_i32(tcg_rd);
+ }
+ tcg_temp_free_i32(tcg_rn);
+ break;
+ }
+ case 0x1:
+ {
+ TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+ if (dtype == 0) {
+ /* Double to single */
+ gen_helper_vfp_fcvtsd(tcg_rd, tcg_rn, cpu_env);
+ } else {
+ /* Double to half */
+ gen_helper_vfp_fcvt_f64_to_f16(tcg_rd, tcg_rn, cpu_env);
+ /* write_fp_sreg is OK here because top half of tcg_rd is zero */
+ }
+ write_fp_sreg(s, rd, tcg_rd);
+ tcg_temp_free_i32(tcg_rd);
+ tcg_temp_free_i64(tcg_rn);
+ break;
+ }
+ case 0x3:
+ {
+ TCGv_i32 tcg_rn = read_fp_sreg(s, rn);
+ tcg_gen_ext16u_i32(tcg_rn, tcg_rn);
+ if (dtype == 0) {
+ /* Half to single */
+ TCGv_i32 tcg_rd = tcg_temp_new_i32();
+ gen_helper_vfp_fcvt_f16_to_f32(tcg_rd, tcg_rn, cpu_env);
+ write_fp_sreg(s, rd, tcg_rd);
+ tcg_temp_free_i32(tcg_rd);
+ } else {
+ /* Half to double */
+ TCGv_i64 tcg_rd = tcg_temp_new_i64();
+ gen_helper_vfp_fcvt_f16_to_f64(tcg_rd, tcg_rn, cpu_env);
+ write_fp_dreg(s, rd, tcg_rd);
+ tcg_temp_free_i64(tcg_rd);
+ }
+ tcg_temp_free_i32(tcg_rn);
+ break;
+ }
+ default:
+ abort();
+ }
+}
+
+/* C3.6.25 Floating point data-processing (1 source)
+ * 31 30 29 28 24 23 22 21 20 15 14 10 9 5 4 0
+ * +---+---+---+-----------+------+---+--------+-----------+------+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | opcode | 1 0 0 0 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+--------+-----------+------+------+
+ */
+static void disas_fp_1src(DisasContext *s, uint32_t insn)
+{
+ int type = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 15, 6);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ switch (opcode) {
+ case 0x4: case 0x5: case 0x7:
+ {
+ /* FCVT between half, single and double precision */
+ int dtype = extract32(opcode, 0, 2);
+ if (type == 2 || dtype == type) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_fp_fcvt(s, opcode, rd, rn, dtype, type);
+ break;
+ }
+ case 0x0 ... 0x3:
+ case 0x8 ... 0xc:
+ case 0xe ... 0xf:
+ /* 32-to-32 and 64-to-64 ops */
+ switch (type) {
+ case 0:
+ handle_fp_1src_single(s, opcode, rd, rn);
+ break;
+ case 1:
+ handle_fp_1src_double(s, opcode, rd, rn);
+ break;
+ default:
+ unallocated_encoding(s);
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* C3.6.26 Floating-point data-processing (2 source) - single precision */
+static void handle_fp_2src_single(DisasContext *s, int opcode,
+ int rd, int rn, int rm)
+{
+ TCGv_i32 tcg_op1;
+ TCGv_i32 tcg_op2;
+ TCGv_i32 tcg_res;
+ TCGv_ptr fpst;
+
+ tcg_res = tcg_temp_new_i32();
+ fpst = get_fpstatus_ptr();
+ tcg_op1 = read_fp_sreg(s, rn);
+ tcg_op2 = read_fp_sreg(s, rm);
+
+ switch (opcode) {
+ case 0x0: /* FMUL */
+ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1: /* FDIV */
+ gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2: /* FADD */
+ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3: /* FSUB */
+ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x4: /* FMAX */
+ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5: /* FMIN */
+ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x6: /* FMAXNM */
+ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7: /* FMINNM */
+ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x8: /* FNMUL */
+ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_negs(tcg_res, tcg_res);
+ break;
+ }
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i32(tcg_res);
+}
+
+/* C3.6.26 Floating-point data-processing (2 source) - double precision */
+static void handle_fp_2src_double(DisasContext *s, int opcode,
+ int rd, int rn, int rm)
+{
+ TCGv_i64 tcg_op1;
+ TCGv_i64 tcg_op2;
+ TCGv_i64 tcg_res;
+ TCGv_ptr fpst;
+
+ tcg_res = tcg_temp_new_i64();
+ fpst = get_fpstatus_ptr();
+ tcg_op1 = read_fp_dreg(s, rn);
+ tcg_op2 = read_fp_dreg(s, rm);
+
+ switch (opcode) {
+ case 0x0: /* FMUL */
+ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1: /* FDIV */
+ gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2: /* FADD */
+ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3: /* FSUB */
+ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x4: /* FMAX */
+ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5: /* FMIN */
+ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x6: /* FMAXNM */
+ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7: /* FMINNM */
+ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x8: /* FNMUL */
+ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_negd(tcg_res, tcg_res);
+ break;
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* C3.6.26 Floating point data-processing (2 source)
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | Rm | opcode | 1 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ */
+static void disas_fp_2src(DisasContext *s, uint32_t insn)
+{
+ int type = extract32(insn, 22, 2);
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
+ int opcode = extract32(insn, 12, 4);
+
+ if (opcode > 8) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (type) {
+ case 0:
+ handle_fp_2src_single(s, opcode, rd, rn, rm);
+ break;
+ case 1:
+ handle_fp_2src_double(s, opcode, rd, rn, rm);
+ break;
+ default:
+ unallocated_encoding(s);
+ }
+}
+
+/* C3.6.27 Floating-point data-processing (3 source) - single precision */
+static void handle_fp_3src_single(DisasContext *s, bool o0, bool o1,
+ int rd, int rn, int rm, int ra)
+{
+ TCGv_i32 tcg_op1, tcg_op2, tcg_op3;
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ tcg_op1 = read_fp_sreg(s, rn);
+ tcg_op2 = read_fp_sreg(s, rm);
+ tcg_op3 = read_fp_sreg(s, ra);
+
+ /* These are fused multiply-add, and must be done as one
+ * floating point operation with no rounding between the
+ * multiplication and addition steps.
+ * NB that doing the negations here as separate steps is
+ * correct : an input NaN should come out with its sign bit
+ * flipped if it is a negated-input.
+ */
+ if (o1 == true) {
+ gen_helper_vfp_negs(tcg_op3, tcg_op3);
+ }
+
+ if (o0 != o1) {
+ gen_helper_vfp_negs(tcg_op1, tcg_op1);
+ }
+
+ gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i32(tcg_op3);
+ tcg_temp_free_i32(tcg_res);
+}
+
+/* C3.6.27 Floating-point data-processing (3 source) - double precision */
+static void handle_fp_3src_double(DisasContext *s, bool o0, bool o1,
+ int rd, int rn, int rm, int ra)
+{
+ TCGv_i64 tcg_op1, tcg_op2, tcg_op3;
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ tcg_op1 = read_fp_dreg(s, rn);
+ tcg_op2 = read_fp_dreg(s, rm);
+ tcg_op3 = read_fp_dreg(s, ra);
+
+ /* These are fused multiply-add, and must be done as one
+ * floating point operation with no rounding between the
+ * multiplication and addition steps.
+ * NB that doing the negations here as separate steps is
+ * correct : an input NaN should come out with its sign bit
+ * flipped if it is a negated-input.
+ */
+ if (o1 == true) {
+ gen_helper_vfp_negd(tcg_op3, tcg_op3);
+ }
+
+ if (o0 != o1) {
+ gen_helper_vfp_negd(tcg_op1, tcg_op1);
+ }
+
+ gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2, tcg_op3, fpst);
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_ptr(fpst);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_op3);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* C3.6.27 Floating point data-processing (3 source)
+ * 31 30 29 28 24 23 22 21 20 16 15 14 10 9 5 4 0
+ * +---+---+---+-----------+------+----+------+----+------+------+------+
+ * | M | 0 | S | 1 1 1 1 1 | type | o1 | Rm | o0 | Ra | Rn | Rd |
+ * +---+---+---+-----------+------+----+------+----+------+------+------+
+ */
+static void disas_fp_3src(DisasContext *s, uint32_t insn)
+{
+ int type = extract32(insn, 22, 2);
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int ra = extract32(insn, 10, 5);
+ int rm = extract32(insn, 16, 5);
+ bool o0 = extract32(insn, 15, 1);
+ bool o1 = extract32(insn, 21, 1);
+
+ switch (type) {
+ case 0:
+ handle_fp_3src_single(s, o0, o1, rd, rn, rm, ra);
+ break;
+ case 1:
+ handle_fp_3src_double(s, o0, o1, rd, rn, rm, ra);
+ break;
+ default:
+ unallocated_encoding(s);
+ }
+}
+
+/* C3.6.28 Floating point immediate
+ * 31 30 29 28 24 23 22 21 20 13 12 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------------+-------+------+------+
+ * | M | 0 | S | 1 1 1 1 0 | type | 1 | imm8 | 1 0 0 | imm5 | Rd |
+ * +---+---+---+-----------+------+---+------------+-------+------+------+
+ */
+static void disas_fp_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int imm8 = extract32(insn, 13, 8);
+ int is_double = extract32(insn, 22, 2);
+ uint64_t imm;
+ TCGv_i64 tcg_res;
+
+ if (is_double > 1) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* The imm8 encodes the sign bit, enough bits to represent
+ * an exponent in the range 01....1xx to 10....0xx,
+ * and the most significant 4 bits of the mantissa; see
+ * VFPExpandImm() in the v8 ARM ARM.
+ */
+ if (is_double) {
+ imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
+ (extract32(imm8, 6, 1) ? 0x3fc0 : 0x4000) |
+ extract32(imm8, 0, 6);
+ imm <<= 48;
+ } else {
+ imm = (extract32(imm8, 7, 1) ? 0x8000 : 0) |
+ (extract32(imm8, 6, 1) ? 0x3e00 : 0x4000) |
+ (extract32(imm8, 0, 6) << 3);
+ imm <<= 16;
+ }
+
+ tcg_res = tcg_const_i64(imm);
+ write_fp_dreg(s, rd, tcg_res);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* Handle floating point <=> fixed point conversions. Note that we can
+ * also deal with fp <=> integer conversions as a special case (scale == 64)
+ * OPTME: consider handling that special case specially or at least skipping
+ * the call to scalbn in the helpers for zero shifts.
+ */
+static void handle_fpfpcvt(DisasContext *s, int rd, int rn, int opcode,
+ bool itof, int rmode, int scale, int sf, int type)
+{
+ bool is_signed = !(opcode & 1);
+ bool is_double = type;
+ TCGv_ptr tcg_fpstatus;
+ TCGv_i32 tcg_shift;
+
+ tcg_fpstatus = get_fpstatus_ptr();
+
+ tcg_shift = tcg_const_i32(64 - scale);
+
+ if (itof) {
+ TCGv_i64 tcg_int = cpu_reg(s, rn);
+ if (!sf) {
+ TCGv_i64 tcg_extend = new_tmp_a64(s);
+
+ if (is_signed) {
+ tcg_gen_ext32s_i64(tcg_extend, tcg_int);
+ } else {
+ tcg_gen_ext32u_i64(tcg_extend, tcg_int);
+ }
+
+ tcg_int = tcg_extend;
+ }
+
+ if (is_double) {
+ TCGv_i64 tcg_double = tcg_temp_new_i64();
+ if (is_signed) {
+ gen_helper_vfp_sqtod(tcg_double, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_uqtod(tcg_double, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ }
+ write_fp_dreg(s, rd, tcg_double);
+ tcg_temp_free_i64(tcg_double);
+ } else {
+ TCGv_i32 tcg_single = tcg_temp_new_i32();
+ if (is_signed) {
+ gen_helper_vfp_sqtos(tcg_single, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_uqtos(tcg_single, tcg_int,
+ tcg_shift, tcg_fpstatus);
+ }
+ write_fp_sreg(s, rd, tcg_single);
+ tcg_temp_free_i32(tcg_single);
+ }
+ } else {
+ TCGv_i64 tcg_int = cpu_reg(s, rd);
+ TCGv_i32 tcg_rmode;
+
+ if (extract32(opcode, 2, 1)) {
+ /* There are too many rounding modes to all fit into rmode,
+ * so FCVTA[US] is a special case.
+ */
+ rmode = FPROUNDING_TIEAWAY;
+ }
+
+ tcg_rmode = tcg_const_i32(arm_rmode_to_sf(rmode));
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+
+ if (is_double) {
+ TCGv_i64 tcg_double = read_fp_dreg(s, rn);
+ if (is_signed) {
+ if (!sf) {
+ gen_helper_vfp_tosld(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_tosqd(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ }
+ } else {
+ if (!sf) {
+ gen_helper_vfp_tould(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_touqd(tcg_int, tcg_double,
+ tcg_shift, tcg_fpstatus);
+ }
+ }
+ tcg_temp_free_i64(tcg_double);
+ } else {
+ TCGv_i32 tcg_single = read_fp_sreg(s, rn);
+ if (sf) {
+ if (is_signed) {
+ gen_helper_vfp_tosqs(tcg_int, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_touqs(tcg_int, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ }
+ } else {
+ TCGv_i32 tcg_dest = tcg_temp_new_i32();
+ if (is_signed) {
+ gen_helper_vfp_tosls(tcg_dest, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ } else {
+ gen_helper_vfp_touls(tcg_dest, tcg_single,
+ tcg_shift, tcg_fpstatus);
+ }
+ tcg_gen_extu_i32_i64(tcg_int, tcg_dest);
+ tcg_temp_free_i32(tcg_dest);
+ }
+ tcg_temp_free_i32(tcg_single);
+ }
+
+ gen_helper_set_rmode(tcg_rmode, tcg_rmode, cpu_env);
+ tcg_temp_free_i32(tcg_rmode);
+
+ if (!sf) {
+ tcg_gen_ext32u_i64(tcg_int, tcg_int);
+ }
+ }
+
+ tcg_temp_free_ptr(tcg_fpstatus);
+ tcg_temp_free_i32(tcg_shift);
+}
+
+/* C3.6.29 Floating point <-> fixed point conversions
+ * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
+ * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
+ * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opcode | scale | Rn | Rd |
+ * +----+---+---+-----------+------+---+-------+--------+-------+------+------+
+ */
+static void disas_fp_fixed_conv(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int scale = extract32(insn, 10, 6);
+ int opcode = extract32(insn, 16, 3);
+ int rmode = extract32(insn, 19, 2);
+ int type = extract32(insn, 22, 2);
+ bool sbit = extract32(insn, 29, 1);
+ bool sf = extract32(insn, 31, 1);
+ bool itof;
+
+ if (sbit || (type > 1)
+ || (!sf && scale < 32)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch ((rmode << 3) | opcode) {
+ case 0x2: /* SCVTF */
+ case 0x3: /* UCVTF */
+ itof = true;
+ break;
+ case 0x18: /* FCVTZS */
+ case 0x19: /* FCVTZU */
+ itof = false;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ handle_fpfpcvt(s, rd, rn, opcode, itof, FPROUNDING_ZERO, scale, sf, type);
+}
+
+static void handle_fmov(DisasContext *s, int rd, int rn, int type, bool itof)
+{
+ /* FMOV: gpr to or from float, double, or top half of quad fp reg,
+ * without conversion.
+ */
+
+ if (itof) {
+ TCGv_i64 tcg_rn = cpu_reg(s, rn);
+
+ switch (type) {
+ case 0:
+ {
+ /* 32 bit */
+ TCGv_i64 tmp = tcg_temp_new_i64();
+ tcg_gen_ext32u_i64(tmp, tcg_rn);
+ tcg_gen_st_i64(tmp, cpu_env, fp_reg_offset(rd, MO_64));
+ tcg_gen_movi_i64(tmp, 0);
+ tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(rd));
+ tcg_temp_free_i64(tmp);
+ break;
+ }
+ case 1:
+ {
+ /* 64 bit */
+ TCGv_i64 tmp = tcg_const_i64(0);
+ tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_offset(rd, MO_64));
+ tcg_gen_st_i64(tmp, cpu_env, fp_reg_hi_offset(rd));
+ tcg_temp_free_i64(tmp);
+ break;
+ }
+ case 2:
+ /* 64 bit to top half. */
+ tcg_gen_st_i64(tcg_rn, cpu_env, fp_reg_hi_offset(rd));
+ break;
+ }
+ } else {
+ TCGv_i64 tcg_rd = cpu_reg(s, rd);
+
+ switch (type) {
+ case 0:
+ /* 32 bit */
+ tcg_gen_ld32u_i64(tcg_rd, cpu_env, fp_reg_offset(rn, MO_32));
+ break;
+ case 1:
+ /* 64 bit */
+ tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_offset(rn, MO_64));
+ break;
+ case 2:
+ /* 64 bits from top half */
+ tcg_gen_ld_i64(tcg_rd, cpu_env, fp_reg_hi_offset(rn));
+ break;
+ }
+ }
+}
+
+/* C3.6.30 Floating point <-> integer conversions
+ * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
+ * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
+ * | sf | 0 | S | 1 1 1 1 0 | type | 1 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
+ * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
+ */
+static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 16, 3);
+ int rmode = extract32(insn, 19, 2);
+ int type = extract32(insn, 22, 2);
+ bool sbit = extract32(insn, 29, 1);
+ bool sf = extract32(insn, 31, 1);
+
+ if (sbit) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (opcode > 5) {
+ /* FMOV */
+ bool itof = opcode & 1;
+
+ if (rmode >= 2) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (sf << 3 | type << 1 | rmode) {
+ case 0x0: /* 32 bit */
+ case 0xa: /* 64 bit */
+ case 0xd: /* 64 bit to top half of quad */
+ break;
+ default:
+ /* all other sf/type/rmode combinations are invalid */
+ unallocated_encoding(s);
+ break;
+ }
+
+ handle_fmov(s, rd, rn, type, itof);
+ } else {
+ /* actual FP conversions */
+ bool itof = extract32(opcode, 1, 1);
+
+ if (type > 1 || (rmode != 0 && opcode > 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ handle_fpfpcvt(s, rd, rn, opcode, itof, rmode, 64, sf, type);
+ }
+}
+
+/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
+ * 31 30 29 28 25 24 0
+ * +---+---+---+---------+-----------------------------+
+ * | | 0 | | 1 1 1 1 | |
+ * +---+---+---+---------+-----------------------------+
+ */
+static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
+{
+ if (extract32(insn, 24, 1)) {
+ /* Floating point data-processing (3 source) */
+ disas_fp_3src(s, insn);
+ } else if (extract32(insn, 21, 1) == 0) {
+ /* Floating point to fixed point conversions */
+ disas_fp_fixed_conv(s, insn);
+ } else {
+ switch (extract32(insn, 10, 2)) {
+ case 1:
+ /* Floating point conditional compare */
+ disas_fp_ccomp(s, insn);
+ break;
+ case 2:
+ /* Floating point data-processing (2 source) */
+ disas_fp_2src(s, insn);
+ break;
+ case 3:
+ /* Floating point conditional select */
+ disas_fp_csel(s, insn);
+ break;
+ case 0:
+ switch (ctz32(extract32(insn, 12, 4))) {
+ case 0: /* [15:12] == xxx1 */
+ /* Floating point immediate */
+ disas_fp_imm(s, insn);
+ break;
+ case 1: /* [15:12] == xx10 */
+ /* Floating point compare */
+ disas_fp_compare(s, insn);
+ break;
+ case 2: /* [15:12] == x100 */
+ /* Floating point data-processing (1 source) */
+ disas_fp_1src(s, insn);
+ break;
+ case 3: /* [15:12] == 1000 */
+ unallocated_encoding(s);
+ break;
+ default: /* [15:12] == 0000 */
+ /* Floating point <-> integer conversions */
+ disas_fp_int_conv(s, insn);
+ break;
+ }
+ break;
+ }
+ }
+}
+
+static void do_ext64(DisasContext *s, TCGv_i64 tcg_left, TCGv_i64 tcg_right,
+ int pos)
+{
+ /* Extract 64 bits from the middle of two concatenated 64 bit
+ * vector register slices left:right. The extracted bits start
+ * at 'pos' bits into the right (least significant) side.
+ * We return the result in tcg_right, and guarantee not to
+ * trash tcg_left.
+ */
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+ assert(pos > 0 && pos < 64);
+
+ tcg_gen_shri_i64(tcg_right, tcg_right, pos);
+ tcg_gen_shli_i64(tcg_tmp, tcg_left, 64 - pos);
+ tcg_gen_or_i64(tcg_right, tcg_right, tcg_tmp);
+
+ tcg_temp_free_i64(tcg_tmp);
+}
+
+/* C3.6.1 EXT
+ * 31 30 29 24 23 22 21 20 16 15 14 11 10 9 5 4 0
+ * +---+---+-------------+-----+---+------+---+------+---+------+------+
+ * | 0 | Q | 1 0 1 1 1 0 | op2 | 0 | Rm | 0 | imm4 | 0 | Rn | Rd |
+ * +---+---+-------------+-----+---+------+---+------+---+------+------+
+ */
+static void disas_simd_ext(DisasContext *s, uint32_t insn)
+{
+ int is_q = extract32(insn, 30, 1);
+ int op2 = extract32(insn, 22, 2);
+ int imm4 = extract32(insn, 11, 4);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ int pos = imm4 << 3;
+ TCGv_i64 tcg_resl, tcg_resh;
+
+ if (op2 != 0 || (!is_q && extract32(imm4, 3, 1))) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_resh = tcg_temp_new_i64();
+ tcg_resl = tcg_temp_new_i64();
+
+ /* Vd gets bits starting at pos bits into Vm:Vn. This is
+ * either extracting 128 bits from a 128:128 concatenation, or
+ * extracting 64 bits from a 64:64 concatenation.
+ */
+ if (!is_q) {
+ read_vec_element(s, tcg_resl, rn, 0, MO_64);
+ if (pos != 0) {
+ read_vec_element(s, tcg_resh, rm, 0, MO_64);
+ do_ext64(s, tcg_resh, tcg_resl, pos);
+ }
+ tcg_gen_movi_i64(tcg_resh, 0);
+ } else {
+ TCGv_i64 tcg_hh;
+ typedef struct {
+ int reg;
+ int elt;
+ } EltPosns;
+ EltPosns eltposns[] = { {rn, 0}, {rn, 1}, {rm, 0}, {rm, 1} };
+ EltPosns *elt = eltposns;
+
+ if (pos >= 64) {
+ elt++;
+ pos -= 64;
+ }
+
+ read_vec_element(s, tcg_resl, elt->reg, elt->elt, MO_64);
+ elt++;
+ read_vec_element(s, tcg_resh, elt->reg, elt->elt, MO_64);
+ elt++;
+ if (pos != 0) {
+ do_ext64(s, tcg_resh, tcg_resl, pos);
+ tcg_hh = tcg_temp_new_i64();
+ read_vec_element(s, tcg_hh, elt->reg, elt->elt, MO_64);
+ do_ext64(s, tcg_hh, tcg_resh, pos);
+ tcg_temp_free_i64(tcg_hh);
+ }
+ }
+
+ write_vec_element(s, tcg_resl, rd, 0, MO_64);
+ tcg_temp_free_i64(tcg_resl);
+ write_vec_element(s, tcg_resh, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_resh);
+}
+
+/* C3.6.2 TBL/TBX
+ * 31 30 29 24 23 22 21 20 16 15 14 13 12 11 10 9 5 4 0
+ * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 | op2 | 0 | Rm | 0 | len | op | 0 0 | Rn | Rd |
+ * +---+---+-------------+-----+---+------+---+-----+----+-----+------+------+
+ */
+static void disas_simd_tb(DisasContext *s, uint32_t insn)
+{
+ int op2 = extract32(insn, 22, 2);
+ int is_q = extract32(insn, 30, 1);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ int is_tblx = extract32(insn, 12, 1);
+ int len = extract32(insn, 13, 2);
+ TCGv_i64 tcg_resl, tcg_resh, tcg_idx;
+ TCGv_i32 tcg_regno, tcg_numregs;
+
+ if (op2 != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* This does a table lookup: for every byte element in the input
+ * we index into a table formed from up to four vector registers,
+ * and then the output is the result of the lookups. Our helper
+ * function does the lookup operation for a single 64 bit part of
+ * the input.
+ */
+ tcg_resl = tcg_temp_new_i64();
+ tcg_resh = tcg_temp_new_i64();
+
+ if (is_tblx) {
+ read_vec_element(s, tcg_resl, rd, 0, MO_64);
+ } else {
+ tcg_gen_movi_i64(tcg_resl, 0);
+ }
+ if (is_tblx && is_q) {
+ read_vec_element(s, tcg_resh, rd, 1, MO_64);
+ } else {
+ tcg_gen_movi_i64(tcg_resh, 0);
+ }
+
+ tcg_idx = tcg_temp_new_i64();
+ tcg_regno = tcg_const_i32(rn);
+ tcg_numregs = tcg_const_i32(len + 1);
+ read_vec_element(s, tcg_idx, rm, 0, MO_64);
+ gen_helper_simd_tbl(tcg_resl, cpu_env, tcg_resl, tcg_idx,
+ tcg_regno, tcg_numregs);
+ if (is_q) {
+ read_vec_element(s, tcg_idx, rm, 1, MO_64);
+ gen_helper_simd_tbl(tcg_resh, cpu_env, tcg_resh, tcg_idx,
+ tcg_regno, tcg_numregs);
+ }
+ tcg_temp_free_i64(tcg_idx);
+ tcg_temp_free_i32(tcg_regno);
+ tcg_temp_free_i32(tcg_numregs);
+
+ write_vec_element(s, tcg_resl, rd, 0, MO_64);
+ tcg_temp_free_i64(tcg_resl);
+ write_vec_element(s, tcg_resh, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_resh);
+}
+
+/* C3.6.3 ZIP/UZP/TRN
+ * 31 30 29 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
+ * +---+---+-------------+------+---+------+---+------------------+------+
+ * | 0 | Q | 0 0 1 1 1 0 | size | 0 | Rm | 0 | opc | 1 0 | Rn | Rd |
+ * +---+---+-------------+------+---+------+---+------------------+------+
+ */
+static void disas_simd_zip_trn(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
+ int size = extract32(insn, 22, 2);
+ /* opc field bits [1:0] indicate ZIP/UZP/TRN;
+ * bit 2 indicates 1 vs 2 variant of the insn.
+ */
+ int opcode = extract32(insn, 12, 2);
+ bool part = extract32(insn, 14, 1);
+ bool is_q = extract32(insn, 30, 1);
+ int esize = 8 << size;
+ int i, ofs;
+ int datasize = is_q ? 128 : 64;
+ int elements = datasize / esize;
+ TCGv_i64 tcg_res, tcg_resl, tcg_resh;
+
+ if (opcode == 0 || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_resl = tcg_const_i64(0);
+ tcg_resh = tcg_const_i64(0);
+ tcg_res = tcg_temp_new_i64();
+
+ for (i = 0; i < elements; i++) {
+ switch (opcode) {
+ case 1: /* UZP1/2 */
+ {
+ int midpoint = elements / 2;
+ if (i < midpoint) {
+ read_vec_element(s, tcg_res, rn, 2 * i + part, size);
+ } else {
+ read_vec_element(s, tcg_res, rm,
+ 2 * (i - midpoint) + part, size);
+ }
+ break;
+ }
+ case 2: /* TRN1/2 */
+ if (i & 1) {
+ read_vec_element(s, tcg_res, rm, (i & ~1) + part, size);
+ } else {
+ read_vec_element(s, tcg_res, rn, (i & ~1) + part, size);
+ }
+ break;
+ case 3: /* ZIP1/2 */
+ {
+ int base = part * elements / 2;
+ if (i & 1) {
+ read_vec_element(s, tcg_res, rm, base + (i >> 1), size);
+ } else {
+ read_vec_element(s, tcg_res, rn, base + (i >> 1), size);
+ }
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ ofs = i * esize;
+ if (ofs < 64) {
+ tcg_gen_shli_i64(tcg_res, tcg_res, ofs);
+ tcg_gen_or_i64(tcg_resl, tcg_resl, tcg_res);
+ } else {
+ tcg_gen_shli_i64(tcg_res, tcg_res, ofs - 64);
+ tcg_gen_or_i64(tcg_resh, tcg_resh, tcg_res);
+ }
+ }
+
+ tcg_temp_free_i64(tcg_res);
+
+ write_vec_element(s, tcg_resl, rd, 0, MO_64);
+ tcg_temp_free_i64(tcg_resl);
+ write_vec_element(s, tcg_resh, rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_resh);
+}
+
+static void do_minmaxop(DisasContext *s, TCGv_i32 tcg_elt1, TCGv_i32 tcg_elt2,
+ int opc, bool is_min, TCGv_ptr fpst)
+{
+ /* Helper function for disas_simd_across_lanes: do a single precision
+ * min/max operation on the specified two inputs,
+ * and return the result in tcg_elt1.
+ */
+ if (opc == 0xc) {
+ if (is_min) {
+ gen_helper_vfp_minnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ } else {
+ gen_helper_vfp_maxnums(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ }
+ } else {
+ assert(opc == 0xf);
+ if (is_min) {
+ gen_helper_vfp_mins(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ } else {
+ gen_helper_vfp_maxs(tcg_elt1, tcg_elt1, tcg_elt2, fpst);
+ }
+ }
+}
+
+/* C3.6.4 AdvSIMD across lanes
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_across_lanes(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ bool is_q = extract32(insn, 30, 1);
+ bool is_u = extract32(insn, 29, 1);
+ bool is_fp = false;
+ bool is_min = false;
+ int esize;
+ int elements;
+ int i;
+ TCGv_i64 tcg_res, tcg_elt;
+
+ switch (opcode) {
+ case 0x1b: /* ADDV */
+ if (is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x3: /* SADDLV, UADDLV */
+ case 0xa: /* SMAXV, UMAXV */
+ case 0x1a: /* SMINV, UMINV */
+ if (size == 3 || (size == 2 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0xc: /* FMAXNMV, FMINNMV */
+ case 0xf: /* FMAXV, FMINV */
+ if (!is_u || !is_q || extract32(size, 0, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* Bit 1 of size field encodes min vs max, and actual size is always
+ * 32 bits: adjust the size variable so following code can rely on it
+ */
+ is_min = extract32(size, 1, 1);
+ is_fp = true;
+ size = 2;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ esize = 8 << size;
+ elements = (is_q ? 128 : 64) / esize;
+
+ tcg_res = tcg_temp_new_i64();
+ tcg_elt = tcg_temp_new_i64();
+
+ /* These instructions operate across all lanes of a vector
+ * to produce a single result. We can guarantee that a 64
+ * bit intermediate is sufficient:
+ * + for [US]ADDLV the maximum element size is 32 bits, and
+ * the result type is 64 bits
+ * + for FMAX*V, FMIN*V, ADDV the intermediate type is the
+ * same as the element size, which is 32 bits at most
+ * For the integer operations we can choose to work at 64
+ * or 32 bits and truncate at the end; for simplicity
+ * we use 64 bits always. The floating point
+ * ops do require 32 bit intermediates, though.
+ */
+ if (!is_fp) {
+ read_vec_element(s, tcg_res, rn, 0, size | (is_u ? 0 : MO_SIGN));
+
+ for (i = 1; i < elements; i++) {
+ read_vec_element(s, tcg_elt, rn, i, size | (is_u ? 0 : MO_SIGN));
+
+ switch (opcode) {
+ case 0x03: /* SADDLV / UADDLV */
+ case 0x1b: /* ADDV */
+ tcg_gen_add_i64(tcg_res, tcg_res, tcg_elt);
+ break;
+ case 0x0a: /* SMAXV / UMAXV */
+ tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
+ tcg_res,
+ tcg_res, tcg_elt, tcg_res, tcg_elt);
+ break;
+ case 0x1a: /* SMINV / UMINV */
+ tcg_gen_movcond_i64(is_u ? TCG_COND_LEU : TCG_COND_LE,
+ tcg_res,
+ tcg_res, tcg_elt, tcg_res, tcg_elt);
+ break;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ }
+ } else {
+ /* Floating point ops which work on 32 bit (single) intermediates.
+ * Note that correct NaN propagation requires that we do these
+ * operations in exactly the order specified by the pseudocode.
+ */
+ TCGv_i32 tcg_elt1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_elt2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_elt3 = tcg_temp_new_i32();
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ assert(esize == 32);
+ assert(elements == 4);
+
+ read_vec_element(s, tcg_elt, rn, 0, MO_32);
+ tcg_gen_trunc_i64_i32(tcg_elt1, tcg_elt);
+ read_vec_element(s, tcg_elt, rn, 1, MO_32);
+ tcg_gen_trunc_i64_i32(tcg_elt2, tcg_elt);
+
+ do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
+
+ read_vec_element(s, tcg_elt, rn, 2, MO_32);
+ tcg_gen_trunc_i64_i32(tcg_elt2, tcg_elt);
+ read_vec_element(s, tcg_elt, rn, 3, MO_32);
+ tcg_gen_trunc_i64_i32(tcg_elt3, tcg_elt);
+
+ do_minmaxop(s, tcg_elt2, tcg_elt3, opcode, is_min, fpst);
+
+ do_minmaxop(s, tcg_elt1, tcg_elt2, opcode, is_min, fpst);
+
+ tcg_gen_extu_i32_i64(tcg_res, tcg_elt1);
+ tcg_temp_free_i32(tcg_elt1);
+ tcg_temp_free_i32(tcg_elt2);
+ tcg_temp_free_i32(tcg_elt3);
+ tcg_temp_free_ptr(fpst);
+ }
+
+ tcg_temp_free_i64(tcg_elt);
+
+ /* Now truncate the result to the width required for the final output */
+ if (opcode == 0x03) {
+ /* SADDLV, UADDLV: result is 2*esize */
+ size++;
+ }
+
+ switch (size) {
+ case 0:
+ tcg_gen_ext8u_i64(tcg_res, tcg_res);
+ break;
+ case 1:
+ tcg_gen_ext16u_i64(tcg_res, tcg_res);
+ break;
+ case 2:
+ tcg_gen_ext32u_i64(tcg_res, tcg_res);
+ break;
+ case 3:
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+ tcg_temp_free_i64(tcg_res);
+}
+
+/* C6.3.31 DUP (Element, Vector)
+ *
+ * 31 30 29 21 20 16 15 10 9 5 4 0
+ * +---+---+-------------------+--------+-------------+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
+ * +---+---+-------------------+--------+-------------+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ */
+static void handle_simd_dupe(DisasContext *s, int is_q, int rd, int rn,
+ int imm5)
+{
+ int size = ctz32(imm5);
+ int esize = 8 << size;
+ int elements = (is_q ? 128 : 64) / esize;
+ int index, i;
+ TCGv_i64 tmp;
+
+ if (size > 3 || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ index = imm5 >> (size + 1);
+
+ tmp = tcg_temp_new_i64();
+ read_vec_element(s, tmp, rn, index, size);
+
+ for (i = 0; i < elements; i++) {
+ write_vec_element(s, tmp, rd, i, size);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tmp);
+}
+
+/* C6.3.31 DUP (element, scalar)
+ * 31 21 20 16 15 10 9 5 4 0
+ * +-----------------------+--------+-------------+------+------+
+ * | 0 1 0 1 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 0 1 | Rn | Rd |
+ * +-----------------------+--------+-------------+------+------+
+ */
+static void handle_simd_dupes(DisasContext *s, int rd, int rn,
+ int imm5)
+{
+ int size = ctz32(imm5);
+ int index;
+ TCGv_i64 tmp;
+
+ if (size > 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ index = imm5 >> (size + 1);
+
+ /* This instruction just extracts the specified element and
+ * zero-extends it into the bottom of the destination register.
+ */
+ tmp = tcg_temp_new_i64();
+ read_vec_element(s, tmp, rn, index, size);
+ write_fp_dreg(s, rd, tmp);
+ tcg_temp_free_i64(tmp);
+}
+
+/* C6.3.32 DUP (General)
+ *
+ * 31 30 29 21 20 16 15 10 9 5 4 0
+ * +---+---+-------------------+--------+-------------+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 0 1 1 | Rn | Rd |
+ * +---+---+-------------------+--------+-------------+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ */
+static void handle_simd_dupg(DisasContext *s, int is_q, int rd, int rn,
+ int imm5)
+{
+ int size = ctz32(imm5);
+ int esize = 8 << size;
+ int elements = (is_q ? 128 : 64)/esize;
+ int i = 0;
+
+ if (size > 3 || ((size == 3) && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ for (i = 0; i < elements; i++) {
+ write_vec_element(s, cpu_reg(s, rn), rd, i, size);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+/* C6.3.150 INS (Element)
+ *
+ * 31 21 20 16 15 14 11 10 9 5 4 0
+ * +-----------------------+--------+------------+---+------+------+
+ * | 0 1 1 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
+ * +-----------------------+--------+------------+---+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ * index: encoded in imm5<4:size+1>
+ */
+static void handle_simd_inse(DisasContext *s, int rd, int rn,
+ int imm4, int imm5)
+{
+ int size = ctz32(imm5);
+ int src_index, dst_index;
+ TCGv_i64 tmp;
+
+ if (size > 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ dst_index = extract32(imm5, 1+size, 5);
+ src_index = extract32(imm4, size, 4);
+
+ tmp = tcg_temp_new_i64();
+
+ read_vec_element(s, tmp, rn, src_index, size);
+ write_vec_element(s, tmp, rd, dst_index, size);
+
+ tcg_temp_free_i64(tmp);
+}
+
+
+/* C6.3.151 INS (General)
+ *
+ * 31 21 20 16 15 10 9 5 4 0
+ * +-----------------------+--------+-------------+------+------+
+ * | 0 1 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 0 1 1 1 | Rn | Rd |
+ * +-----------------------+--------+-------------+------+------+
+ *
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ * index: encoded in imm5<4:size+1>
+ */
+static void handle_simd_insg(DisasContext *s, int rd, int rn, int imm5)
+{
+ int size = ctz32(imm5);
+ int idx;
+
+ if (size > 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ idx = extract32(imm5, 1 + size, 4 - size);
+ write_vec_element(s, cpu_reg(s, rn), rd, idx, size);
+}
+
+/*
+ * C6.3.321 UMOV (General)
+ * C6.3.237 SMOV (General)
+ *
+ * 31 30 29 21 20 16 15 12 10 9 5 4 0
+ * +---+---+-------------------+--------+-------------+------+------+
+ * | 0 | Q | 0 0 1 1 1 0 0 0 0 | imm5 | 0 0 1 U 1 1 | Rn | Rd |
+ * +---+---+-------------------+--------+-------------+------+------+
+ *
+ * U: unsigned when set
+ * size: encoded in imm5 (see ARM ARM LowestSetBit())
+ */
+static void handle_simd_umov_smov(DisasContext *s, int is_q, int is_signed,
+ int rn, int rd, int imm5)
+{
+ int size = ctz32(imm5);
+ int element;
+ TCGv_i64 tcg_rd;
+
+ /* Check for UnallocatedEncodings */
+ if (is_signed) {
+ if (size > 2 || (size == 2 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ } else {
+ if (size > 3
+ || (size < 3 && is_q)
+ || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ }
+ element = extract32(imm5, 1+size, 4);
+
+ tcg_rd = cpu_reg(s, rd);
+ read_vec_element(s, tcg_rd, rn, element, size | (is_signed ? MO_SIGN : 0));
+ if (is_signed && !is_q) {
+ tcg_gen_ext32u_i64(tcg_rd, tcg_rd);
+ }
+}
+
+/* C3.6.5 AdvSIMD copy
+ * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
+ * +---+---+----+-----------------+------+---+------+---+------+------+
+ * | 0 | Q | op | 0 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
+ * +---+---+----+-----------------+------+---+------+---+------+------+
+ */
+static void disas_simd_copy(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int imm4 = extract32(insn, 11, 4);
+ int op = extract32(insn, 29, 1);
+ int is_q = extract32(insn, 30, 1);
+ int imm5 = extract32(insn, 16, 5);
+
+ if (op) {
+ if (is_q) {
+ /* INS (element) */
+ handle_simd_inse(s, rd, rn, imm4, imm5);
+ } else {
+ unallocated_encoding(s);
+ }
+ } else {
+ switch (imm4) {
+ case 0:
+ /* DUP (element - vector) */
+ handle_simd_dupe(s, is_q, rd, rn, imm5);
+ break;
+ case 1:
+ /* DUP (general) */
+ handle_simd_dupg(s, is_q, rd, rn, imm5);
+ break;
+ case 3:
+ if (is_q) {
+ /* INS (general) */
+ handle_simd_insg(s, rd, rn, imm5);
+ } else {
+ unallocated_encoding(s);
+ }
+ break;
+ case 5:
+ case 7:
+ /* UMOV/SMOV (is_q indicates 32/64; imm4 indicates signedness) */
+ handle_simd_umov_smov(s, is_q, (imm4 == 5), rn, rd, imm5);
+ break;
+ default:
+ unallocated_encoding(s);
+ break;
+ }
+ }
+}
+
+/* C3.6.6 AdvSIMD modified immediate
+ * 31 30 29 28 19 18 16 15 12 11 10 9 5 4 0
+ * +---+---+----+---------------------+-----+-------+----+---+-------+------+
+ * | 0 | Q | op | 0 1 1 1 1 0 0 0 0 0 | abc | cmode | o2 | 1 | defgh | Rd |
+ * +---+---+----+---------------------+-----+-------+----+---+-------+------+
+ *
+ * There are a number of operations that can be carried out here:
+ * MOVI - move (shifted) imm into register
+ * MVNI - move inverted (shifted) imm into register
+ * ORR - bitwise OR of (shifted) imm with register
+ * BIC - bitwise clear of (shifted) imm with register
+ */
+static void disas_simd_mod_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int cmode = extract32(insn, 12, 4);
+ int cmode_3_1 = extract32(cmode, 1, 3);
+ int cmode_0 = extract32(cmode, 0, 1);
+ int o2 = extract32(insn, 11, 1);
+ uint64_t abcdefgh = extract32(insn, 5, 5) | (extract32(insn, 16, 3) << 5);
+ bool is_neg = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+ uint64_t imm = 0;
+ TCGv_i64 tcg_rd, tcg_imm;
+ int i;
+
+ if (o2 != 0 || ((cmode == 0xf) && is_neg && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* See AdvSIMDExpandImm() in ARM ARM */
+ switch (cmode_3_1) {
+ case 0: /* Replicate(Zeros(24):imm8, 2) */
+ case 1: /* Replicate(Zeros(16):imm8:Zeros(8), 2) */
+ case 2: /* Replicate(Zeros(8):imm8:Zeros(16), 2) */
+ case 3: /* Replicate(imm8:Zeros(24), 2) */
+ {
+ int shift = cmode_3_1 * 8;
+ imm = bitfield_replicate(abcdefgh << shift, 32);
+ break;
+ }
+ case 4: /* Replicate(Zeros(8):imm8, 4) */
+ case 5: /* Replicate(imm8:Zeros(8), 4) */
+ {
+ int shift = (cmode_3_1 & 0x1) * 8;
+ imm = bitfield_replicate(abcdefgh << shift, 16);
+ break;
+ }
+ case 6:
+ if (cmode_0) {
+ /* Replicate(Zeros(8):imm8:Ones(16), 2) */
+ imm = (abcdefgh << 16) | 0xffff;
+ } else {
+ /* Replicate(Zeros(16):imm8:Ones(8), 2) */
+ imm = (abcdefgh << 8) | 0xff;
+ }
+ imm = bitfield_replicate(imm, 32);
+ break;
+ case 7:
+ if (!cmode_0 && !is_neg) {
+ imm = bitfield_replicate(abcdefgh, 8);
+ } else if (!cmode_0 && is_neg) {
+ int i;
+ imm = 0;
+ for (i = 0; i < 8; i++) {
+ if ((abcdefgh) & (1 << i)) {
+ imm |= 0xffULL << (i * 8);
+ }
+ }
+ } else if (cmode_0) {
+ if (is_neg) {
+ imm = (abcdefgh & 0x3f) << 48;
+ if (abcdefgh & 0x80) {
+ imm |= 0x8000000000000000ULL;
+ }
+ if (abcdefgh & 0x40) {
+ imm |= 0x3fc0000000000000ULL;
+ } else {
+ imm |= 0x4000000000000000ULL;
+ }
+ } else {
+ imm = (abcdefgh & 0x3f) << 19;
+ if (abcdefgh & 0x80) {
+ imm |= 0x80000000;
+ }
+ if (abcdefgh & 0x40) {
+ imm |= 0x3e000000;
+ } else {
+ imm |= 0x40000000;
+ }
+ imm |= (imm << 32);
+ }
+ }
+ break;
+ }
+
+ if (cmode_3_1 != 7 && is_neg) {
+ imm = ~imm;
+ }
+
+ tcg_imm = tcg_const_i64(imm);
+ tcg_rd = new_tmp_a64(s);
+
+ for (i = 0; i < 2; i++) {
+ int foffs = i ? fp_reg_hi_offset(rd) : fp_reg_offset(rd, MO_64);
+
+ if (i == 1 && !is_q) {
+ /* non-quad ops clear high half of vector */
+ tcg_gen_movi_i64(tcg_rd, 0);
+ } else if ((cmode & 0x9) == 0x1 || (cmode & 0xd) == 0x9) {
+ tcg_gen_ld_i64(tcg_rd, cpu_env, foffs);
+ if (is_neg) {
+ /* AND (BIC) */
+ tcg_gen_and_i64(tcg_rd, tcg_rd, tcg_imm);
+ } else {
+ /* ORR */
+ tcg_gen_or_i64(tcg_rd, tcg_rd, tcg_imm);
+ }
+ } else {
+ /* MOVI */
+ tcg_gen_mov_i64(tcg_rd, tcg_imm);
+ }
+ tcg_gen_st_i64(tcg_rd, cpu_env, foffs);
+ }
+
+ tcg_temp_free_i64(tcg_imm);
+}
+
+/* C3.6.7 AdvSIMD scalar copy
+ * 31 30 29 28 21 20 16 15 14 11 10 9 5 4 0
+ * +-----+----+-----------------+------+---+------+---+------+------+
+ * | 0 1 | op | 1 1 1 1 0 0 0 0 | imm5 | 0 | imm4 | 1 | Rn | Rd |
+ * +-----+----+-----------------+------+---+------+---+------+------+
+ */
+static void disas_simd_scalar_copy(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int imm4 = extract32(insn, 11, 4);
+ int imm5 = extract32(insn, 16, 5);
+ int op = extract32(insn, 29, 1);
+
+ if (op != 0 || imm4 != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* DUP (element, scalar) */
+ handle_simd_dupes(s, rd, rn, imm5);
+}
+
+/* C3.6.8 AdvSIMD scalar pairwise
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 1 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_scalar_pairwise(DisasContext *s, uint32_t insn)
+{
+ int u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ TCGv_ptr fpst;
+
+ /* For some ops (the FP ones), size[1] is part of the encoding.
+ * For ADDP strictly it is not but size[1] is always 1 for valid
+ * encodings.
+ */
+ opcode |= (extract32(size, 1, 1) << 5);
+
+ switch (opcode) {
+ case 0x3b: /* ADDP */
+ if (u || size != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ TCGV_UNUSED_PTR(fpst);
+ break;
+ case 0xc: /* FMAXNMP */
+ case 0xd: /* FADDP */
+ case 0xf: /* FMAXP */
+ case 0x2c: /* FMINNMP */
+ case 0x2f: /* FMINP */
+ /* FP op, size[0] is 32 or 64 bit */
+ if (!u) {
+ unallocated_encoding(s);
+ return;
+ }
+ size = extract32(size, 0, 1) ? 3 : 2;
+ fpst = get_fpstatus_ptr();
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size == 3) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, 0, MO_64);
+ read_vec_element(s, tcg_op2, rn, 1, MO_64);
+
+ switch (opcode) {
+ case 0x3b: /* ADDP */
+ tcg_gen_add_i64(tcg_res, tcg_op1, tcg_op2);
+ break;
+ case 0xc: /* FMAXNMP */
+ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xd: /* FADDP */
+ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xf: /* FMAXP */
+ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2c: /* FMINNMP */
+ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2f: /* FMINP */
+ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+ } else {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op1, rn, 0, MO_32);
+ read_vec_element_i32(s, tcg_op2, rn, 1, MO_32);
+
+ switch (opcode) {
+ case 0xc: /* FMAXNMP */
+ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xd: /* FADDP */
+ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0xf: /* FMAXP */
+ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2c: /* FMINNMP */
+ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x2f: /* FMINP */
+ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_sreg(s, rd, tcg_res);
+
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i32(tcg_res);
+ }
+
+ if (!TCGV_IS_UNUSED_PTR(fpst)) {
+ tcg_temp_free_ptr(fpst);
+ }
+}
+
+/*
+ * Common SSHR[RA]/USHR[RA] - Shift right (optional rounding/accumulate)
+ *
+ * This code is handles the common shifting code and is used by both
+ * the vector and scalar code.
+ */
+static void handle_shri_with_rndacc(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
+ TCGv_i64 tcg_rnd, bool accumulate,
+ bool is_u, int size, int shift)
+{
+ bool extended_result = false;
+ bool round = !TCGV_IS_UNUSED_I64(tcg_rnd);
+ int ext_lshift = 0;
+ TCGv_i64 tcg_src_hi;
+
+ if (round && size == 3) {
+ extended_result = true;
+ ext_lshift = 64 - shift;
+ tcg_src_hi = tcg_temp_new_i64();
+ } else if (shift == 64) {
+ if (!accumulate && is_u) {
+ /* result is zero */
+ tcg_gen_movi_i64(tcg_res, 0);
+ return;
+ }
+ }
+
+ /* Deal with the rounding step */
+ if (round) {
+ if (extended_result) {
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+ if (!is_u) {
+ /* take care of sign extending tcg_res */
+ tcg_gen_sari_i64(tcg_src_hi, tcg_src, 63);
+ tcg_gen_add2_i64(tcg_src, tcg_src_hi,
+ tcg_src, tcg_src_hi,
+ tcg_rnd, tcg_zero);
+ } else {
+ tcg_gen_add2_i64(tcg_src, tcg_src_hi,
+ tcg_src, tcg_zero,
+ tcg_rnd, tcg_zero);
+ }
+ tcg_temp_free_i64(tcg_zero);
+ } else {
+ tcg_gen_add_i64(tcg_src, tcg_src, tcg_rnd);
+ }
+ }
+
+ /* Now do the shift right */
+ if (round && extended_result) {
+ /* extended case, >64 bit precision required */
+ if (ext_lshift == 0) {
+ /* special case, only high bits matter */
+ tcg_gen_mov_i64(tcg_src, tcg_src_hi);
+ } else {
+ tcg_gen_shri_i64(tcg_src, tcg_src, shift);
+ tcg_gen_shli_i64(tcg_src_hi, tcg_src_hi, ext_lshift);
+ tcg_gen_or_i64(tcg_src, tcg_src, tcg_src_hi);
+ }
+ } else {
+ if (is_u) {
+ if (shift == 64) {
+ /* essentially shifting in 64 zeros */
+ tcg_gen_movi_i64(tcg_src, 0);
+ } else {
+ tcg_gen_shri_i64(tcg_src, tcg_src, shift);
+ }
+ } else {
+ if (shift == 64) {
+ /* effectively extending the sign-bit */
+ tcg_gen_sari_i64(tcg_src, tcg_src, 63);
+ } else {
+ tcg_gen_sari_i64(tcg_src, tcg_src, shift);
+ }
+ }
+ }
+
+ if (accumulate) {
+ tcg_gen_add_i64(tcg_res, tcg_res, tcg_src);
+ } else {
+ tcg_gen_mov_i64(tcg_res, tcg_src);
+ }
+
+ if (extended_result) {
+ tcg_temp_free_i64(tcg_src_hi);
+ }
+}
+
+/* Common SHL/SLI - Shift left with an optional insert */
+static void handle_shli_with_ins(TCGv_i64 tcg_res, TCGv_i64 tcg_src,
+ bool insert, int shift)
+{
+ if (insert) { /* SLI */
+ tcg_gen_deposit_i64(tcg_res, tcg_res, tcg_src, shift, 64 - shift);
+ } else { /* SHL */
+ tcg_gen_shli_i64(tcg_res, tcg_src, shift);
+ }
+}
+
+/* SSHR[RA]/USHR[RA] - Scalar shift right (optional rounding/accumulate) */
+static void handle_scalar_simd_shri(DisasContext *s,
+ bool is_u, int immh, int immb,
+ int opcode, int rn, int rd)
+{
+ const int size = 3;
+ int immhb = immh << 3 | immb;
+ int shift = 2 * (8 << size) - immhb;
+ bool accumulate = false;
+ bool round = false;
+ TCGv_i64 tcg_rn;
+ TCGv_i64 tcg_rd;
+ TCGv_i64 tcg_round;
+
+ if (!extract32(immh, 3, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x02: /* SSRA / USRA (accumulate) */
+ accumulate = true;
+ break;
+ case 0x04: /* SRSHR / URSHR (rounding) */
+ round = true;
+ break;
+ case 0x06: /* SRSRA / URSRA (accum + rounding) */
+ accumulate = round = true;
+ break;
+ }
+
+ if (round) {
+ uint64_t round_const = 1ULL << (shift - 1);
+ tcg_round = tcg_const_i64(round_const);
+ } else {
+ TCGV_UNUSED_I64(tcg_round);
+ }
+
+ tcg_rn = read_fp_dreg(s, rn);
+ tcg_rd = accumulate ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
+
+ handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
+ accumulate, is_u, size, shift);
+
+ write_fp_dreg(s, rd, tcg_rd);
+
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rd);
+ if (round) {
+ tcg_temp_free_i64(tcg_round);
+ }
+}
+
+/* SHL/SLI - Scalar shift left */
+static void handle_scalar_simd_shli(DisasContext *s, bool insert,
+ int immh, int immb, int opcode,
+ int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = immhb - (8 << size);
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+
+ if (!extract32(immh, 3, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_rn = read_fp_dreg(s, rn);
+ tcg_rd = insert ? read_fp_dreg(s, rd) : tcg_temp_new_i64();
+
+ handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
+
+ write_fp_dreg(s, rd, tcg_rd);
+
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rd);
+}
+
+/* C3.6.9 AdvSIMD scalar shift by immediate
+ * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
+ * +-----+---+-------------+------+------+--------+---+------+------+
+ * | 0 1 | U | 1 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
+ * +-----+---+-------------+------+------+--------+---+------+------+
+ *
+ * This is the scalar version so it works on a fixed sized registers
+ */
+static void disas_simd_scalar_shift_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 11, 5);
+ int immb = extract32(insn, 16, 3);
+ int immh = extract32(insn, 19, 4);
+ bool is_u = extract32(insn, 29, 1);
+
+ switch (opcode) {
+ case 0x00: /* SSHR / USHR */
+ case 0x02: /* SSRA / USRA */
+ case 0x04: /* SRSHR / URSHR */
+ case 0x06: /* SRSRA / URSRA */
+ handle_scalar_simd_shri(s, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x0a: /* SHL / SLI */
+ handle_scalar_simd_shli(s, is_u, immh, immb, opcode, rn, rd);
+ break;
+ default:
+ unsupported_encoding(s, insn);
+ break;
+ }
+}
+
+/* C3.6.10 AdvSIMD scalar three different
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+---+------+--------+-----+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
+ * +-----+---+-----------+------+---+------+--------+-----+------+------+
+ */
+static void disas_simd_scalar_three_reg_diff(DisasContext *s, uint32_t insn)
+{
+ bool is_u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 4);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ if (is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x9: /* SQDMLAL, SQDMLAL2 */
+ case 0xb: /* SQDMLSL, SQDMLSL2 */
+ case 0xd: /* SQDMULL, SQDMULL2 */
+ if (size == 0 || size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size == 2) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, 0, MO_32 | MO_SIGN);
+ read_vec_element(s, tcg_op2, rm, 0, MO_32 | MO_SIGN);
+
+ tcg_gen_mul_i64(tcg_res, tcg_op1, tcg_op2);
+ gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env, tcg_res, tcg_res);
+
+ switch (opcode) {
+ case 0xd: /* SQDMULL, SQDMULL2 */
+ break;
+ case 0xb: /* SQDMLSL, SQDMLSL2 */
+ tcg_gen_neg_i64(tcg_res, tcg_res);
+ /* fall through */
+ case 0x9: /* SQDMLAL, SQDMLAL2 */
+ read_vec_element(s, tcg_op1, rd, 0, MO_64);
+ gen_helper_neon_addl_saturate_s64(tcg_res, cpu_env,
+ tcg_res, tcg_op1);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+ } else {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element_i32(s, tcg_op1, rn, 0, MO_16);
+ read_vec_element_i32(s, tcg_op2, rm, 0, MO_16);
+
+ gen_helper_neon_mull_s16(tcg_res, tcg_op1, tcg_op2);
+ gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env, tcg_res, tcg_res);
+
+ switch (opcode) {
+ case 0xd: /* SQDMULL, SQDMULL2 */
+ break;
+ case 0xb: /* SQDMLSL, SQDMLSL2 */
+ gen_helper_neon_negl_u32(tcg_res, tcg_res);
+ /* fall through */
+ case 0x9: /* SQDMLAL, SQDMLAL2 */
+ {
+ TCGv_i64 tcg_op3 = tcg_temp_new_i64();
+ read_vec_element(s, tcg_op3, rd, 0, MO_32);
+ gen_helper_neon_addl_saturate_s32(tcg_res, cpu_env,
+ tcg_res, tcg_op3);
+ tcg_temp_free_i64(tcg_op3);
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ tcg_gen_ext32u_i64(tcg_res, tcg_res);
+ write_fp_dreg(s, rd, tcg_res);
+
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ tcg_temp_free_i64(tcg_res);
+ }
+}
+
+static void handle_3same_64(DisasContext *s, int opcode, bool u,
+ TCGv_i64 tcg_rd, TCGv_i64 tcg_rn, TCGv_i64 tcg_rm)
+{
+ /* Handle 64x64->64 opcodes which are shared between the scalar
+ * and vector 3-same groups. We cover every opcode where size == 3
+ * is valid in either the three-reg-same (integer, not pairwise)
+ * or scalar-three-reg-same groups. (Some opcodes are not yet
+ * implemented.)
+ */
+ TCGCond cond;
+
+ switch (opcode) {
+ case 0x1: /* SQADD */
+ if (u) {
+ gen_helper_neon_qadd_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qadd_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x5: /* SQSUB */
+ if (u) {
+ gen_helper_neon_qsub_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qsub_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x6: /* CMGT, CMHI */
+ /* 64 bit integer comparison, result = test ? (2^64 - 1) : 0.
+ * We implement this using setcond (test) and then negating.
+ */
+ cond = u ? TCG_COND_GTU : TCG_COND_GT;
+ do_cmop:
+ tcg_gen_setcond_i64(cond, tcg_rd, tcg_rn, tcg_rm);
+ tcg_gen_neg_i64(tcg_rd, tcg_rd);
+ break;
+ case 0x7: /* CMGE, CMHS */
+ cond = u ? TCG_COND_GEU : TCG_COND_GE;
+ goto do_cmop;
+ case 0x11: /* CMTST, CMEQ */
+ if (u) {
+ cond = TCG_COND_EQ;
+ goto do_cmop;
+ }
+ /* CMTST : test is "if (X & Y != 0)". */
+ tcg_gen_and_i64(tcg_rd, tcg_rn, tcg_rm);
+ tcg_gen_setcondi_i64(TCG_COND_NE, tcg_rd, tcg_rd, 0);
+ tcg_gen_neg_i64(tcg_rd, tcg_rd);
+ break;
+ case 0x8: /* SSHL, USHL */
+ if (u) {
+ gen_helper_neon_shl_u64(tcg_rd, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_shl_s64(tcg_rd, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x9: /* SQSHL, UQSHL */
+ if (u) {
+ gen_helper_neon_qshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0xa: /* SRSHL, URSHL */
+ if (u) {
+ gen_helper_neon_rshl_u64(tcg_rd, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_rshl_s64(tcg_rd, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0xb: /* SQRSHL, UQRSHL */
+ if (u) {
+ gen_helper_neon_qrshl_u64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ } else {
+ gen_helper_neon_qrshl_s64(tcg_rd, cpu_env, tcg_rn, tcg_rm);
+ }
+ break;
+ case 0x10: /* ADD, SUB */
+ if (u) {
+ tcg_gen_sub_i64(tcg_rd, tcg_rn, tcg_rm);
+ } else {
+ tcg_gen_add_i64(tcg_rd, tcg_rn, tcg_rm);
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+/* Handle the 3-same-operands float operations; shared by the scalar
+ * and vector encodings. The caller must filter out any encodings
+ * not allocated for the encoding it is dealing with.
+ */
+static void handle_3same_float(DisasContext *s, int size, int elements,
+ int fpopcode, int rd, int rn, int rm)
+{
+ int pass;
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ for (pass = 0; pass < elements; pass++) {
+ if (size) {
+ /* Double */
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element(s, tcg_op2, rm, pass, MO_64);
+
+ switch (fpopcode) {
+ case 0x39: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negd(tcg_op1, tcg_op1);
+ /* fall through */
+ case 0x19: /* FMLA */
+ read_vec_element(s, tcg_res, rd, pass, MO_64);
+ gen_helper_vfp_muladdd(tcg_res, tcg_op1, tcg_op2,
+ tcg_res, fpst);
+ break;
+ case 0x18: /* FMAXNM */
+ gen_helper_vfp_maxnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1a: /* FADD */
+ gen_helper_vfp_addd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1b: /* FMULX */
+ gen_helper_vfp_mulxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1c: /* FCMEQ */
+ gen_helper_neon_ceq_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1e: /* FMAX */
+ gen_helper_vfp_maxd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1f: /* FRECPS */
+ gen_helper_recpsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x38: /* FMINNM */
+ gen_helper_vfp_minnumd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3a: /* FSUB */
+ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3e: /* FMIN */
+ gen_helper_vfp_mind(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3f: /* FRSQRTS */
+ gen_helper_rsqrtsf_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5b: /* FMUL */
+ gen_helper_vfp_muld(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5c: /* FCMGE */
+ gen_helper_neon_cge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5d: /* FACGE */
+ gen_helper_neon_acge_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5f: /* FDIV */
+ gen_helper_vfp_divd(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7a: /* FABD */
+ gen_helper_vfp_subd(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_absd(tcg_res, tcg_res);
+ break;
+ case 0x7c: /* FCMGT */
+ gen_helper_neon_cgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7d: /* FACGT */
+ gen_helper_neon_acgt_f64(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ } else {
+ /* Single */
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
+ read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
+
+ switch (fpopcode) {
+ case 0x39: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negs(tcg_op1, tcg_op1);
+ /* fall through */
+ case 0x19: /* FMLA */
+ read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ gen_helper_vfp_muladds(tcg_res, tcg_op1, tcg_op2,
+ tcg_res, fpst);
+ break;
+ case 0x1a: /* FADD */
+ gen_helper_vfp_adds(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1b: /* FMULX */
+ gen_helper_vfp_mulxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1c: /* FCMEQ */
+ gen_helper_neon_ceq_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1e: /* FMAX */
+ gen_helper_vfp_maxs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x1f: /* FRECPS */
+ gen_helper_recpsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x18: /* FMAXNM */
+ gen_helper_vfp_maxnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x38: /* FMINNM */
+ gen_helper_vfp_minnums(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3a: /* FSUB */
+ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3e: /* FMIN */
+ gen_helper_vfp_mins(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x3f: /* FRSQRTS */
+ gen_helper_rsqrtsf_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5b: /* FMUL */
+ gen_helper_vfp_muls(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5c: /* FCMGE */
+ gen_helper_neon_cge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5d: /* FACGE */
+ gen_helper_neon_acge_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5f: /* FDIV */
+ gen_helper_vfp_divs(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7a: /* FABD */
+ gen_helper_vfp_subs(tcg_res, tcg_op1, tcg_op2, fpst);
+ gen_helper_vfp_abss(tcg_res, tcg_res);
+ break;
+ case 0x7c: /* FCMGT */
+ gen_helper_neon_cgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7d: /* FACGT */
+ gen_helper_neon_acgt_f32(tcg_res, tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (elements == 1) {
+ /* scalar single so clear high part */
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ tcg_gen_extu_i32_i64(tcg_tmp, tcg_res);
+ write_vec_element(s, tcg_tmp, rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_tmp);
+ } else {
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ }
+
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ }
+ }
+
+ tcg_temp_free_ptr(fpst);
+
+ if ((elements << size) < 4) {
+ /* scalar, or non-quad vector op */
+ clear_vec_high(s, rd);
+ }
+}
+
+/* C3.6.11 AdvSIMD scalar three same
+ * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
+ * +-----+---+-----------+------+---+------+--------+---+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
+ * +-----+---+-----------+------+---+------+--------+---+------+------+
+ */
+static void disas_simd_scalar_three_reg_same(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 11, 5);
+ int rm = extract32(insn, 16, 5);
+ int size = extract32(insn, 22, 2);
+ bool u = extract32(insn, 29, 1);
+ TCGv_i64 tcg_rd;
+
+ if (opcode >= 0x18) {
+ /* Floating point: U, size[1] and opcode indicate operation */
+ int fpopcode = opcode | (extract32(size, 1, 1) << 5) | (u << 6);
+ switch (fpopcode) {
+ case 0x1b: /* FMULX */
+ case 0x1f: /* FRECPS */
+ case 0x3f: /* FRSQRTS */
+ case 0x5d: /* FACGE */
+ case 0x7d: /* FACGT */
+ case 0x1c: /* FCMEQ */
+ case 0x5c: /* FCMGE */
+ case 0x7c: /* FCMGT */
+ case 0x7a: /* FABD */
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ handle_3same_float(s, extract32(size, 0, 1), 1, fpopcode, rd, rn, rm);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x1: /* SQADD, UQADD */
+ case 0x5: /* SQSUB, UQSUB */
+ case 0x9: /* SQSHL, UQSHL */
+ case 0xb: /* SQRSHL, UQRSHL */
+ break;
+ case 0x8: /* SSHL, USHL */
+ case 0xa: /* SRSHL, URSHL */
+ case 0x6: /* CMGT, CMHI */
+ case 0x7: /* CMGE, CMHS */
+ case 0x11: /* CMTST, CMEQ */
+ case 0x10: /* ADD, SUB (vector) */
+ if (size != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x16: /* SQDMULH, SQRDMULH (vector) */
+ if (size != 1 && size != 2) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ tcg_rd = tcg_temp_new_i64();
+
+ if (size == 3) {
+ TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
+ TCGv_i64 tcg_rm = read_fp_dreg(s, rm);
+
+ handle_3same_64(s, opcode, u, tcg_rd, tcg_rn, tcg_rm);
+ tcg_temp_free_i64(tcg_rn);
+ tcg_temp_free_i64(tcg_rm);
+ } else {
+ /* Do a single operation on the lowest element in the vector.
+ * We use the standard Neon helpers and rely on 0 OP 0 == 0 with
+ * no side effects for all these operations.
+ * OPTME: special-purpose helpers would avoid doing some
+ * unnecessary work in the helper for the 8 and 16 bit cases.
+ */
+ NeonGenTwoOpEnvFn *genenvfn;
+ TCGv_i32 tcg_rn = tcg_temp_new_i32();
+ TCGv_i32 tcg_rm = tcg_temp_new_i32();
+ TCGv_i32 tcg_rd32 = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_rn, rn, 0, size);
+ read_vec_element_i32(s, tcg_rm, rm, 0, size);
+
+ switch (opcode) {
+ case 0x1: /* SQADD, UQADD */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
+ { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
+ { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x5: /* SQSUB, UQSUB */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
+ { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
+ { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x9: /* SQSHL, UQSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
+ { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
+ { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0xb: /* SQRSHL, UQRSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
+ { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
+ { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x16: /* SQDMULH, SQRDMULH */
+ {
+ static NeonGenTwoOpEnvFn * const fns[2][2] = {
+ { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
+ { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
+ };
+ assert(size == 1 || size == 2);
+ genenvfn = fns[size - 1][u];
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ genenvfn(tcg_rd32, cpu_env, tcg_rn, tcg_rm);
+ tcg_gen_extu_i32_i64(tcg_rd, tcg_rd32);
+ tcg_temp_free_i32(tcg_rd32);
+ tcg_temp_free_i32(tcg_rn);
+ tcg_temp_free_i32(tcg_rm);
+ }
+
+ write_fp_dreg(s, rd, tcg_rd);
+
+ tcg_temp_free_i64(tcg_rd);
+}
+
+static void handle_2misc_64(DisasContext *s, int opcode, bool u,
+ TCGv_i64 tcg_rd, TCGv_i64 tcg_rn)
+{
+ /* Handle 64->64 opcodes which are shared between the scalar and
+ * vector 2-reg-misc groups. We cover every integer opcode where size == 3
+ * is valid in either group and also the double-precision fp ops.
+ */
+ TCGCond cond;
+
+ switch (opcode) {
+ case 0x5: /* NOT */
+ /* This opcode is shared with CNT and RBIT but we have earlier
+ * enforced that size == 3 if and only if this is the NOT insn.
+ */
+ tcg_gen_not_i64(tcg_rd, tcg_rn);
+ break;
+ case 0xa: /* CMLT */
+ /* 64 bit integer comparison against zero, result is
+ * test ? (2^64 - 1) : 0. We implement via setcond(!test) and
+ * subtracting 1.
+ */
+ cond = TCG_COND_LT;
+ do_cmop:
+ tcg_gen_setcondi_i64(cond, tcg_rd, tcg_rn, 0);
+ tcg_gen_neg_i64(tcg_rd, tcg_rd);
+ break;
+ case 0x8: /* CMGT, CMGE */
+ cond = u ? TCG_COND_GE : TCG_COND_GT;
+ goto do_cmop;
+ case 0x9: /* CMEQ, CMLE */
+ cond = u ? TCG_COND_LE : TCG_COND_EQ;
+ goto do_cmop;
+ case 0xb: /* ABS, NEG */
+ if (u) {
+ tcg_gen_neg_i64(tcg_rd, tcg_rn);
+ } else {
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+ tcg_gen_neg_i64(tcg_rd, tcg_rn);
+ tcg_gen_movcond_i64(TCG_COND_GT, tcg_rd, tcg_rn, tcg_zero,
+ tcg_rn, tcg_rd);
+ tcg_temp_free_i64(tcg_zero);
+ }
+ break;
+ case 0x2f: /* FABS */
+ gen_helper_vfp_absd(tcg_rd, tcg_rn);
+ break;
+ case 0x6f: /* FNEG */
+ gen_helper_vfp_negd(tcg_rd, tcg_rn);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+}
+
+static void handle_2misc_fcmp_zero(DisasContext *s, int opcode,
+ bool is_scalar, bool is_u, bool is_q,
+ int size, int rn, int rd)
+{
+ bool is_double = (size == 3);
+ TCGv_ptr fpst = get_fpstatus_ptr();
+
+ if (is_double) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_zero = tcg_const_i64(0);
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+ NeonGenTwoDoubleOPFn *genfn;
+ bool swap = false;
+ int pass;
+
+ switch (opcode) {
+ case 0x2e: /* FCMLT (zero) */
+ swap = true;
+ /* fallthrough */
+ case 0x2c: /* FCMGT (zero) */
+ genfn = gen_helper_neon_cgt_f64;
+ break;
+ case 0x2d: /* FCMEQ (zero) */
+ genfn = gen_helper_neon_ceq_f64;
+ break;
+ case 0x6d: /* FCMLE (zero) */
+ swap = true;
+ /* fall through */
+ case 0x6c: /* FCMGE (zero) */
+ genfn = gen_helper_neon_cge_f64;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ if (swap) {
+ genfn(tcg_res, tcg_zero, tcg_op, fpst);
+ } else {
+ genfn(tcg_res, tcg_op, tcg_zero, fpst);
+ }
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+ }
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_zero);
+ tcg_temp_free_i64(tcg_op);
+ } else {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ NeonGenTwoSingleOPFn *genfn;
+ bool swap = false;
+ int pass, maxpasses;
+
+ switch (opcode) {
+ case 0x2e: /* FCMLT (zero) */
+ swap = true;
+ /* fall through */
+ case 0x2c: /* FCMGT (zero) */
+ genfn = gen_helper_neon_cgt_f32;
+ break;
+ case 0x2d: /* FCMEQ (zero) */
+ genfn = gen_helper_neon_ceq_f32;
+ break;
+ case 0x6d: /* FCMLE (zero) */
+ swap = true;
+ /* fall through */
+ case 0x6c: /* FCMGE (zero) */
+ genfn = gen_helper_neon_cge_f32;
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (is_scalar) {
+ maxpasses = 1;
+ } else {
+ maxpasses = is_q ? 4 : 2;
+ }
+
+ for (pass = 0; pass < maxpasses; pass++) {
+ read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
+ if (swap) {
+ genfn(tcg_res, tcg_zero, tcg_op, fpst);
+ } else {
+ genfn(tcg_res, tcg_op, tcg_zero, fpst);
+ }
+ if (is_scalar) {
+ write_fp_sreg(s, rd, tcg_res);
+ } else {
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ }
+ }
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_zero);
+ tcg_temp_free_i32(tcg_op);
+ if (!is_q && !is_scalar) {
+ clear_vec_high(s, rd);
+ }
+ }
+
+ tcg_temp_free_ptr(fpst);
+}
+
+/* C3.6.12 AdvSIMD scalar two reg misc
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 1 | U | 1 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_scalar_two_reg_misc(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 12, 5);
+ int size = extract32(insn, 22, 2);
+ bool u = extract32(insn, 29, 1);
+
+ switch (opcode) {
+ case 0xa: /* CMLT */
+ if (u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x8: /* CMGT, CMGE */
+ case 0x9: /* CMEQ, CMLE */
+ case 0xb: /* ABS, NEG */
+ if (size != 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0xc ... 0xf:
+ case 0x16 ... 0x1d:
+ case 0x1f:
+ /* Floating point: U, size[1] and opcode indicate operation;
+ * size[0] indicates single or double precision.
+ */
+ opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
+ size = extract32(size, 0, 1) ? 3 : 2;
+ switch (opcode) {
+ case 0x2c: /* FCMGT (zero) */
+ case 0x2d: /* FCMEQ (zero) */
+ case 0x2e: /* FCMLT (zero) */
+ case 0x6c: /* FCMGE (zero) */
+ case 0x6d: /* FCMLE (zero) */
+ handle_2misc_fcmp_zero(s, opcode, true, u, true, size, rn, rd);
+ return;
+ case 0x1a: /* FCVTNS */
+ case 0x1b: /* FCVTMS */
+ case 0x1c: /* FCVTAS */
+ case 0x1d: /* SCVTF */
+ case 0x3a: /* FCVTPS */
+ case 0x3b: /* FCVTZS */
+ case 0x3d: /* FRECPE */
+ case 0x3f: /* FRECPX */
+ case 0x56: /* FCVTXN, FCVTXN2 */
+ case 0x5a: /* FCVTNU */
+ case 0x5b: /* FCVTMU */
+ case 0x5c: /* FCVTAU */
+ case 0x5d: /* UCVTF */
+ case 0x7a: /* FCVTPU */
+ case 0x7b: /* FCVTZU */
+ case 0x7d: /* FRSQRTE */
+ unsupported_encoding(s, insn);
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ /* Other categories of encoding in this class:
+ * + SUQADD/USQADD/SQABS/SQNEG : size 8, 16, 32 or 64
+ * + SQXTN/SQXTN2/SQXTUN/SQXTUN2/UQXTN/UQXTN2:
+ * narrowing saturate ops: size 64/32/16 -> 32/16/8
+ */
+ unsupported_encoding(s, insn);
+ return;
+ }
+
+ if (size == 3) {
+ TCGv_i64 tcg_rn = read_fp_dreg(s, rn);
+ TCGv_i64 tcg_rd = tcg_temp_new_i64();
+
+ handle_2misc_64(s, opcode, u, tcg_rd, tcg_rn);
+ write_fp_dreg(s, rd, tcg_rd);
+ tcg_temp_free_i64(tcg_rd);
+ tcg_temp_free_i64(tcg_rn);
+ } else {
+ /* the 'size might not be 64' ops aren't implemented yet */
+ g_assert_not_reached();
+ }
+}
+
+/* SSHR[RA]/USHR[RA] - Vector shift right (optional rounding/accumulate) */
+static void handle_vec_simd_shri(DisasContext *s, bool is_q, bool is_u,
+ int immh, int immb, int opcode, int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = 2 * (8 << size) - immhb;
+ bool accumulate = false;
+ bool round = false;
+ int dsize = is_q ? 128 : 64;
+ int esize = 8 << size;
+ int elements = dsize/esize;
+ TCGMemOp memop = size | (is_u ? 0 : MO_SIGN);
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+ TCGv_i64 tcg_round;
+ int i;
+
+ if (extract32(immh, 3, 1) && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size > 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (opcode) {
+ case 0x02: /* SSRA / USRA (accumulate) */
+ accumulate = true;
+ break;
+ case 0x04: /* SRSHR / URSHR (rounding) */
+ round = true;
+ break;
+ case 0x06: /* SRSRA / URSRA (accum + rounding) */
+ accumulate = round = true;
+ break;
+ }
+
+ if (round) {
+ uint64_t round_const = 1ULL << (shift - 1);
+ tcg_round = tcg_const_i64(round_const);
+ } else {
+ TCGV_UNUSED_I64(tcg_round);
+ }
+
+ for (i = 0; i < elements; i++) {
+ read_vec_element(s, tcg_rn, rn, i, memop);
+ if (accumulate) {
+ read_vec_element(s, tcg_rd, rd, i, memop);
+ }
+
+ handle_shri_with_rndacc(tcg_rd, tcg_rn, tcg_round,
+ accumulate, is_u, size, shift);
+
+ write_vec_element(s, tcg_rd, rd, i, size);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+
+ if (round) {
+ tcg_temp_free_i64(tcg_round);
+ }
+}
+
+/* SHL/SLI - Vector shift left */
+static void handle_vec_simd_shli(DisasContext *s, bool is_q, bool insert,
+ int immh, int immb, int opcode, int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = immhb - (8 << size);
+ int dsize = is_q ? 128 : 64;
+ int esize = 8 << size;
+ int elements = dsize/esize;
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+ int i;
+
+ if (extract32(immh, 3, 1) && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size > 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ for (i = 0; i < elements; i++) {
+ read_vec_element(s, tcg_rn, rn, i, size);
+ if (insert) {
+ read_vec_element(s, tcg_rd, rd, i, size);
+ }
+
+ handle_shli_with_ins(tcg_rd, tcg_rn, insert, shift);
+
+ write_vec_element(s, tcg_rd, rd, i, size);
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+/* USHLL/SHLL - Vector shift left with widening */
+static void handle_vec_simd_wshli(DisasContext *s, bool is_q, bool is_u,
+ int immh, int immb, int opcode, int rn, int rd)
+{
+ int size = 32 - clz32(immh) - 1;
+ int immhb = immh << 3 | immb;
+ int shift = immhb - (8 << size);
+ int dsize = 64;
+ int esize = 8 << size;
+ int elements = dsize/esize;
+ TCGv_i64 tcg_rn = new_tmp_a64(s);
+ TCGv_i64 tcg_rd = new_tmp_a64(s);
+ int i;
+
+ if (size >= 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ /* For the LL variants the store is larger than the load,
+ * so if rd == rn we would overwrite parts of our input.
+ * So load everything right now and use shifts in the main loop.
+ */
+ read_vec_element(s, tcg_rn, rn, is_q ? 1 : 0, MO_64);
+
+ for (i = 0; i < elements; i++) {
+ tcg_gen_shri_i64(tcg_rd, tcg_rn, i * esize);
+ ext_and_shift_reg(tcg_rd, tcg_rd, size | (!is_u << 2), 0);
+ tcg_gen_shli_i64(tcg_rd, tcg_rd, shift);
+ write_vec_element(s, tcg_rd, rd, i, size + 1);
+ }
+}
+
+
+/* C3.6.14 AdvSIMD shift by immediate
+ * 31 30 29 28 23 22 19 18 16 15 11 10 9 5 4 0
+ * +---+---+---+-------------+------+------+--------+---+------+------+
+ * | 0 | Q | U | 0 1 1 1 1 0 | immh | immb | opcode | 1 | Rn | Rd |
+ * +---+---+---+-------------+------+------+--------+---+------+------+
+ */
+static void disas_simd_shift_imm(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int opcode = extract32(insn, 11, 5);
+ int immb = extract32(insn, 16, 3);
+ int immh = extract32(insn, 19, 4);
+ bool is_u = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+
+ switch (opcode) {
+ case 0x00: /* SSHR / USHR */
+ case 0x02: /* SSRA / USRA (accumulate) */
+ case 0x04: /* SRSHR / URSHR (rounding) */
+ case 0x06: /* SRSRA / URSRA (accum + rounding) */
+ handle_vec_simd_shri(s, is_q, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x0a: /* SHL / SLI */
+ handle_vec_simd_shli(s, is_q, is_u, immh, immb, opcode, rn, rd);
+ break;
+ case 0x14: /* SSHLL / USHLL */
+ handle_vec_simd_wshli(s, is_q, is_u, immh, immb, opcode, rn, rd);
+ break;
+ default:
+ /* We don't currently implement any of the Narrow or saturating shifts;
+ * nor do we implement the fixed-point conversions in this
+ * encoding group (SCVTF, FCVTZS, UCVTF, FCVTZU).
+ */
+ unsupported_encoding(s, insn);
+ return;
+ }
+}
+
+static void handle_3rd_widening(DisasContext *s, int is_q, int is_u, int size,
+ int opcode, int rd, int rn, int rm)
+{
+ /* 3-reg-different widening insns: 64 x 64 -> 128 */
+ TCGv_i64 tcg_res[2];
+ int pass, accop;
+
+ tcg_res[0] = tcg_temp_new_i64();
+ tcg_res[1] = tcg_temp_new_i64();
+
+ /* Does this op do an adding accumulate, a subtracting accumulate,
+ * or no accumulate at all?
+ */
+ switch (opcode) {
+ case 5:
+ case 8:
+ case 9:
+ accop = 1;
+ break;
+ case 10:
+ case 11:
+ accop = -1;
+ break;
+ default:
+ accop = 0;
+ break;
+ }
+
+ if (accop != 0) {
+ read_vec_element(s, tcg_res[0], rd, 0, MO_64);
+ read_vec_element(s, tcg_res[1], rd, 1, MO_64);
+ }
+
+ /* size == 2 means two 32x32->64 operations; this is worth special
+ * casing because we can generally handle it inline.
+ */
+ if (size == 2) {
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_passres;
+ TCGMemOp memop = MO_32 | (is_u ? 0 : MO_SIGN);
+
+ int elt = pass + is_q * 2;
+
+ read_vec_element(s, tcg_op1, rn, elt, memop);
+ read_vec_element(s, tcg_op2, rm, elt, memop);
+
+ if (accop == 0) {
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ switch (opcode) {
+ case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
+ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
+ {
+ TCGv_i64 tcg_tmp1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_tmp2 = tcg_temp_new_i64();
+
+ tcg_gen_sub_i64(tcg_tmp1, tcg_op1, tcg_op2);
+ tcg_gen_sub_i64(tcg_tmp2, tcg_op2, tcg_op1);
+ tcg_gen_movcond_i64(is_u ? TCG_COND_GEU : TCG_COND_GE,
+ tcg_passres,
+ tcg_op1, tcg_op2, tcg_tmp1, tcg_tmp2);
+ tcg_temp_free_i64(tcg_tmp1);
+ tcg_temp_free_i64(tcg_tmp2);
+ break;
+ }
+ case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
+ tcg_gen_mul_i64(tcg_passres, tcg_op1, tcg_op2);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ if (accop > 0) {
+ tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ tcg_temp_free_i64(tcg_passres);
+ } else if (accop < 0) {
+ tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ tcg_temp_free_i64(tcg_passres);
+ }
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ }
+ } else {
+ /* size 0 or 1, generally helper functions */
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i64 tcg_passres;
+ int elt = pass + is_q * 2;
+
+ read_vec_element_i32(s, tcg_op1, rn, elt, MO_32);
+ read_vec_element_i32(s, tcg_op2, rm, elt, MO_32);
+
+ if (accop == 0) {
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ switch (opcode) {
+ case 5: /* SABAL, SABAL2, UABAL, UABAL2 */
+ case 7: /* SABDL, SABDL2, UABDL, UABDL2 */
+ if (size == 0) {
+ if (is_u) {
+ gen_helper_neon_abdl_u16(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_abdl_s16(tcg_passres, tcg_op1, tcg_op2);
+ }
+ } else {
+ if (is_u) {
+ gen_helper_neon_abdl_u32(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_abdl_s32(tcg_passres, tcg_op1, tcg_op2);
+ }
+ }
+ break;
+ case 8: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ case 10: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ case 12: /* UMULL, UMULL2, SMULL, SMULL2 */
+ if (size == 0) {
+ if (is_u) {
+ gen_helper_neon_mull_u8(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_mull_s8(tcg_passres, tcg_op1, tcg_op2);
+ }
+ } else {
+ if (is_u) {
+ gen_helper_neon_mull_u16(tcg_passres, tcg_op1, tcg_op2);
+ } else {
+ gen_helper_neon_mull_s16(tcg_passres, tcg_op1, tcg_op2);
+ }
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+
+ if (accop > 0) {
+ if (size == 0) {
+ gen_helper_neon_addl_u16(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ } else {
+ gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ }
+ tcg_temp_free_i64(tcg_passres);
+ } else if (accop < 0) {
+ if (size == 0) {
+ gen_helper_neon_subl_u16(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ } else {
+ gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ }
+ tcg_temp_free_i64(tcg_passres);
+ }
+ }
+ }
+
+ write_vec_element(s, tcg_res[0], rd, 0, MO_64);
+ write_vec_element(s, tcg_res[1], rd, 1, MO_64);
+ tcg_temp_free_i64(tcg_res[0]);
+ tcg_temp_free_i64(tcg_res[1]);
+}
+
+/* C3.6.15 AdvSIMD three different
+ * 31 30 29 28 24 23 22 21 20 16 15 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 0 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+------+--------+-----+------+------+
+ */
+static void disas_simd_three_reg_diff(DisasContext *s, uint32_t insn)
+{
+ /* Instructions in this group fall into three basic classes
+ * (in each case with the operation working on each element in
+ * the input vectors):
+ * (1) widening 64 x 64 -> 128 (with possibly Vd as an extra
+ * 128 bit input)
+ * (2) wide 64 x 128 -> 128
+ * (3) narrowing 128 x 128 -> 64
+ * Here we do initial decode, catch unallocated cases and
+ * dispatch to separate functions for each class.
+ */
+ int is_q = extract32(insn, 30, 1);
+ int is_u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 4);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ switch (opcode) {
+ case 1: /* SADDW, SADDW2, UADDW, UADDW2 */
+ case 3: /* SSUBW, SSUBW2, USUBW, USUBW2 */
+ /* 64 x 128 -> 128 */
+ unsupported_encoding(s, insn);
+ break;
+ case 4: /* ADDHN, ADDHN2, RADDHN, RADDHN2 */
+ case 6: /* SUBHN, SUBHN2, RSUBHN, RSUBHN2 */
+ /* 128 x 128 -> 64 */
+ unsupported_encoding(s, insn);
+ break;
+ case 9:
+ case 11:
+ case 13:
+ case 14:
+ if (is_u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0:
+ case 2:
+ unsupported_encoding(s, insn);
+ break;
+ case 5:
+ case 7:
+ case 8:
+ case 10:
+ case 12:
+ /* 64 x 64 -> 128 */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_3rd_widening(s, is_q, is_u, size, opcode, rd, rn, rm);
+ break;
+ default:
+ /* opcode 15 not allocated */
+ unallocated_encoding(s);
+ break;
+ }
+}
+
+/* Logic op (opcode == 3) subgroup of C3.6.16. */
+static void disas_simd_3same_logic(DisasContext *s, uint32_t insn)
+{
+ int rd = extract32(insn, 0, 5);
+ int rn = extract32(insn, 5, 5);
+ int rm = extract32(insn, 16, 5);
+ int size = extract32(insn, 22, 2);
+ bool is_u = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res[2];
+ int pass;
+
+ tcg_res[0] = tcg_temp_new_i64();
+ tcg_res[1] = tcg_temp_new_i64();
+
+ for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element(s, tcg_op2, rm, pass, MO_64);
+
+ if (!is_u) {
+ switch (size) {
+ case 0: /* AND */
+ tcg_gen_and_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 1: /* BIC */
+ tcg_gen_andc_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 2: /* ORR */
+ tcg_gen_or_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 3: /* ORN */
+ tcg_gen_orc_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ }
+ } else {
+ if (size != 0) {
+ /* B* ops need res loaded to operate on */
+ read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ }
+
+ switch (size) {
+ case 0: /* EOR */
+ tcg_gen_xor_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 1: /* BSL bitwise select */
+ tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_op2);
+ tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_res[pass]);
+ tcg_gen_xor_i64(tcg_res[pass], tcg_op2, tcg_op1);
+ break;
+ case 2: /* BIT, bitwise insert if true */
+ tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
+ tcg_gen_and_i64(tcg_op1, tcg_op1, tcg_op2);
+ tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
+ break;
+ case 3: /* BIF, bitwise insert if false */
+ tcg_gen_xor_i64(tcg_op1, tcg_op1, tcg_res[pass]);
+ tcg_gen_andc_i64(tcg_op1, tcg_op1, tcg_op2);
+ tcg_gen_xor_i64(tcg_res[pass], tcg_res[pass], tcg_op1);
+ break;
+ }
+ }
+ }
+
+ write_vec_element(s, tcg_res[0], rd, 0, MO_64);
+ if (!is_q) {
+ tcg_gen_movi_i64(tcg_res[1], 0);
+ }
+ write_vec_element(s, tcg_res[1], rd, 1, MO_64);
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ tcg_temp_free_i64(tcg_res[0]);
+ tcg_temp_free_i64(tcg_res[1]);
+}
+
+/* Helper functions for 32 bit comparisons */
+static void gen_max_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_GE, res, op1, op2, op1, op2);
+}
+
+static void gen_max_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_GEU, res, op1, op2, op1, op2);
+}
+
+static void gen_min_s32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_LE, res, op1, op2, op1, op2);
+}
+
+static void gen_min_u32(TCGv_i32 res, TCGv_i32 op1, TCGv_i32 op2)
+{
+ tcg_gen_movcond_i32(TCG_COND_LEU, res, op1, op2, op1, op2);
+}
+
+/* Pairwise op subgroup of C3.6.16.
+ *
+ * This is called directly or via the handle_3same_float for float pairwise
+ * operations where the opcode and size are calculated differently.
+ */
+static void handle_simd_3same_pair(DisasContext *s, int is_q, int u, int opcode,
+ int size, int rn, int rm, int rd)
+{
+ TCGv_ptr fpst;
+ int pass;
+
+ /* Floating point operations need fpst */
+ if (opcode >= 0x58) {
+ fpst = get_fpstatus_ptr();
+ } else {
+ TCGV_UNUSED_PTR(fpst);
+ }
+
+ /* These operations work on the concatenated rm:rn, with each pair of
+ * adjacent elements being operated on to produce an element in the result.
+ */
+ if (size == 3) {
+ TCGv_i64 tcg_res[2];
+
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ int passreg = (pass == 0) ? rn : rm;
+
+ read_vec_element(s, tcg_op1, passreg, 0, MO_64);
+ read_vec_element(s, tcg_op2, passreg, 1, MO_64);
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ switch (opcode) {
+ case 0x17: /* ADDP */
+ tcg_gen_add_i64(tcg_res[pass], tcg_op1, tcg_op2);
+ break;
+ case 0x58: /* FMAXNMP */
+ gen_helper_vfp_maxnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5a: /* FADDP */
+ gen_helper_vfp_addd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5e: /* FMAXP */
+ gen_helper_vfp_maxd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x78: /* FMINNMP */
+ gen_helper_vfp_minnumd(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7e: /* FMINP */
+ gen_helper_vfp_mind(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
+ }
+ } else {
+ int maxpass = is_q ? 4 : 2;
+ TCGv_i32 tcg_res[4];
+
+ for (pass = 0; pass < maxpass; pass++) {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ NeonGenTwoOpFn *genfn = NULL;
+ int passreg = pass < (maxpass / 2) ? rn : rm;
+ int passelt = (is_q && (pass & 1)) ? 2 : 0;
+
+ read_vec_element_i32(s, tcg_op1, passreg, passelt, MO_32);
+ read_vec_element_i32(s, tcg_op2, passreg, passelt + 1, MO_32);
+ tcg_res[pass] = tcg_temp_new_i32();
+
+ switch (opcode) {
+ case 0x17: /* ADDP */
+ {
+ static NeonGenTwoOpFn * const fns[3] = {
+ gen_helper_neon_padd_u8,
+ gen_helper_neon_padd_u16,
+ tcg_gen_add_i32,
+ };
+ genfn = fns[size];
+ break;
+ }
+ case 0x14: /* SMAXP, UMAXP */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_pmax_s8, gen_helper_neon_pmax_u8 },
+ { gen_helper_neon_pmax_s16, gen_helper_neon_pmax_u16 },
+ { gen_max_s32, gen_max_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x15: /* SMINP, UMINP */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_pmin_s8, gen_helper_neon_pmin_u8 },
+ { gen_helper_neon_pmin_s16, gen_helper_neon_pmin_u16 },
+ { gen_min_s32, gen_min_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ /* The FP operations are all on single floats (32 bit) */
+ case 0x58: /* FMAXNMP */
+ gen_helper_vfp_maxnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5a: /* FADDP */
+ gen_helper_vfp_adds(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x5e: /* FMAXP */
+ gen_helper_vfp_maxs(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x78: /* FMINNMP */
+ gen_helper_vfp_minnums(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ case 0x7e: /* FMINP */
+ gen_helper_vfp_mins(tcg_res[pass], tcg_op1, tcg_op2, fpst);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+
+ /* FP ops called directly, otherwise call now */
+ if (genfn) {
+ genfn(tcg_res[pass], tcg_op1, tcg_op2);
+ }
+
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ }
+
+ for (pass = 0; pass < maxpass; pass++) {
+ write_vec_element_i32(s, tcg_res[pass], rd, pass, MO_32);
+ tcg_temp_free_i32(tcg_res[pass]);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ }
+
+ if (!TCGV_IS_UNUSED_PTR(fpst)) {
+ tcg_temp_free_ptr(fpst);
+ }
+}
+
+/* Floating point op subgroup of C3.6.16. */
+static void disas_simd_3same_float(DisasContext *s, uint32_t insn)
+{
+ /* For floating point ops, the U, size[1] and opcode bits
+ * together indicate the operation. size[0] indicates single
+ * or double.
+ */
+ int fpopcode = extract32(insn, 11, 5)
+ | (extract32(insn, 23, 1) << 5)
+ | (extract32(insn, 29, 1) << 6);
+ int is_q = extract32(insn, 30, 1);
+ int size = extract32(insn, 22, 1);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ int datasize = is_q ? 128 : 64;
+ int esize = 32 << size;
+ int elements = datasize / esize;
+
+ if (size == 1 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ switch (fpopcode) {
+ case 0x58: /* FMAXNMP */
+ case 0x5a: /* FADDP */
+ case 0x5e: /* FMAXP */
+ case 0x78: /* FMINNMP */
+ case 0x7e: /* FMINP */
+ if (size && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_simd_3same_pair(s, is_q, 0, fpopcode, size ? MO_64 : MO_32,
+ rn, rm, rd);
+ return;
+ case 0x1b: /* FMULX */
+ case 0x1f: /* FRECPS */
+ case 0x3f: /* FRSQRTS */
+ case 0x5d: /* FACGE */
+ case 0x7d: /* FACGT */
+ case 0x19: /* FMLA */
+ case 0x39: /* FMLS */
+ case 0x18: /* FMAXNM */
+ case 0x1a: /* FADD */
+ case 0x1c: /* FCMEQ */
+ case 0x1e: /* FMAX */
+ case 0x38: /* FMINNM */
+ case 0x3a: /* FSUB */
+ case 0x3e: /* FMIN */
+ case 0x5b: /* FMUL */
+ case 0x5c: /* FCMGE */
+ case 0x5f: /* FDIV */
+ case 0x7a: /* FABD */
+ case 0x7c: /* FCMGT */
+ handle_3same_float(s, size, elements, fpopcode, rd, rn, rm);
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+}
+
+/* Integer op subgroup of C3.6.16. */
+static void disas_simd_3same_int(DisasContext *s, uint32_t insn)
+{
+ int is_q = extract32(insn, 30, 1);
+ int u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 11, 5);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ int pass;
+
+ switch (opcode) {
+ case 0x13: /* MUL, PMUL */
+ if (u && size != 0) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x0: /* SHADD, UHADD */
+ case 0x2: /* SRHADD, URHADD */
+ case 0x4: /* SHSUB, UHSUB */
+ case 0xc: /* SMAX, UMAX */
+ case 0xd: /* SMIN, UMIN */
+ case 0xe: /* SABD, UABD */
+ case 0xf: /* SABA, UABA */
+ case 0x12: /* MLA, MLS */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x16: /* SQDMULH, SQRDMULH */
+ if (size == 0 || size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ default:
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ }
+
+ if (size == 3) {
+ for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
+ TCGv_i64 tcg_op1 = tcg_temp_new_i64();
+ TCGv_i64 tcg_op2 = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op1, rn, pass, MO_64);
+ read_vec_element(s, tcg_op2, rm, pass, MO_64);
+
+ handle_3same_64(s, opcode, u, tcg_res, tcg_op1, tcg_op2);
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_op1);
+ tcg_temp_free_i64(tcg_op2);
+ }
+ } else {
+ for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
+ TCGv_i32 tcg_op1 = tcg_temp_new_i32();
+ TCGv_i32 tcg_op2 = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ NeonGenTwoOpFn *genfn = NULL;
+ NeonGenTwoOpEnvFn *genenvfn = NULL;
+
+ read_vec_element_i32(s, tcg_op1, rn, pass, MO_32);
+ read_vec_element_i32(s, tcg_op2, rm, pass, MO_32);
+
+ switch (opcode) {
+ case 0x0: /* SHADD, UHADD */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_hadd_s8, gen_helper_neon_hadd_u8 },
+ { gen_helper_neon_hadd_s16, gen_helper_neon_hadd_u16 },
+ { gen_helper_neon_hadd_s32, gen_helper_neon_hadd_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x1: /* SQADD, UQADD */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qadd_s8, gen_helper_neon_qadd_u8 },
+ { gen_helper_neon_qadd_s16, gen_helper_neon_qadd_u16 },
+ { gen_helper_neon_qadd_s32, gen_helper_neon_qadd_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x2: /* SRHADD, URHADD */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_rhadd_s8, gen_helper_neon_rhadd_u8 },
+ { gen_helper_neon_rhadd_s16, gen_helper_neon_rhadd_u16 },
+ { gen_helper_neon_rhadd_s32, gen_helper_neon_rhadd_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x4: /* SHSUB, UHSUB */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_hsub_s8, gen_helper_neon_hsub_u8 },
+ { gen_helper_neon_hsub_s16, gen_helper_neon_hsub_u16 },
+ { gen_helper_neon_hsub_s32, gen_helper_neon_hsub_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x5: /* SQSUB, UQSUB */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qsub_s8, gen_helper_neon_qsub_u8 },
+ { gen_helper_neon_qsub_s16, gen_helper_neon_qsub_u16 },
+ { gen_helper_neon_qsub_s32, gen_helper_neon_qsub_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0x6: /* CMGT, CMHI */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_u8 },
+ { gen_helper_neon_cgt_s16, gen_helper_neon_cgt_u16 },
+ { gen_helper_neon_cgt_s32, gen_helper_neon_cgt_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x7: /* CMGE, CMHS */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_cge_s8, gen_helper_neon_cge_u8 },
+ { gen_helper_neon_cge_s16, gen_helper_neon_cge_u16 },
+ { gen_helper_neon_cge_s32, gen_helper_neon_cge_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x8: /* SSHL, USHL */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_shl_s8, gen_helper_neon_shl_u8 },
+ { gen_helper_neon_shl_s16, gen_helper_neon_shl_u16 },
+ { gen_helper_neon_shl_s32, gen_helper_neon_shl_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x9: /* SQSHL, UQSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qshl_s8, gen_helper_neon_qshl_u8 },
+ { gen_helper_neon_qshl_s16, gen_helper_neon_qshl_u16 },
+ { gen_helper_neon_qshl_s32, gen_helper_neon_qshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0xa: /* SRSHL, URSHL */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_rshl_s8, gen_helper_neon_rshl_u8 },
+ { gen_helper_neon_rshl_s16, gen_helper_neon_rshl_u16 },
+ { gen_helper_neon_rshl_s32, gen_helper_neon_rshl_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0xb: /* SQRSHL, UQRSHL */
+ {
+ static NeonGenTwoOpEnvFn * const fns[3][2] = {
+ { gen_helper_neon_qrshl_s8, gen_helper_neon_qrshl_u8 },
+ { gen_helper_neon_qrshl_s16, gen_helper_neon_qrshl_u16 },
+ { gen_helper_neon_qrshl_s32, gen_helper_neon_qrshl_u32 },
+ };
+ genenvfn = fns[size][u];
+ break;
+ }
+ case 0xc: /* SMAX, UMAX */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_max_s8, gen_helper_neon_max_u8 },
+ { gen_helper_neon_max_s16, gen_helper_neon_max_u16 },
+ { gen_max_s32, gen_max_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+
+ case 0xd: /* SMIN, UMIN */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_min_s8, gen_helper_neon_min_u8 },
+ { gen_helper_neon_min_s16, gen_helper_neon_min_u16 },
+ { gen_min_s32, gen_min_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0xe: /* SABD, UABD */
+ case 0xf: /* SABA, UABA */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_abd_s8, gen_helper_neon_abd_u8 },
+ { gen_helper_neon_abd_s16, gen_helper_neon_abd_u16 },
+ { gen_helper_neon_abd_s32, gen_helper_neon_abd_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x10: /* ADD, SUB */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
+ { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
+ { tcg_gen_add_i32, tcg_gen_sub_i32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x11: /* CMTST, CMEQ */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_tst_u8, gen_helper_neon_ceq_u8 },
+ { gen_helper_neon_tst_u16, gen_helper_neon_ceq_u16 },
+ { gen_helper_neon_tst_u32, gen_helper_neon_ceq_u32 },
+ };
+ genfn = fns[size][u];
+ break;
+ }
+ case 0x13: /* MUL, PMUL */
+ if (u) {
+ /* PMUL */
+ assert(size == 0);
+ genfn = gen_helper_neon_mul_p8;
+ break;
+ }
+ /* fall through : MUL */
+ case 0x12: /* MLA, MLS */
+ {
+ static NeonGenTwoOpFn * const fns[3] = {
+ gen_helper_neon_mul_u8,
+ gen_helper_neon_mul_u16,
+ tcg_gen_mul_i32,
+ };
+ genfn = fns[size];
+ break;
+ }
+ case 0x16: /* SQDMULH, SQRDMULH */
+ {
+ static NeonGenTwoOpEnvFn * const fns[2][2] = {
+ { gen_helper_neon_qdmulh_s16, gen_helper_neon_qrdmulh_s16 },
+ { gen_helper_neon_qdmulh_s32, gen_helper_neon_qrdmulh_s32 },
+ };
+ assert(size == 1 || size == 2);
+ genenvfn = fns[size - 1][u];
+ break;
+ }
+ default:
+ g_assert_not_reached();
+ }
+
+ if (genenvfn) {
+ genenvfn(tcg_res, cpu_env, tcg_op1, tcg_op2);
+ } else {
+ genfn(tcg_res, tcg_op1, tcg_op2);
+ }
+
+ if (opcode == 0xf || opcode == 0x12) {
+ /* SABA, UABA, MLA, MLS: accumulating ops */
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_add_u8, gen_helper_neon_sub_u8 },
+ { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
+ { tcg_gen_add_i32, tcg_gen_sub_i32 },
+ };
+ bool is_sub = (opcode == 0x12 && u); /* MLS */
+
+ genfn = fns[size][is_sub];
+ read_vec_element_i32(s, tcg_op1, rd, pass, MO_32);
+ genfn(tcg_res, tcg_res, tcg_op1);
+ }
+
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_op1);
+ tcg_temp_free_i32(tcg_op2);
+ }
+ }
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+/* C3.6.16 AdvSIMD three same
+ * 31 30 29 28 24 23 22 21 20 16 15 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+------+--------+---+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 | Rm | opcode | 1 | Rn | Rd |
+ * +---+---+---+-----------+------+---+------+--------+---+------+------+
+ */
+static void disas_simd_three_reg_same(DisasContext *s, uint32_t insn)
+{
+ int opcode = extract32(insn, 11, 5);
+
+ switch (opcode) {
+ case 0x3: /* logic ops */
+ disas_simd_3same_logic(s, insn);
+ break;
+ case 0x17: /* ADDP */
+ case 0x14: /* SMAXP, UMAXP */
+ case 0x15: /* SMINP, UMINP */
+ {
+ /* Pairwise operations */
+ int is_q = extract32(insn, 30, 1);
+ int u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int rm = extract32(insn, 16, 5);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+ if (opcode == 0x17) {
+ if (u || (size == 3 && !is_q)) {
+ unallocated_encoding(s);
+ return;
+ }
+ } else {
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ }
+ handle_simd_3same_pair(s, is_q, u, opcode, size, rn, rm, rd);
+ break;
+ }
+ case 0x18 ... 0x31:
+ /* floating point ops, sz[1] and U are part of opcode */
+ disas_simd_3same_float(s, insn);
+ break;
+ default:
+ disas_simd_3same_int(s, insn);
+ break;
+ }
+}
+
+static void handle_2misc_narrow(DisasContext *s, int opcode, bool u, bool is_q,
+ int size, int rn, int rd)
+{
+ /* Handle 2-reg-misc ops which are narrowing (so each 2*size element
+ * in the source becomes a size element in the destination).
+ */
+ int pass;
+ TCGv_i32 tcg_res[2];
+ int destelt = is_q ? 2 : 0;
+
+ for (pass = 0; pass < 2; pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ NeonGenNarrowFn *genfn = NULL;
+ NeonGenNarrowEnvFn *genenvfn = NULL;
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+ tcg_res[pass] = tcg_temp_new_i32();
+
+ switch (opcode) {
+ case 0x12: /* XTN, SQXTUN */
{
- /* 32 bit */
- TCGv_i64 tmp = tcg_temp_new_i64();
- tcg_gen_ext32u_i64(tmp, tcg_rn);
- tcg_gen_st_i64(tmp, cpu_env, freg_offs);
- tcg_gen_movi_i64(tmp, 0);
- tcg_gen_st_i64(tmp, cpu_env, freg_offs + sizeof(float64));
- tcg_temp_free_i64(tmp);
+ static NeonGenNarrowFn * const xtnfns[3] = {
+ gen_helper_neon_narrow_u8,
+ gen_helper_neon_narrow_u16,
+ tcg_gen_trunc_i64_i32,
+ };
+ static NeonGenNarrowEnvFn * const sqxtunfns[3] = {
+ gen_helper_neon_unarrow_sat8,
+ gen_helper_neon_unarrow_sat16,
+ gen_helper_neon_unarrow_sat32,
+ };
+ if (u) {
+ genenvfn = sqxtunfns[size];
+ } else {
+ genfn = xtnfns[size];
+ }
break;
}
- case 1:
+ case 0x14: /* SQXTN, UQXTN */
{
- /* 64 bit */
- TCGv_i64 tmp = tcg_const_i64(0);
- tcg_gen_st_i64(tcg_rn, cpu_env, freg_offs);
- tcg_gen_st_i64(tmp, cpu_env, freg_offs + sizeof(float64));
- tcg_temp_free_i64(tmp);
+ static NeonGenNarrowEnvFn * const fns[3][2] = {
+ { gen_helper_neon_narrow_sat_s8,
+ gen_helper_neon_narrow_sat_u8 },
+ { gen_helper_neon_narrow_sat_s16,
+ gen_helper_neon_narrow_sat_u16 },
+ { gen_helper_neon_narrow_sat_s32,
+ gen_helper_neon_narrow_sat_u32 },
+ };
+ genenvfn = fns[size][u];
break;
}
- case 2:
- /* 64 bit to top half. */
- tcg_gen_st_i64(tcg_rn, cpu_env, freg_offs + sizeof(float64));
+ default:
+ g_assert_not_reached();
+ }
+
+ if (genfn) {
+ genfn(tcg_res[pass], tcg_op);
+ } else {
+ genenvfn(tcg_res[pass], cpu_env, tcg_op);
+ }
+
+ tcg_temp_free_i64(tcg_op);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element_i32(s, tcg_res[pass], rd, destelt + pass, MO_32);
+ tcg_temp_free_i32(tcg_res[pass]);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+}
+
+static void handle_rev(DisasContext *s, int opcode, bool u,
+ bool is_q, int size, int rn, int rd)
+{
+ int op = (opcode << 1) | u;
+ int opsz = op + size;
+ int grp_size = 3 - opsz;
+ int dsize = is_q ? 128 : 64;
+ int i;
+
+ if (opsz >= 3) {
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size == 0) {
+ /* Special case bytes, use bswap op on each group of elements */
+ int groups = dsize / (8 << grp_size);
+
+ for (i = 0; i < groups; i++) {
+ TCGv_i64 tcg_tmp = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_tmp, rn, i, grp_size);
+ switch (grp_size) {
+ case MO_16:
+ tcg_gen_bswap16_i64(tcg_tmp, tcg_tmp);
+ break;
+ case MO_32:
+ tcg_gen_bswap32_i64(tcg_tmp, tcg_tmp);
+ break;
+ case MO_64:
+ tcg_gen_bswap64_i64(tcg_tmp, tcg_tmp);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ write_vec_element(s, tcg_tmp, rd, i, grp_size);
+ tcg_temp_free_i64(tcg_tmp);
+ }
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ int revmask = (1 << grp_size) - 1;
+ int esize = 8 << size;
+ int elements = dsize / esize;
+ TCGv_i64 tcg_rn = tcg_temp_new_i64();
+ TCGv_i64 tcg_rd = tcg_const_i64(0);
+ TCGv_i64 tcg_rd_hi = tcg_const_i64(0);
+
+ for (i = 0; i < elements; i++) {
+ int e_rev = (i & 0xf) ^ revmask;
+ int off = e_rev * esize;
+ read_vec_element(s, tcg_rn, rn, i, size);
+ if (off >= 64) {
+ tcg_gen_deposit_i64(tcg_rd_hi, tcg_rd_hi,
+ tcg_rn, off - 64, esize);
+ } else {
+ tcg_gen_deposit_i64(tcg_rd, tcg_rd, tcg_rn, off, esize);
+ }
+ }
+ write_vec_element(s, tcg_rd, rd, 0, MO_64);
+ write_vec_element(s, tcg_rd_hi, rd, 1, MO_64);
+
+ tcg_temp_free_i64(tcg_rd_hi);
+ tcg_temp_free_i64(tcg_rd);
+ tcg_temp_free_i64(tcg_rn);
+ }
+}
+
+/* C3.6.17 AdvSIMD two reg misc
+ * 31 30 29 28 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ * | 0 | Q | U | 0 1 1 1 0 | size | 1 0 0 0 0 | opcode | 1 0 | Rn | Rd |
+ * +---+---+---+-----------+------+-----------+--------+-----+------+------+
+ */
+static void disas_simd_two_reg_misc(DisasContext *s, uint32_t insn)
+{
+ int size = extract32(insn, 22, 2);
+ int opcode = extract32(insn, 12, 5);
+ bool u = extract32(insn, 29, 1);
+ bool is_q = extract32(insn, 30, 1);
+ int rn = extract32(insn, 5, 5);
+ int rd = extract32(insn, 0, 5);
+
+ switch (opcode) {
+ case 0x0: /* REV64, REV32 */
+ case 0x1: /* REV16 */
+ handle_rev(s, opcode, u, is_q, size, rn, rd);
+ return;
+ case 0x5: /* CNT, NOT, RBIT */
+ if (u && size == 0) {
+ /* NOT: adjust size so we can use the 64-bits-at-a-time loop. */
+ size = 3;
+ break;
+ } else if (u && size == 1) {
+ /* RBIT */
+ break;
+ } else if (!u && size == 0) {
+ /* CNT */
+ break;
+ }
+ unallocated_encoding(s);
+ return;
+ case 0x12: /* XTN, XTN2, SQXTUN, SQXTUN2 */
+ case 0x14: /* SQXTN, SQXTN2, UQXTN, UQXTN2 */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_2misc_narrow(s, opcode, u, is_q, size, rn, rd);
+ return;
+ case 0x2: /* SADDLP, UADDLP */
+ case 0x4: /* CLS, CLZ */
+ case 0x6: /* SADALP, UADALP */
+ if (size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ unsupported_encoding(s, insn);
+ return;
+ case 0x13: /* SHLL, SHLL2 */
+ if (u == 0 || size == 3) {
+ unallocated_encoding(s);
+ return;
+ }
+ unsupported_encoding(s, insn);
+ return;
+ case 0xa: /* CMLT */
+ if (u == 1) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x8: /* CMGT, CMGE */
+ case 0x9: /* CMEQ, CMLE */
+ case 0xb: /* ABS, NEG */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x3: /* SUQADD, USQADD */
+ case 0x7: /* SQABS, SQNEG */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ unsupported_encoding(s, insn);
+ return;
+ case 0xc ... 0xf:
+ case 0x16 ... 0x1d:
+ case 0x1f:
+ {
+ /* Floating point: U, size[1] and opcode indicate operation;
+ * size[0] indicates single or double precision.
+ */
+ opcode |= (extract32(size, 1, 1) << 5) | (u << 6);
+ size = extract32(size, 0, 1) ? 3 : 2;
+ switch (opcode) {
+ case 0x2f: /* FABS */
+ case 0x6f: /* FNEG */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
break;
+ case 0x2c: /* FCMGT (zero) */
+ case 0x2d: /* FCMEQ (zero) */
+ case 0x2e: /* FCMLT (zero) */
+ case 0x6c: /* FCMGE (zero) */
+ case 0x6d: /* FCMLE (zero) */
+ if (size == 3 && !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ handle_2misc_fcmp_zero(s, opcode, false, u, is_q, size, rn, rd);
+ return;
+ case 0x16: /* FCVTN, FCVTN2 */
+ case 0x17: /* FCVTL, FCVTL2 */
+ case 0x18: /* FRINTN */
+ case 0x19: /* FRINTM */
+ case 0x1a: /* FCVTNS */
+ case 0x1b: /* FCVTMS */
+ case 0x1c: /* FCVTAS */
+ case 0x1d: /* SCVTF */
+ case 0x38: /* FRINTP */
+ case 0x39: /* FRINTZ */
+ case 0x3a: /* FCVTPS */
+ case 0x3b: /* FCVTZS */
+ case 0x3c: /* URECPE */
+ case 0x3d: /* FRECPE */
+ case 0x56: /* FCVTXN, FCVTXN2 */
+ case 0x58: /* FRINTA */
+ case 0x59: /* FRINTX */
+ case 0x5a: /* FCVTNU */
+ case 0x5b: /* FCVTMU */
+ case 0x5c: /* FCVTAU */
+ case 0x5d: /* UCVTF */
+ case 0x79: /* FRINTI */
+ case 0x7a: /* FCVTPU */
+ case 0x7b: /* FCVTZU */
+ case 0x7c: /* URSQRTE */
+ case 0x7d: /* FRSQRTE */
+ case 0x7f: /* FSQRT */
+ unsupported_encoding(s, insn);
+ return;
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ }
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+
+ if (size == 3) {
+ /* All 64-bit element operations can be shared with scalar 2misc */
+ int pass;
+
+ for (pass = 0; pass < (is_q ? 2 : 1); pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+
+ handle_2misc_64(s, opcode, u, tcg_res, tcg_op);
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+
+ tcg_temp_free_i64(tcg_res);
+ tcg_temp_free_i64(tcg_op);
}
} else {
- int freg_offs = offsetof(CPUARMState, vfp.regs[rn * 2]);
- TCGv_i64 tcg_rd = cpu_reg(s, rd);
+ int pass;
+
+ for (pass = 0; pass < (is_q ? 4 : 2); pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+ TCGCond cond;
+
+ read_vec_element_i32(s, tcg_op, rn, pass, MO_32);
+
+ if (size == 2) {
+ /* Special cases for 32 bit elements */
+ switch (opcode) {
+ case 0xa: /* CMLT */
+ /* 32 bit integer comparison against zero, result is
+ * test ? (2^32 - 1) : 0. We implement via setcond(test)
+ * and inverting.
+ */
+ cond = TCG_COND_LT;
+ do_cmop:
+ tcg_gen_setcondi_i32(cond, tcg_res, tcg_op, 0);
+ tcg_gen_neg_i32(tcg_res, tcg_res);
+ break;
+ case 0x8: /* CMGT, CMGE */
+ cond = u ? TCG_COND_GE : TCG_COND_GT;
+ goto do_cmop;
+ case 0x9: /* CMEQ, CMLE */
+ cond = u ? TCG_COND_LE : TCG_COND_EQ;
+ goto do_cmop;
+ case 0xb: /* ABS, NEG */
+ if (u) {
+ tcg_gen_neg_i32(tcg_res, tcg_op);
+ } else {
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+ tcg_gen_neg_i32(tcg_res, tcg_op);
+ tcg_gen_movcond_i32(TCG_COND_GT, tcg_res, tcg_op,
+ tcg_zero, tcg_op, tcg_res);
+ tcg_temp_free_i32(tcg_zero);
+ }
+ break;
+ case 0x2f: /* FABS */
+ gen_helper_vfp_abss(tcg_res, tcg_op);
+ break;
+ case 0x6f: /* FNEG */
+ gen_helper_vfp_negs(tcg_res, tcg_op);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ } else {
+ /* Use helpers for 8 and 16 bit elements */
+ switch (opcode) {
+ case 0x5: /* CNT, RBIT */
+ /* For these two insns size is part of the opcode specifier
+ * (handled earlier); they always operate on byte elements.
+ */
+ if (u) {
+ gen_helper_neon_rbit_u8(tcg_res, tcg_op);
+ } else {
+ gen_helper_neon_cnt_u8(tcg_res, tcg_op);
+ }
+ break;
+ case 0x8: /* CMGT, CMGE */
+ case 0x9: /* CMEQ, CMLE */
+ case 0xa: /* CMLT */
+ {
+ static NeonGenTwoOpFn * const fns[3][2] = {
+ { gen_helper_neon_cgt_s8, gen_helper_neon_cgt_s16 },
+ { gen_helper_neon_cge_s8, gen_helper_neon_cge_s16 },
+ { gen_helper_neon_ceq_u8, gen_helper_neon_ceq_u16 },
+ };
+ NeonGenTwoOpFn *genfn;
+ int comp;
+ bool reverse;
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+
+ /* comp = index into [CMGT, CMGE, CMEQ, CMLE, CMLT] */
+ comp = (opcode - 0x8) * 2 + u;
+ /* ...but LE, LT are implemented as reverse GE, GT */
+ reverse = (comp > 2);
+ if (reverse) {
+ comp = 4 - comp;
+ }
+ genfn = fns[comp][size];
+ if (reverse) {
+ genfn(tcg_res, tcg_zero, tcg_op);
+ } else {
+ genfn(tcg_res, tcg_op, tcg_zero);
+ }
+ tcg_temp_free_i32(tcg_zero);
+ break;
+ }
+ case 0xb: /* ABS, NEG */
+ if (u) {
+ TCGv_i32 tcg_zero = tcg_const_i32(0);
+ if (size) {
+ gen_helper_neon_sub_u16(tcg_res, tcg_zero, tcg_op);
+ } else {
+ gen_helper_neon_sub_u8(tcg_res, tcg_zero, tcg_op);
+ }
+ tcg_temp_free_i32(tcg_zero);
+ } else {
+ if (size) {
+ gen_helper_neon_abs_s16(tcg_res, tcg_op);
+ } else {
+ gen_helper_neon_abs_s8(tcg_res, tcg_op);
+ }
+ }
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ }
- switch (type) {
- case 0:
- /* 32 bit */
- tcg_gen_ld32u_i64(tcg_rd, cpu_env, freg_offs);
- break;
- case 2:
- /* 64 bits from top half */
- freg_offs += sizeof(float64);
- /* fall through */
- case 1:
- /* 64 bit */
- tcg_gen_ld_i64(tcg_rd, cpu_env, freg_offs);
- break;
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+
+ tcg_temp_free_i32(tcg_res);
+ tcg_temp_free_i32(tcg_op);
}
}
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
}
-/* C3.6.30 Floating point <-> integer conversions
- * 31 30 29 28 24 23 22 21 20 19 18 16 15 10 9 5 4 0
- * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
- * | sf | 0 | S | 1 1 1 1 0 | type | 0 | rmode | opc | 0 0 0 0 0 0 | Rn | Rd |
- * +----+---+---+-----------+------+---+-------+-----+-------------+----+----+
+/* C3.6.13 AdvSIMD scalar x indexed element
+ * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
+ * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
+ * | 0 1 | U | 1 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
+ * +-----+---+-----------+------+---+---+------+-----+---+---+------+------+
+ * C3.6.18 AdvSIMD vector x indexed element
+ * 31 30 29 28 24 23 22 21 20 19 16 15 12 11 10 9 5 4 0
+ * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
+ * | 0 | Q | U | 0 1 1 1 1 | size | L | M | Rm | opc | H | 0 | Rn | Rd |
+ * +---+---+---+-----------+------+---+---+------+-----+---+---+------+------+
*/
-static void disas_fp_int_conv(DisasContext *s, uint32_t insn)
+static void disas_simd_indexed(DisasContext *s, uint32_t insn)
{
- int rd = extract32(insn, 0, 5);
+ /* This encoding has two kinds of instruction:
+ * normal, where we perform elt x idxelt => elt for each
+ * element in the vector
+ * long, where we perform elt x idxelt and generate a result of
+ * double the width of the input element
+ * The long ops have a 'part' specifier (ie come in INSN, INSN2 pairs).
+ */
+ bool is_scalar = extract32(insn, 28, 1);
+ bool is_q = extract32(insn, 30, 1);
+ bool u = extract32(insn, 29, 1);
+ int size = extract32(insn, 22, 2);
+ int l = extract32(insn, 21, 1);
+ int m = extract32(insn, 20, 1);
+ /* Note that the Rm field here is only 4 bits, not 5 as it usually is */
+ int rm = extract32(insn, 16, 4);
+ int opcode = extract32(insn, 12, 4);
+ int h = extract32(insn, 11, 1);
int rn = extract32(insn, 5, 5);
- int opcode = extract32(insn, 16, 3);
- int rmode = extract32(insn, 19, 2);
- int type = extract32(insn, 22, 2);
- bool sbit = extract32(insn, 29, 1);
- bool sf = extract32(insn, 31, 1);
-
- if (!sbit && (rmode < 2) && (opcode > 5)) {
- /* FMOV */
- bool itof = opcode & 1;
+ int rd = extract32(insn, 0, 5);
+ bool is_long = false;
+ bool is_fp = false;
+ int index;
+ TCGv_ptr fpst;
- switch (sf << 3 | type << 1 | rmode) {
- case 0x0: /* 32 bit */
- case 0xa: /* 64 bit */
- case 0xd: /* 64 bit to top half of quad */
- break;
- default:
- /* all other sf/type/rmode combinations are invalid */
+ switch (opcode) {
+ case 0x0: /* MLA */
+ case 0x4: /* MLS */
+ if (!u || is_scalar) {
unallocated_encoding(s);
- break;
+ return;
}
-
- handle_fmov(s, rd, rn, type, itof);
- } else {
- /* actual FP conversions */
- unsupported_encoding(s, insn);
+ break;
+ case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ case 0xa: /* SMULL, SMULL2, UMULL, UMULL2 */
+ if (is_scalar) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_long = true;
+ break;
+ case 0x3: /* SQDMLAL, SQDMLAL2 */
+ case 0x7: /* SQDMLSL, SQDMLSL2 */
+ case 0xb: /* SQDMULL, SQDMULL2 */
+ is_long = true;
+ /* fall through */
+ case 0xc: /* SQDMULH */
+ case 0xd: /* SQRDMULH */
+ if (u) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x8: /* MUL */
+ if (u || is_scalar) {
+ unallocated_encoding(s);
+ return;
+ }
+ break;
+ case 0x1: /* FMLA */
+ case 0x5: /* FMLS */
+ if (u) {
+ unallocated_encoding(s);
+ return;
+ }
+ /* fall through */
+ case 0x9: /* FMUL, FMULX */
+ if (!extract32(size, 1, 1)) {
+ unallocated_encoding(s);
+ return;
+ }
+ is_fp = true;
+ break;
+ default:
+ unallocated_encoding(s);
+ return;
}
-}
-/* FP-specific subcases of table C3-6 (SIMD and FP data processing)
- * 31 30 29 28 25 24 0
- * +---+---+---+---------+-----------------------------+
- * | | 0 | | 1 1 1 1 | |
- * +---+---+---+---------+-----------------------------+
- */
-static void disas_data_proc_fp(DisasContext *s, uint32_t insn)
-{
- if (extract32(insn, 24, 1)) {
- /* Floating point data-processing (3 source) */
- disas_fp_3src(s, insn);
- } else if (extract32(insn, 21, 1) == 0) {
- /* Floating point to fixed point conversions */
- disas_fp_fixed_conv(s, insn);
+ if (is_fp) {
+ /* low bit of size indicates single/double */
+ size = extract32(size, 0, 1) ? 3 : 2;
+ if (size == 2) {
+ index = h << 1 | l;
+ } else {
+ if (l || !is_q) {
+ unallocated_encoding(s);
+ return;
+ }
+ index = h;
+ }
+ rm |= (m << 4);
} else {
- switch (extract32(insn, 10, 2)) {
+ switch (size) {
case 1:
- /* Floating point conditional compare */
- disas_fp_ccomp(s, insn);
+ index = h << 2 | l << 1 | m;
break;
case 2:
- /* Floating point data-processing (2 source) */
- disas_fp_2src(s, insn);
- break;
- case 3:
- /* Floating point conditional select */
- disas_fp_csel(s, insn);
+ index = h << 1 | l;
+ rm |= (m << 4);
break;
- case 0:
- switch (ctz32(extract32(insn, 12, 4))) {
- case 0: /* [15:12] == xxx1 */
- /* Floating point immediate */
- disas_fp_imm(s, insn);
+ default:
+ unallocated_encoding(s);
+ return;
+ }
+ }
+
+ if (is_fp) {
+ fpst = get_fpstatus_ptr();
+ } else {
+ TCGV_UNUSED_PTR(fpst);
+ }
+
+ if (size == 3) {
+ TCGv_i64 tcg_idx = tcg_temp_new_i64();
+ int pass;
+
+ assert(is_fp && is_q && !is_long);
+
+ read_vec_element(s, tcg_idx, rm, index, MO_64);
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_res = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_op, rn, pass, MO_64);
+
+ switch (opcode) {
+ case 0x5: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negd(tcg_op, tcg_op);
+ /* fall through */
+ case 0x1: /* FMLA */
+ read_vec_element(s, tcg_res, rd, pass, MO_64);
+ gen_helper_vfp_muladdd(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
break;
- case 1: /* [15:12] == xx10 */
- /* Floating point compare */
- disas_fp_compare(s, insn);
+ case 0x9: /* FMUL, FMULX */
+ if (u) {
+ gen_helper_vfp_mulxd(tcg_res, tcg_op, tcg_idx, fpst);
+ } else {
+ gen_helper_vfp_muld(tcg_res, tcg_op, tcg_idx, fpst);
+ }
break;
- case 2: /* [15:12] == x100 */
- /* Floating point data-processing (1 source) */
- disas_fp_1src(s, insn);
+ default:
+ g_assert_not_reached();
+ }
+
+ write_vec_element(s, tcg_res, rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_op);
+ tcg_temp_free_i64(tcg_res);
+ }
+
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+
+ tcg_temp_free_i64(tcg_idx);
+ } else if (!is_long) {
+ /* 32 bit floating point, or 16 or 32 bit integer.
+ * For the 16 bit scalar case we use the usual Neon helpers and
+ * rely on the fact that 0 op 0 == 0 with no side effects.
+ */
+ TCGv_i32 tcg_idx = tcg_temp_new_i32();
+ int pass, maxpasses;
+
+ if (is_scalar) {
+ maxpasses = 1;
+ } else {
+ maxpasses = is_q ? 4 : 2;
+ }
+
+ read_vec_element_i32(s, tcg_idx, rm, index, size);
+
+ if (size == 1 && !is_scalar) {
+ /* The simplest way to handle the 16x16 indexed ops is to duplicate
+ * the index into both halves of the 32 bit tcg_idx and then use
+ * the usual Neon helpers.
+ */
+ tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
+ }
+
+ for (pass = 0; pass < maxpasses; pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i32 tcg_res = tcg_temp_new_i32();
+
+ read_vec_element_i32(s, tcg_op, rn, pass, is_scalar ? size : MO_32);
+
+ switch (opcode) {
+ case 0x0: /* MLA */
+ case 0x4: /* MLS */
+ case 0x8: /* MUL */
+ {
+ static NeonGenTwoOpFn * const fns[2][2] = {
+ { gen_helper_neon_add_u16, gen_helper_neon_sub_u16 },
+ { tcg_gen_add_i32, tcg_gen_sub_i32 },
+ };
+ NeonGenTwoOpFn *genfn;
+ bool is_sub = opcode == 0x4;
+
+ if (size == 1) {
+ gen_helper_neon_mul_u16(tcg_res, tcg_op, tcg_idx);
+ } else {
+ tcg_gen_mul_i32(tcg_res, tcg_op, tcg_idx);
+ }
+ if (opcode == 0x8) {
+ break;
+ }
+ read_vec_element_i32(s, tcg_op, rd, pass, MO_32);
+ genfn = fns[size - 1][is_sub];
+ genfn(tcg_res, tcg_op, tcg_res);
break;
- case 3: /* [15:12] == 1000 */
- unallocated_encoding(s);
+ }
+ case 0x5: /* FMLS */
+ /* As usual for ARM, separate negation for fused multiply-add */
+ gen_helper_vfp_negs(tcg_op, tcg_op);
+ /* fall through */
+ case 0x1: /* FMLA */
+ read_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ gen_helper_vfp_muladds(tcg_res, tcg_op, tcg_idx, tcg_res, fpst);
break;
- default: /* [15:12] == 0000 */
- /* Floating point <-> integer conversions */
- disas_fp_int_conv(s, insn);
+ case 0x9: /* FMUL, FMULX */
+ if (u) {
+ gen_helper_vfp_mulxs(tcg_res, tcg_op, tcg_idx, fpst);
+ } else {
+ gen_helper_vfp_muls(tcg_res, tcg_op, tcg_idx, fpst);
+ }
+ break;
+ case 0xc: /* SQDMULH */
+ if (size == 1) {
+ gen_helper_neon_qdmulh_s16(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ } else {
+ gen_helper_neon_qdmulh_s32(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ }
+ break;
+ case 0xd: /* SQRDMULH */
+ if (size == 1) {
+ gen_helper_neon_qrdmulh_s16(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ } else {
+ gen_helper_neon_qrdmulh_s32(tcg_res, cpu_env,
+ tcg_op, tcg_idx);
+ }
break;
+ default:
+ g_assert_not_reached();
}
- break;
+
+ if (is_scalar) {
+ write_fp_sreg(s, rd, tcg_res);
+ } else {
+ write_vec_element_i32(s, tcg_res, rd, pass, MO_32);
+ }
+
+ tcg_temp_free_i32(tcg_op);
+ tcg_temp_free_i32(tcg_res);
+ }
+
+ tcg_temp_free_i32(tcg_idx);
+
+ if (!is_q) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ /* long ops: 16x16->32 or 32x32->64 */
+ TCGv_i64 tcg_res[2];
+ int pass;
+ bool satop = extract32(opcode, 0, 1);
+ TCGMemOp memop = MO_32;
+
+ if (satop || !u) {
+ memop |= MO_SIGN;
+ }
+
+ if (size == 2) {
+ TCGv_i64 tcg_idx = tcg_temp_new_i64();
+
+ read_vec_element(s, tcg_idx, rm, index, memop);
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ TCGv_i64 tcg_op = tcg_temp_new_i64();
+ TCGv_i64 tcg_passres;
+ int passelt;
+
+ if (is_scalar) {
+ passelt = 0;
+ } else {
+ passelt = pass + (is_q * 2);
+ }
+
+ read_vec_element(s, tcg_op, rn, passelt, memop);
+
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ if (opcode == 0xa || opcode == 0xb) {
+ /* Non-accumulating ops */
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ tcg_gen_mul_i64(tcg_passres, tcg_op, tcg_idx);
+ tcg_temp_free_i64(tcg_op);
+
+ if (satop) {
+ /* saturating, doubling */
+ gen_helper_neon_addl_saturate_s64(tcg_passres, cpu_env,
+ tcg_passres, tcg_passres);
+ }
+
+ if (opcode == 0xa || opcode == 0xb) {
+ continue;
+ }
+
+ /* Accumulating op: handle accumulate step */
+ read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+
+ switch (opcode) {
+ case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ tcg_gen_add_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ break;
+ case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ tcg_gen_sub_i64(tcg_res[pass], tcg_res[pass], tcg_passres);
+ break;
+ case 0x7: /* SQDMLSL, SQDMLSL2 */
+ tcg_gen_neg_i64(tcg_passres, tcg_passres);
+ /* fall through */
+ case 0x3: /* SQDMLAL, SQDMLAL2 */
+ gen_helper_neon_addl_saturate_s64(tcg_res[pass], cpu_env,
+ tcg_res[pass],
+ tcg_passres);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tcg_temp_free_i64(tcg_passres);
+ }
+ tcg_temp_free_i64(tcg_idx);
+
+ if (is_scalar) {
+ clear_vec_high(s, rd);
+ }
+ } else {
+ TCGv_i32 tcg_idx = tcg_temp_new_i32();
+
+ assert(size == 1);
+ read_vec_element_i32(s, tcg_idx, rm, index, size);
+
+ if (!is_scalar) {
+ /* The simplest way to handle the 16x16 indexed ops is to
+ * duplicate the index into both halves of the 32 bit tcg_idx
+ * and then use the usual Neon helpers.
+ */
+ tcg_gen_deposit_i32(tcg_idx, tcg_idx, tcg_idx, 16, 16);
+ }
+
+ for (pass = 0; pass < (is_scalar ? 1 : 2); pass++) {
+ TCGv_i32 tcg_op = tcg_temp_new_i32();
+ TCGv_i64 tcg_passres;
+
+ if (is_scalar) {
+ read_vec_element_i32(s, tcg_op, rn, pass, size);
+ } else {
+ read_vec_element_i32(s, tcg_op, rn,
+ pass + (is_q * 2), MO_32);
+ }
+
+ tcg_res[pass] = tcg_temp_new_i64();
+
+ if (opcode == 0xa || opcode == 0xb) {
+ /* Non-accumulating ops */
+ tcg_passres = tcg_res[pass];
+ } else {
+ tcg_passres = tcg_temp_new_i64();
+ }
+
+ if (memop & MO_SIGN) {
+ gen_helper_neon_mull_s16(tcg_passres, tcg_op, tcg_idx);
+ } else {
+ gen_helper_neon_mull_u16(tcg_passres, tcg_op, tcg_idx);
+ }
+ if (satop) {
+ gen_helper_neon_addl_saturate_s32(tcg_passres, cpu_env,
+ tcg_passres, tcg_passres);
+ }
+ tcg_temp_free_i32(tcg_op);
+
+ if (opcode == 0xa || opcode == 0xb) {
+ continue;
+ }
+
+ /* Accumulating op: handle accumulate step */
+ read_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+
+ switch (opcode) {
+ case 0x2: /* SMLAL, SMLAL2, UMLAL, UMLAL2 */
+ gen_helper_neon_addl_u32(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ break;
+ case 0x6: /* SMLSL, SMLSL2, UMLSL, UMLSL2 */
+ gen_helper_neon_subl_u32(tcg_res[pass], tcg_res[pass],
+ tcg_passres);
+ break;
+ case 0x7: /* SQDMLSL, SQDMLSL2 */
+ gen_helper_neon_negl_u32(tcg_passres, tcg_passres);
+ /* fall through */
+ case 0x3: /* SQDMLAL, SQDMLAL2 */
+ gen_helper_neon_addl_saturate_s32(tcg_res[pass], cpu_env,
+ tcg_res[pass],
+ tcg_passres);
+ break;
+ default:
+ g_assert_not_reached();
+ }
+ tcg_temp_free_i64(tcg_passres);
+ }
+ tcg_temp_free_i32(tcg_idx);
+
+ if (is_scalar) {
+ tcg_gen_ext32u_i64(tcg_res[0], tcg_res[0]);
+ }
+ }
+
+ if (is_scalar) {
+ tcg_res[1] = tcg_const_i64(0);
+ }
+
+ for (pass = 0; pass < 2; pass++) {
+ write_vec_element(s, tcg_res[pass], rd, pass, MO_64);
+ tcg_temp_free_i64(tcg_res[pass]);
}
}
+
+ if (!TCGV_IS_UNUSED_PTR(fpst)) {
+ tcg_temp_free_ptr(fpst);
+ }
+}
+
+/* C3.6.19 Crypto AES
+ * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----------------+------+-----------+--------+-----+------+------+
+ * | 0 1 0 0 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----------------+------+-----------+--------+-----+------+------+
+ */
+static void disas_crypto_aes(DisasContext *s, uint32_t insn)
+{
+ unsupported_encoding(s, insn);
+}
+
+/* C3.6.20 Crypto three-reg SHA
+ * 31 24 23 22 21 20 16 15 14 12 11 10 9 5 4 0
+ * +-----------------+------+---+------+---+--------+-----+------+------+
+ * | 0 1 0 1 1 1 1 0 | size | 0 | Rm | 0 | opcode | 0 0 | Rn | Rd |
+ * +-----------------+------+---+------+---+--------+-----+------+------+
+ */
+static void disas_crypto_three_reg_sha(DisasContext *s, uint32_t insn)
+{
+ unsupported_encoding(s, insn);
+}
+
+/* C3.6.21 Crypto two-reg SHA
+ * 31 24 23 22 21 17 16 12 11 10 9 5 4 0
+ * +-----------------+------+-----------+--------+-----+------+------+
+ * | 0 1 0 1 1 1 1 0 | size | 1 0 1 0 0 | opcode | 1 0 | Rn | Rd |
+ * +-----------------+------+-----------+--------+-----+------+------+
+ */
+static void disas_crypto_two_reg_sha(DisasContext *s, uint32_t insn)
+{
+ unsupported_encoding(s, insn);
}
+/* C3.6 Data processing - SIMD, inc Crypto
+ *
+ * As the decode gets a little complex we are using a table based
+ * approach for this part of the decode.
+ */
+static const AArch64DecodeTable data_proc_simd[] = {
+ /* pattern , mask , fn */
+ { 0x0e200400, 0x9f200400, disas_simd_three_reg_same },
+ { 0x0e200000, 0x9f200c00, disas_simd_three_reg_diff },
+ { 0x0e200800, 0x9f3e0c00, disas_simd_two_reg_misc },
+ { 0x0e300800, 0x9f3e0c00, disas_simd_across_lanes },
+ { 0x0e000400, 0x9fe08400, disas_simd_copy },
+ { 0x0f000000, 0x9f000400, disas_simd_indexed }, /* vector indexed */
+ /* simd_mod_imm decode is a subset of simd_shift_imm, so must precede it */
+ { 0x0f000400, 0x9ff80400, disas_simd_mod_imm },
+ { 0x0f000400, 0x9f800400, disas_simd_shift_imm },
+ { 0x0e000000, 0xbf208c00, disas_simd_tb },
+ { 0x0e000800, 0xbf208c00, disas_simd_zip_trn },
+ { 0x2e000000, 0xbf208400, disas_simd_ext },
+ { 0x5e200400, 0xdf200400, disas_simd_scalar_three_reg_same },
+ { 0x5e200000, 0xdf200c00, disas_simd_scalar_three_reg_diff },
+ { 0x5e200800, 0xdf3e0c00, disas_simd_scalar_two_reg_misc },
+ { 0x5e300800, 0xdf3e0c00, disas_simd_scalar_pairwise },
+ { 0x5e000400, 0xdfe08400, disas_simd_scalar_copy },
+ { 0x5f000000, 0xdf000400, disas_simd_indexed }, /* scalar indexed */
+ { 0x5f000400, 0xdf800400, disas_simd_scalar_shift_imm },
+ { 0x4e280800, 0xff3e0c00, disas_crypto_aes },
+ { 0x5e000000, 0xff208c00, disas_crypto_three_reg_sha },
+ { 0x5e280800, 0xff3e0c00, disas_crypto_two_reg_sha },
+ { 0x00000000, 0x00000000, NULL }
+};
+
static void disas_data_proc_simd(DisasContext *s, uint32_t insn)
{
/* Note that this is called with all non-FP cases from
* table C3-6 so it must UNDEF for entries not specifically
* allocated to instructions in that table.
*/
- unsupported_encoding(s, insn);
+ AArch64DecodeFn *fn = lookup_disas_fn(&data_proc_simd[0], insn);
+ if (fn) {
+ fn(s, insn);
+ } else {
+ unallocated_encoding(s);
+ }
}
/* C3.6 Data processing - SIMD and floating point */
qemu_log("----------------\n");
qemu_log("IN: %s\n", lookup_symbol(pc_start));
log_target_disas(env, pc_start, dc->pc - pc_start,
- dc->thumb | (dc->bswap_code << 1));
+ 4 | (dc->bswap_code << 1));
qemu_log("\n");
}
#endif