endian ! */
typedef union {
float64 d;
-#if defined(HOST_WORDS_BIGENDIAN) \
- || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
+#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upper;
uint32_t lower;
uint64_t ll;
} CPU_DoubleU;
-#ifdef TARGET_SPARC
+typedef union {
+ floatx80 d;
+ struct {
+ uint64_t lower;
+ uint16_t upper;
+ } l;
+} CPU_LDoubleU;
+
typedef union {
float128 q;
-#if defined(HOST_WORDS_BIGENDIAN) \
- || (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
+#if defined(HOST_WORDS_BIGENDIAN)
struct {
uint32_t upmost;
uint32_t upper;
} ll;
#endif
} CPU_QuadU;
-#endif
/* CPU memory access without any memory or io remapping */
#if defined(CONFIG_USE_GUEST_BASE)
extern unsigned long guest_base;
extern int have_guest_base;
+extern unsigned long reserved_va;
#define GUEST_BASE guest_base
+#define RESERVED_VA reserved_va
#else
#define GUEST_BASE 0ul
+#define RESERVED_VA 0ul
#endif
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
CPUState *cpu_copy(CPUState *env);
CPUState *qemu_get_cpu(int cpu);
-void cpu_dump_state(CPUState *env, FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
+#define CPU_DUMP_CODE 0x00010000
+
+void cpu_dump_state(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
int flags);
-void cpu_dump_statistics (CPUState *env, FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
- int flags);
+void cpu_dump_statistics(CPUState *env, FILE *f, fprintf_function cpu_fprintf,
+ int flags);
void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
- __attribute__ ((__format__ (__printf__, 2, 3)));
+ GCC_FMT_ATTR(2, 3);
extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
-#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
-#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
-#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
-#define CPU_INTERRUPT_FIQ 0x10 /* Fast interrupt pending. */
-#define CPU_INTERRUPT_HALT 0x20 /* CPU halt wanted */
-#define CPU_INTERRUPT_SMI 0x40 /* (x86 only) SMI interrupt pending */
-#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
-#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
-#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
-#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
-#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
-#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
-
-void cpu_interrupt(CPUState *s, int mask);
+/* Flags for use in ENV->INTERRUPT_PENDING.
+
+ The numbers assigned here are non-sequential in order to preserve
+ binary compatibility with the vmstate dump. Bit 0 (0x0001) was
+ previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
+ the vmstate dump. */
+
+/* External hardware interrupt pending. This is typically used for
+ interrupts from devices. */
+#define CPU_INTERRUPT_HARD 0x0002
+
+/* Exit the current TB. This is typically used when some system-level device
+ makes some change to the memory mapping. E.g. the a20 line change. */
+#define CPU_INTERRUPT_EXITTB 0x0004
+
+/* Halt the CPU. */
+#define CPU_INTERRUPT_HALT 0x0020
+
+/* Debug event pending. */
+#define CPU_INTERRUPT_DEBUG 0x0080
+
+/* Several target-specific external hardware interrupts. Each target/cpu.h
+ should define proper names based on these defines. */
+#define CPU_INTERRUPT_TGT_EXT_0 0x0008
+#define CPU_INTERRUPT_TGT_EXT_1 0x0010
+#define CPU_INTERRUPT_TGT_EXT_2 0x0040
+#define CPU_INTERRUPT_TGT_EXT_3 0x0200
+#define CPU_INTERRUPT_TGT_EXT_4 0x1000
+
+/* Several target-specific internal interrupts. These differ from the
+ preceeding target-specific interrupts in that they are intended to
+ originate from within the cpu itself, typically in response to some
+ instruction being executed. These, therefore, are not masked while
+ single-stepping within the debugger. */
+#define CPU_INTERRUPT_TGT_INT_0 0x0100
+#define CPU_INTERRUPT_TGT_INT_1 0x0400
+#define CPU_INTERRUPT_TGT_INT_2 0x0800
+
+/* First unused bit: 0x2000. */
+
+/* The set of all bits that should be masked when single-stepping. */
+#define CPU_INTERRUPT_SSTEP_MASK \
+ (CPU_INTERRUPT_HARD \
+ | CPU_INTERRUPT_TGT_EXT_0 \
+ | CPU_INTERRUPT_TGT_EXT_1 \
+ | CPU_INTERRUPT_TGT_EXT_2 \
+ | CPU_INTERRUPT_TGT_EXT_3 \
+ | CPU_INTERRUPT_TGT_EXT_4)
+
+#ifndef CONFIG_USER_ONLY
+typedef void (*CPUInterruptHandler)(CPUState *, int);
+
+extern CPUInterruptHandler cpu_interrupt_handler;
+
+static inline void cpu_interrupt(CPUState *s, int mask)
+{
+ cpu_interrupt_handler(s, mask);
+}
+#else /* USER_ONLY */
+void cpu_interrupt(CPUState *env, int mask);
+#endif /* USER_ONLY */
+
void cpu_reset_interrupt(CPUState *env, int mask);
void cpu_exit(CPUState *s);
void cpu_single_step(CPUState *env, int enabled);
void cpu_reset(CPUState *s);
+int cpu_is_stopped(CPUState *env);
+void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
#define CPU_LOG_TB_OUT_ASM (1 << 0)
#define CPU_LOG_TB_IN_ASM (1 << 1)
/* memory API */
extern int phys_ram_fd;
-extern uint8_t *phys_ram_dirty;
extern ram_addr_t ram_size;
-extern ram_addr_t last_ram_offset;
+
+/* RAM is pre-allocated and passed into qemu_ram_alloc_from_ptr */
+#define RAM_PREALLOC_MASK (1 << 0)
+
+typedef struct RAMBlock {
+ uint8_t *host;
+ ram_addr_t offset;
+ ram_addr_t length;
+ uint32_t flags;
+ char idstr[256];
+ QLIST_ENTRY(RAMBlock) next;
+#if defined(__linux__) && !defined(TARGET_S390X)
+ int fd;
+#endif
+} RAMBlock;
+
+typedef struct RAMList {
+ uint8_t *phys_dirty;
+ QLIST_HEAD(ram, RAMBlock) blocks;
+} RAMList;
+extern RAMList ram_list;
extern const char *mem_path;
extern int mem_prealloc;
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS];
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
}
static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
int dirty_flags)
{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
}
static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
{
- phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
+ ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
}
static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
int dirty_flags)
{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
}
static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
len = length >> TARGET_PAGE_BITS;
mask = ~dirty_flags;
- p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
+ p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
for (i = 0; i < len; i++) {
p[i] &= mask;
}
int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
target_phys_addr_t end_addr);
-void dump_exec_info(FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
+int cpu_physical_log_start(target_phys_addr_t start_addr,
+ ram_addr_t size);
+
+int cpu_physical_log_stop(target_phys_addr_t start_addr,
+ ram_addr_t size);
+
+void dump_exec_info(FILE *f, fprintf_function cpu_fprintf);
#endif /* !CONFIG_USER_ONLY */
int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write);
-void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
- uint64_t mcg_status, uint64_t addr, uint64_t misc);
-
#endif /* CPU_ALL_H */