#include <stdio.h>
#include "hw.h"
#include "net.h"
-
-#include "etraxfs_dma.h"
+#include "etraxfs.h"
#define D(x)
+/* Advertisement control register. */
+#define ADVERTISE_10HALF 0x0020 /* Try for 10mbps half-duplex */
+#define ADVERTISE_10FULL 0x0040 /* Try for 10mbps full-duplex */
+#define ADVERTISE_100HALF 0x0080 /* Try for 100mbps half-duplex */
+#define ADVERTISE_100FULL 0x0100 /* Try for 100mbps full-duplex */
+
/*
* The MDIO extensions in the TDK PHY model were reversed engineered from the
* linux driver (PHYID and Diagnostics reg).
{
uint32_t regs[32];
+ int link;
+
unsigned int (*read)(struct qemu_phy *phy, unsigned int req);
void (*write)(struct qemu_phy *phy, unsigned int req,
unsigned int data);
switch (regnum) {
case 1:
- /* MR1. */
+ if (!phy->link)
+ break;
+ /* MR1. */
/* Speeds and modes. */
r |= (1 << 13) | (1 << 14);
r |= (1 << 11) | (1 << 12);
r |= (1 << 5); /* Autoneg complete. */
- r |= (1 << 3); /* Autoneg able. */
- r |= (1 << 2); /* Link. */
+ r |= (1 << 3); /* Autoneg able. */
+ r |= (1 << 2); /* link. */
break;
case 5:
/* Link partner ability.
int duplex = 0;
int speed_100 = 0;
+ if (!phy->link)
+ break;
+
/* Are we advertising 100 half or 100 duplex ? */
- speed_100 = !!(phy->regs[4] & 0x180);
+ speed_100 = !!(phy->regs[4] & ADVERTISE_100HALF);
+ speed_100 |= !!(phy->regs[4] & ADVERTISE_100FULL);
+
/* Are we advertising 10 duplex or 100 duplex ? */
- duplex = !!(phy->regs[4] & 0x180);
+ duplex = !!(phy->regs[4] & ADVERTISE_100FULL);
+ duplex |= !!(phy->regs[4] & ADVERTISE_10FULL);
r = (speed_100 << 10) | (duplex << 11);
}
break;
phy->regs[3] = 0xe400;
/* Autonegotiation advertisement reg. */
phy->regs[4] = 0x01E1;
+ phy->link = 1;
phy->read = tdk_read;
phy->write = tdk_write;
struct qemu_mdio
{
- /* bus. */
+ /* bus. */
int mdc;
int mdio;
bus->devs[addr & 0x1f] = phy;
}
+#ifdef USE_THIS_DEAD_CODE
static void
mdio_detach(struct qemu_mdio *bus, struct qemu_phy *phy, unsigned int addr)
{
bus->devs[addr & 0x1f] = NULL;
}
+#endif
static void mdio_read_req(struct qemu_mdio *bus)
{
/* ETRAX-FS Ethernet MAC block starts here. */
-#define R_STAT 0x2c
-#define RW_MGM_CTRL 0x28
-#define FS_ETH_MAX_REGS 0x5c
+#define RW_MA0_LO 0x00
+#define RW_MA0_HI 0x01
+#define RW_MA1_LO 0x02
+#define RW_MA1_HI 0x03
+#define RW_GA_LO 0x04
+#define RW_GA_HI 0x05
+#define RW_GEN_CTRL 0x06
+#define RW_REC_CTRL 0x07
+#define RW_TR_CTRL 0x08
+#define RW_CLR_ERR 0x09
+#define RW_MGM_CTRL 0x0a
+#define R_STAT 0x0b
+#define FS_ETH_MAX_REGS 0x17
struct fs_eth
{
- CPUState *env;
- qemu_irq *irq;
- target_phys_addr_t base;
- VLANClientState *vc;
- uint8_t macaddr[6];
+ NICState *nic;
+ NICConf conf;
int ethregs;
+ /* Two addrs in the filter. */
+ uint8_t macaddr[2][6];
uint32_t regs[FS_ETH_MAX_REGS];
- unsigned char rx_fifo[1536];
- int rx_fifo_len;
- int rx_fifo_pos;
-
struct etraxfs_dma_client *dma_out;
struct etraxfs_dma_client *dma_in;
/* MDIO bus. */
struct qemu_mdio mdio_bus;
- /* PHY. */
+ unsigned int phyaddr;
+ int duplex_mismatch;
+
+ /* PHY. */
struct qemu_phy phy;
};
-static uint32_t eth_rinvalid (void *opaque, target_phys_addr_t addr)
+static void eth_validate_duplex(struct fs_eth *eth)
{
- struct fs_eth *eth = opaque;
- CPUState *env = eth->env;
- cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
- addr, env->pc);
- return 0;
+ struct qemu_phy *phy;
+ unsigned int phy_duplex;
+ unsigned int mac_duplex;
+ int new_mm = 0;
+
+ phy = eth->mdio_bus.devs[eth->phyaddr];
+ phy_duplex = !!(phy->read(phy, 18) & (1 << 11));
+ mac_duplex = !!(eth->regs[RW_REC_CTRL] & 128);
+
+ if (mac_duplex != phy_duplex)
+ new_mm = 1;
+
+ if (eth->regs[RW_GEN_CTRL] & 1) {
+ if (new_mm != eth->duplex_mismatch) {
+ if (new_mm)
+ printf("HW: WARNING "
+ "ETH duplex mismatch MAC=%d PHY=%d\n",
+ mac_duplex, phy_duplex);
+ else
+ printf("HW: ETH duplex ok.\n");
+ }
+ eth->duplex_mismatch = new_mm;
+ }
}
static uint32_t eth_readl (void *opaque, target_phys_addr_t addr)
{
- struct fs_eth *eth = opaque;
- D(CPUState *env = eth->env);
- uint32_t r = 0;
+ struct fs_eth *eth = opaque;
+ uint32_t r = 0;
+
+ addr >>= 2;
- /* Make addr relative to this instances base. */
- addr -= eth->base;
- switch (addr) {
+ switch (addr) {
case R_STAT:
- /* Attach an MDIO/PHY abstraction. */
r = eth->mdio_bus.mdio & 1;
break;
- default:
+ default:
r = eth->regs[addr];
- D(printf ("%s %x p=%x\n", __func__, addr, env->pc));
- break;
- }
- return r;
+ D(printf ("%s %x\n", __func__, addr * 4));
+ break;
+ }
+ return r;
}
-static void
-eth_winvalid (void *opaque, target_phys_addr_t addr, uint32_t value)
+static void eth_update_ma(struct fs_eth *eth, int ma)
{
- struct fs_eth *eth = opaque;
- CPUState *env = eth->env;
- cpu_abort(env, "Unsupported short access. reg=%x pc=%x.\n",
- addr, env->pc);
+ int reg;
+ int i = 0;
+
+ ma &= 1;
+
+ reg = RW_MA0_LO;
+ if (ma)
+ reg = RW_MA1_LO;
+
+ eth->macaddr[ma][i++] = eth->regs[reg];
+ eth->macaddr[ma][i++] = eth->regs[reg] >> 8;
+ eth->macaddr[ma][i++] = eth->regs[reg] >> 16;
+ eth->macaddr[ma][i++] = eth->regs[reg] >> 24;
+ eth->macaddr[ma][i++] = eth->regs[reg + 1];
+ eth->macaddr[ma][i] = eth->regs[reg + 1] >> 8;
+
+ D(printf("set mac%d=%x.%x.%x.%x.%x.%x\n", ma,
+ eth->macaddr[ma][0], eth->macaddr[ma][1],
+ eth->macaddr[ma][2], eth->macaddr[ma][3],
+ eth->macaddr[ma][4], eth->macaddr[ma][5]));
}
static void
eth_writel (void *opaque, target_phys_addr_t addr, uint32_t value)
{
- struct fs_eth *eth = opaque;
- CPUState *env = eth->env;
+ struct fs_eth *eth = opaque;
+
+ addr >>= 2;
+ switch (addr)
+ {
+ case RW_MA0_LO:
+ case RW_MA0_HI:
+ eth->regs[addr] = value;
+ eth_update_ma(eth, 0);
+ break;
+ case RW_MA1_LO:
+ case RW_MA1_HI:
+ eth->regs[addr] = value;
+ eth_update_ma(eth, 1);
+ break;
- /* Make addr relative to this instances base. */
- addr -= eth->base;
- switch (addr)
- {
case RW_MGM_CTRL:
/* Attach an MDIO/PHY abstraction. */
if (value & 2)
eth->mdio_bus.mdio = value & 1;
- if (eth->mdio_bus.mdc != (value & 4))
+ if (eth->mdio_bus.mdc != (value & 4)) {
mdio_cycle(ð->mdio_bus);
+ eth_validate_duplex(eth);
+ }
eth->mdio_bus.mdc = !!(value & 4);
+ eth->regs[addr] = value;
break;
- default:
- printf ("%s %x %x pc=%x\n",
- __func__, addr, value, env->pc);
- break;
- }
+ case RW_REC_CTRL:
+ eth->regs[addr] = value;
+ eth_validate_duplex(eth);
+ break;
+
+ default:
+ eth->regs[addr] = value;
+ D(printf ("%s %x %x\n",
+ __func__, addr, value));
+ break;
+ }
}
-static int eth_can_receive(void *opaque)
+/* The ETRAX FS has a groupt address table (GAT) which works like a k=1 bloom
+ filter dropping group addresses we have not joined. The filter has 64
+ bits (m). The has function is a simple nible xor of the group addr. */
+static int eth_match_groupaddr(struct fs_eth *eth, const unsigned char *sa)
{
- struct fs_eth *eth = opaque;
- int r;
-
- r = eth->rx_fifo_len == 0;
- if (!r) {
- /* TODO: signal fifo overrun. */
- printf("PACKET LOSS!\n");
- }
- return r;
+ unsigned int hsh;
+ int m_individual = eth->regs[RW_REC_CTRL] & 4;
+ int match;
+
+ /* First bit on the wire of a MAC address signals multicast or
+ physical address. */
+ if (!m_individual && !(sa[0] & 1))
+ return 0;
+
+ /* Calculate the hash index for the GA registers. */
+ hsh = 0;
+ hsh ^= (*sa) & 0x3f;
+ hsh ^= ((*sa) >> 6) & 0x03;
+ ++sa;
+ hsh ^= ((*sa) << 2) & 0x03c;
+ hsh ^= ((*sa) >> 4) & 0xf;
+ ++sa;
+ hsh ^= ((*sa) << 4) & 0x30;
+ hsh ^= ((*sa) >> 2) & 0x3f;
+ ++sa;
+ hsh ^= (*sa) & 0x3f;
+ hsh ^= ((*sa) >> 6) & 0x03;
+ ++sa;
+ hsh ^= ((*sa) << 2) & 0x03c;
+ hsh ^= ((*sa) >> 4) & 0xf;
+ ++sa;
+ hsh ^= ((*sa) << 4) & 0x30;
+ hsh ^= ((*sa) >> 2) & 0x3f;
+
+ hsh &= 63;
+ if (hsh > 31)
+ match = eth->regs[RW_GA_HI] & (1 << (hsh - 32));
+ else
+ match = eth->regs[RW_GA_LO] & (1 << hsh);
+ D(printf("hsh=%x ga=%x.%x mtch=%d\n", hsh,
+ eth->regs[RW_GA_HI], eth->regs[RW_GA_LO], match));
+ return match;
}
-static void eth_receive(void *opaque, const uint8_t *buf, int size)
+static int eth_can_receive(VLANClientState *nc)
{
- struct fs_eth *eth = opaque;
- if (size > sizeof(eth->rx_fifo)) {
- /* TODO: signal error. */
- } else {
- memcpy(eth->rx_fifo, buf, size);
- /* +4, HW passes the CRC to sw. */
- eth->rx_fifo_len = size + 4;
- eth->rx_fifo_pos = 0;
- }
+ return 1;
}
-static void eth_rx_pull(void *opaque)
+static ssize_t eth_receive(VLANClientState *nc, const uint8_t *buf, size_t size)
{
- struct fs_eth *eth = opaque;
- int len;
- if (eth->rx_fifo_len) {
- D(printf("%s %d\n", __func__, eth->rx_fifo_len));
-#if 0
- {
- int i;
- for (i = 0; i < 32; i++)
- printf("%2.2x", eth->rx_fifo[i]);
- printf("\n");
- }
-#endif
- len = etraxfs_dmac_input(eth->dma_in,
- eth->rx_fifo + eth->rx_fifo_pos,
- eth->rx_fifo_len, 1);
- eth->rx_fifo_len -= len;
- eth->rx_fifo_pos += len;
- }
+ unsigned char sa_bcast[6] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff };
+ struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
+ int use_ma0 = eth->regs[RW_REC_CTRL] & 1;
+ int use_ma1 = eth->regs[RW_REC_CTRL] & 2;
+ int r_bcast = eth->regs[RW_REC_CTRL] & 8;
+
+ if (size < 12)
+ return -1;
+
+ D(printf("%x.%x.%x.%x.%x.%x ma=%d %d bc=%d\n",
+ buf[0], buf[1], buf[2], buf[3], buf[4], buf[5],
+ use_ma0, use_ma1, r_bcast));
+
+ /* Does the frame get through the address filters? */
+ if ((!use_ma0 || memcmp(buf, eth->macaddr[0], 6))
+ && (!use_ma1 || memcmp(buf, eth->macaddr[1], 6))
+ && (!r_bcast || memcmp(buf, sa_bcast, 6))
+ && !eth_match_groupaddr(eth, buf))
+ return size;
+
+ /* FIXME: Find another way to pass on the fake csum. */
+ etraxfs_dmac_input(eth->dma_in, (void *)buf, size + 4, 1);
+
+ return size;
}
static int eth_tx_push(void *opaque, unsigned char *buf, int len)
struct fs_eth *eth = opaque;
D(printf("%s buf=%p len=%d\n", __func__, buf, len));
- qemu_send_packet(eth->vc, buf, len);
+ qemu_send_packet(ð->nic->nc, buf, len);
return len;
}
-static CPUReadMemoryFunc *eth_read[] = {
- ð_rinvalid,
- ð_rinvalid,
+static void eth_set_link(VLANClientState *nc)
+{
+ struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
+ D(printf("%s %d\n", __func__, nc->link_down));
+ eth->phy.link = !nc->link_down;
+}
+
+static CPUReadMemoryFunc * const eth_read[] = {
+ NULL, NULL,
ð_readl,
};
-static CPUWriteMemoryFunc *eth_write[] = {
- ð_winvalid,
- ð_winvalid,
+static CPUWriteMemoryFunc * const eth_write[] = {
+ NULL, NULL,
ð_writel,
};
-void *etraxfs_eth_init(NICInfo *nd, CPUState *env,
- qemu_irq *irq, target_phys_addr_t base)
+static void eth_cleanup(VLANClientState *nc)
+{
+ struct fs_eth *eth = DO_UPCAST(NICState, nc, nc)->opaque;
+
+ cpu_unregister_io_memory(eth->ethregs);
+
+ qemu_free(eth->dma_out);
+ qemu_free(eth);
+}
+
+static NetClientInfo net_etraxfs_info = {
+ .type = NET_CLIENT_TYPE_NIC,
+ .size = sizeof(NICState),
+ .can_receive = eth_can_receive,
+ .receive = eth_receive,
+ .cleanup = eth_cleanup,
+ .link_status_changed = eth_set_link,
+};
+
+void *etraxfs_eth_init(NICInfo *nd, target_phys_addr_t base, int phyaddr)
{
struct etraxfs_dma_client *dma = NULL;
struct fs_eth *eth = NULL;
- dma = qemu_mallocz(sizeof *dma * 2);
- if (!dma)
- return NULL;
+ qemu_check_nic_model(nd, "fseth");
+ dma = qemu_mallocz(sizeof *dma * 2);
eth = qemu_mallocz(sizeof *eth);
- if (!eth)
- goto err;
dma[0].client.push = eth_tx_push;
dma[0].client.opaque = eth;
dma[1].client.opaque = eth;
- dma[1].client.pull = eth_rx_pull;
+ dma[1].client.pull = NULL;
- eth->env = env;
- eth->base = base;
- eth->irq = irq;
eth->dma_out = dma;
eth->dma_in = dma + 1;
- memcpy(eth->macaddr, nd->macaddr, 6);
/* Connect the phy. */
+ eth->phyaddr = phyaddr & 0x1f;
tdk_init(ð->phy);
- mdio_attach(ð->mdio_bus, ð->phy, 0x1);
+ mdio_attach(ð->mdio_bus, ð->phy, eth->phyaddr);
- eth->ethregs = cpu_register_io_memory(0, eth_read, eth_write, eth);
+ eth->ethregs = cpu_register_io_memory(eth_read, eth_write, eth,
+ DEVICE_NATIVE_ENDIAN);
cpu_register_physical_memory (base, 0x5c, eth->ethregs);
- eth->vc = qemu_new_vlan_client(nd->vlan,
- eth_receive, eth_can_receive, eth);
+ memcpy(eth->conf.macaddr.a, nd->macaddr, sizeof(nd->macaddr));
+ eth->conf.vlan = nd->vlan;
+ eth->conf.peer = nd->netdev;
+
+ eth->nic = qemu_new_nic(&net_etraxfs_info, ð->conf,
+ nd->model, nd->name, eth);
return dma;
- err:
- qemu_free(eth);
- qemu_free(dma);
- return NULL;
}