* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#ifndef CPU_ALL_H
#define CPU_ALL_H
-#if defined(__arm__) || defined(__sparc__) || defined(__mips__) || defined(__hppa__)
-#define WORDS_ALIGNED
-#endif
+#include "qemu-common.h"
+#include "cpu-common.h"
/* some important defines:
*
* WORDS_ALIGNED : if defined, the host cpu can only make word aligned
* memory accesses.
*
- * WORDS_BIGENDIAN : if defined, the host cpu is big endian and
+ * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
* otherwise little endian.
*
* (TARGET_WORDS_ALIGNED : same for target cpu (not supported yet))
* TARGET_WORDS_BIGENDIAN : same for target cpu
*/
-#include "bswap.h"
#include "softfloat.h"
-#if defined(WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
+#if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
#define BSWAP_NEEDED
#endif
endian ! */
typedef union {
float64 d;
-#if defined(WORDS_BIGENDIAN) \
+#if defined(HOST_WORDS_BIGENDIAN) \
|| (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
struct {
uint32_t upper;
#ifdef TARGET_SPARC
typedef union {
float128 q;
-#if defined(WORDS_BIGENDIAN) \
+#if defined(HOST_WORDS_BIGENDIAN) \
|| (defined(__arm__) && !defined(__VFP_FP__) && !defined(CONFIG_SOFTFLOAT))
struct {
uint32_t upmost;
* user : user mode access using soft MMU
* kernel : kernel mode access using soft MMU
*/
-static inline int ldub_p(void *ptr)
+static inline int ldub_p(const void *ptr)
{
return *(uint8_t *)ptr;
}
-static inline int ldsb_p(void *ptr)
+static inline int ldsb_p(const void *ptr)
{
return *(int8_t *)ptr;
}
/* NOTE: on arm, putting 2 in /proc/sys/debug/alignment so that the
kernel handles unaligned load/stores may give better results, but
it is a system wide setting : bad */
-#if defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
+#if defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
/* conservative code for little endian unaligned accesses */
-static inline int lduw_le_p(void *ptr)
+static inline int lduw_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return p[0] | (p[1] << 8);
#endif
}
-static inline int ldsw_le_p(void *ptr)
+static inline int ldsw_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lhbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return (int16_t)val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return (int16_t)(p[0] | (p[1] << 8));
#endif
}
-static inline int ldl_le_p(void *ptr)
+static inline int ldl_le_p(const void *ptr)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
int val;
__asm__ __volatile__ ("lwbrx %0,0,%1" : "=r" (val) : "r" (ptr));
return val;
#else
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
return p[0] | (p[1] << 8) | (p[2] << 16) | (p[3] << 24);
#endif
}
-static inline uint64_t ldq_le_p(void *ptr)
+static inline uint64_t ldq_le_p(const void *ptr)
{
- uint8_t *p = ptr;
+ const uint8_t *p = ptr;
uint32_t v1, v2;
v1 = ldl_le_p(p);
v2 = ldl_le_p(p + 4);
static inline void stw_le_p(void *ptr, int v)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
__asm__ __volatile__ ("sthbrx %1,0,%2" : "=m" (*(uint16_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
static inline void stl_le_p(void *ptr, int v)
{
-#ifdef __powerpc__
+#ifdef _ARCH_PPC
__asm__ __volatile__ ("stwbrx %1,0,%2" : "=m" (*(uint32_t *)ptr) : "r" (v), "r" (ptr));
#else
uint8_t *p = ptr;
/* float access */
-static inline float32 ldfl_le_p(void *ptr)
+static inline float32 ldfl_le_p(const void *ptr)
{
union {
float32 f;
stl_le_p(ptr, u.i);
}
-static inline float64 ldfq_le_p(void *ptr)
+static inline float64 ldfq_le_p(const void *ptr)
{
CPU_DoubleU u;
u.l.lower = ldl_le_p(ptr);
#else
-static inline int lduw_le_p(void *ptr)
+static inline int lduw_le_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
-static inline int ldsw_le_p(void *ptr)
+static inline int ldsw_le_p(const void *ptr)
{
return *(int16_t *)ptr;
}
-static inline int ldl_le_p(void *ptr)
+static inline int ldl_le_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
-static inline uint64_t ldq_le_p(void *ptr)
+static inline uint64_t ldq_le_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
/* float access */
-static inline float32 ldfl_le_p(void *ptr)
+static inline float32 ldfl_le_p(const void *ptr)
{
return *(float32 *)ptr;
}
-static inline float64 ldfq_le_p(void *ptr)
+static inline float64 ldfq_le_p(const void *ptr)
{
return *(float64 *)ptr;
}
}
#endif
-#if !defined(WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
+#if !defined(HOST_WORDS_BIGENDIAN) || defined(WORDS_ALIGNED)
-static inline int lduw_be_p(void *ptr)
+static inline int lduw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
: "m" (*(uint16_t *)ptr));
return val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return ((b[0] << 8) | b[1]);
#endif
}
-static inline int ldsw_be_p(void *ptr)
+static inline int ldsw_be_p(const void *ptr)
{
#if defined(__i386__)
int val;
: "m" (*(uint16_t *)ptr));
return (int16_t)val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return (int16_t)((b[0] << 8) | b[1]);
#endif
}
-static inline int ldl_be_p(void *ptr)
+static inline int ldl_be_p(const void *ptr)
{
#if defined(__i386__) || defined(__x86_64__)
int val;
: "m" (*(uint32_t *)ptr));
return val;
#else
- uint8_t *b = (uint8_t *) ptr;
+ const uint8_t *b = ptr;
return (b[0] << 24) | (b[1] << 16) | (b[2] << 8) | b[3];
#endif
}
-static inline uint64_t ldq_be_p(void *ptr)
+static inline uint64_t ldq_be_p(const void *ptr)
{
uint32_t a,b;
a = ldl_be_p(ptr);
/* float access */
-static inline float32 ldfl_be_p(void *ptr)
+static inline float32 ldfl_be_p(const void *ptr)
{
union {
float32 f;
stl_be_p(ptr, u.i);
}
-static inline float64 ldfq_be_p(void *ptr)
+static inline float64 ldfq_be_p(const void *ptr)
{
CPU_DoubleU u;
u.l.upper = ldl_be_p(ptr);
#else
-static inline int lduw_be_p(void *ptr)
+static inline int lduw_be_p(const void *ptr)
{
return *(uint16_t *)ptr;
}
-static inline int ldsw_be_p(void *ptr)
+static inline int ldsw_be_p(const void *ptr)
{
return *(int16_t *)ptr;
}
-static inline int ldl_be_p(void *ptr)
+static inline int ldl_be_p(const void *ptr)
{
return *(uint32_t *)ptr;
}
-static inline uint64_t ldq_be_p(void *ptr)
+static inline uint64_t ldq_be_p(const void *ptr)
{
return *(uint64_t *)ptr;
}
/* float access */
-static inline float32 ldfl_be_p(void *ptr)
+static inline float32 ldfl_be_p(const void *ptr)
{
return *(float32 *)ptr;
}
-static inline float64 ldfq_be_p(void *ptr)
+static inline float64 ldfq_be_p(const void *ptr)
{
return *(float64 *)ptr;
}
/* MMU memory access macros */
#if defined(CONFIG_USER_ONLY)
+#include <assert.h>
+#include "qemu-types.h"
+
/* On some host systems the guest address space is reserved on the host.
* This allows the guest address space to be offset to a convenient location.
*/
-//#define GUEST_BASE 0x20000000
-#define GUEST_BASE 0
+#if defined(CONFIG_USE_GUEST_BASE)
+extern unsigned long guest_base;
+extern int have_guest_base;
+extern unsigned long reserved_va;
+#define GUEST_BASE guest_base
+#define RESERVED_VA reserved_va
+#else
+#define GUEST_BASE 0ul
+#define RESERVED_VA 0ul
+#endif
/* All direct uses of g2h and h2g need to go away for usermode softmmu. */
#define g2h(x) ((void *)((unsigned long)(x) + GUEST_BASE))
-#define h2g(x) ((target_ulong)((unsigned long)(x) - GUEST_BASE))
+
+#if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
+#define h2g_valid(x) 1
+#else
+#define h2g_valid(x) ({ \
+ unsigned long __guest = (unsigned long)(x) - GUEST_BASE; \
+ __guest < (1ul << TARGET_VIRT_ADDR_SPACE_BITS); \
+})
+#endif
+
+#define h2g(x) ({ \
+ unsigned long __ret = (unsigned long)(x) - GUEST_BASE; \
+ /* Check if given address fits target address space */ \
+ assert(h2g_valid(x)); \
+ (abi_ulong)__ret; \
+})
#define saddr(x) g2h(x)
#define laddr(x) g2h(x)
/* original state of the write flag (used when tracking self-modifying
code */
#define PAGE_WRITE_ORG 0x0010
+#if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
+/* FIXME: Code that sets/uses this is broken and needs to go away. */
#define PAGE_RESERVED 0x0020
+#endif
+#if defined(CONFIG_USER_ONLY)
void page_dump(FILE *f);
+
+typedef int (*walk_memory_regions_fn)(void *, abi_ulong,
+ abi_ulong, unsigned long);
+int walk_memory_regions(void *, walk_memory_regions_fn);
+
int page_get_flags(target_ulong address);
void page_set_flags(target_ulong start, target_ulong end, int flags);
int page_check_range(target_ulong start, target_ulong len, int flags);
+#endif
-void cpu_exec_init_all(unsigned long tb_size);
CPUState *cpu_copy(CPUState *env);
+CPUState *qemu_get_cpu(int cpu);
void cpu_dump_state(CPUState *env, FILE *f,
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int (*cpu_fprintf)(FILE *f, const char *fmt, ...),
int flags);
-void cpu_abort(CPUState *env, const char *fmt, ...)
- __attribute__ ((__format__ (__printf__, 2, 3)))
- __attribute__ ((__noreturn__));
+void QEMU_NORETURN cpu_abort(CPUState *env, const char *fmt, ...)
+ __attribute__ ((__format__ (__printf__, 2, 3)));
extern CPUState *first_cpu;
extern CPUState *cpu_single_env;
-extern int64_t qemu_icount;
-extern int use_icount;
-#define CPU_INTERRUPT_EXIT 0x01 /* wants exit from main loop */
#define CPU_INTERRUPT_HARD 0x02 /* hardware interrupt pending */
#define CPU_INTERRUPT_EXITTB 0x04 /* exit the current TB (use for x86 a20 case) */
#define CPU_INTERRUPT_TIMER 0x08 /* internal timer exception pending */
#define CPU_INTERRUPT_DEBUG 0x80 /* Debug event occured. */
#define CPU_INTERRUPT_VIRQ 0x100 /* virtual interrupt pending. */
#define CPU_INTERRUPT_NMI 0x200 /* NMI pending. */
+#define CPU_INTERRUPT_INIT 0x400 /* INIT pending. */
+#define CPU_INTERRUPT_SIPI 0x800 /* SIPI pending. */
+#define CPU_INTERRUPT_MCE 0x1000 /* (x86 only) MCE pending. */
void cpu_interrupt(CPUState *s, int mask);
void cpu_reset_interrupt(CPUState *env, int mask);
+void cpu_exit(CPUState *s);
+
+int qemu_cpu_has_work(CPUState *env);
+
/* Breakpoint/watchpoint flags */
#define BP_MEM_READ 0x01
#define BP_MEM_WRITE 0x02
void cpu_single_step(CPUState *env, int enabled);
void cpu_reset(CPUState *s);
-
-/* Return the physical page corresponding to a virtual one. Use it
- only for debugging because no protection checks are done. Return -1
- if no page found. */
-target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
+int cpu_is_stopped(CPUState *env);
+void run_on_cpu(CPUState *env, void (*func)(void *data), void *data);
#define CPU_LOG_TB_OUT_ASM (1 << 0)
#define CPU_LOG_TB_IN_ASM (1 << 1)
#define CPU_LOG_PCALL (1 << 6)
#define CPU_LOG_IOPORT (1 << 7)
#define CPU_LOG_TB_CPU (1 << 8)
+#define CPU_LOG_RESET (1 << 9)
/* define log items */
typedef struct CPULogItem {
void cpu_set_log_filename(const char *filename);
int cpu_str_to_log_mask(const char *str);
-/* IO ports API */
-
-/* NOTE: as these functions may be even used when there is an isa
- brige on non x86 targets, we always defined them */
-#ifndef NO_CPU_IO_DEFS
-void cpu_outb(CPUState *env, int addr, int val);
-void cpu_outw(CPUState *env, int addr, int val);
-void cpu_outl(CPUState *env, int addr, int val);
-int cpu_inb(CPUState *env, int addr);
-int cpu_inw(CPUState *env, int addr);
-int cpu_inl(CPUState *env, int addr);
-#endif
+#if !defined(CONFIG_USER_ONLY)
-/* address in the RAM (different from a physical address) */
-#ifdef USE_KQEMU
-typedef uint32_t ram_addr_t;
-#else
-typedef unsigned long ram_addr_t;
-#endif
+/* Return the physical page corresponding to a virtual one. Use it
+ only for debugging because no protection checks are done. Return -1
+ if no page found. */
+target_phys_addr_t cpu_get_phys_page_debug(CPUState *env, target_ulong addr);
/* memory API */
-extern ram_addr_t phys_ram_size;
extern int phys_ram_fd;
-extern uint8_t *phys_ram_base;
-extern uint8_t *phys_ram_dirty;
extern ram_addr_t ram_size;
+typedef struct RAMBlock {
+ uint8_t *host;
+ ram_addr_t offset;
+ ram_addr_t length;
+ char idstr[256];
+ QLIST_ENTRY(RAMBlock) next;
+#if defined(__linux__) && !defined(TARGET_S390X)
+ int fd;
+#endif
+} RAMBlock;
+
+typedef struct RAMList {
+ uint8_t *phys_dirty;
+ QLIST_HEAD(ram, RAMBlock) blocks;
+} RAMList;
+extern RAMList ram_list;
+
+extern const char *mem_path;
+extern int mem_prealloc;
+
/* physical memory access */
/* MMIO pages are identified by a combination of an IO device index and
3 flags. The ROMD code stores the page ram offset in iotlb entry,
so only a limited number of ids are avaiable. */
-#define IO_MEM_SHIFT 3
#define IO_MEM_NB_ENTRIES (1 << (TARGET_PAGE_BITS - IO_MEM_SHIFT))
-#define IO_MEM_RAM (0 << IO_MEM_SHIFT) /* hardcoded offset */
-#define IO_MEM_ROM (1 << IO_MEM_SHIFT) /* hardcoded offset */
-#define IO_MEM_UNASSIGNED (2 << IO_MEM_SHIFT)
-#define IO_MEM_NOTDIRTY (3 << IO_MEM_SHIFT)
-
-/* Acts like a ROM when read and like a device when written. */
-#define IO_MEM_ROMD (1)
-#define IO_MEM_SUBPAGE (2)
-#define IO_MEM_SUBWIDTH (4)
-
/* Flags stored in the low bits of the TLB virtual address. These are
defined so that fast path ram access is all zeros. */
/* Zero if TLB entry is valid. */
/* Set if TLB entry is an IO callback. */
#define TLB_MMIO (1 << 5)
-typedef void CPUWriteMemoryFunc(void *opaque, target_phys_addr_t addr, uint32_t value);
-typedef uint32_t CPUReadMemoryFunc(void *opaque, target_phys_addr_t addr);
-
-void cpu_register_physical_memory(target_phys_addr_t start_addr,
- ram_addr_t size,
- ram_addr_t phys_offset);
-ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr);
-ram_addr_t qemu_ram_alloc(ram_addr_t);
-void qemu_ram_free(ram_addr_t addr);
-int cpu_register_io_memory(int io_index,
- CPUReadMemoryFunc **mem_read,
- CPUWriteMemoryFunc **mem_write,
- void *opaque);
-CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index);
-CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index);
-
-void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
- int len, int is_write);
-static inline void cpu_physical_memory_read(target_phys_addr_t addr,
- uint8_t *buf, int len)
-{
- cpu_physical_memory_rw(addr, buf, len, 0);
-}
-static inline void cpu_physical_memory_write(target_phys_addr_t addr,
- const uint8_t *buf, int len)
-{
- cpu_physical_memory_rw(addr, (uint8_t *)buf, len, 1);
-}
-uint32_t ldub_phys(target_phys_addr_t addr);
-uint32_t lduw_phys(target_phys_addr_t addr);
-uint32_t ldl_phys(target_phys_addr_t addr);
-uint64_t ldq_phys(target_phys_addr_t addr);
-void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val);
-void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val);
-void stb_phys(target_phys_addr_t addr, uint32_t val);
-void stw_phys(target_phys_addr_t addr, uint32_t val);
-void stl_phys(target_phys_addr_t addr, uint32_t val);
-void stq_phys(target_phys_addr_t addr, uint64_t val);
-
-void cpu_physical_memory_write_rom(target_phys_addr_t addr,
- const uint8_t *buf, int len);
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
- uint8_t *buf, int len, int is_write);
-
#define VGA_DIRTY_FLAG 0x01
#define CODE_DIRTY_FLAG 0x02
-#define KQEMU_DIRTY_FLAG 0x04
#define MIGRATION_DIRTY_FLAG 0x08
/* read dirty bit (return 0 or 1) */
static inline int cpu_physical_memory_is_dirty(ram_addr_t addr)
{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
-}
-
-static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
- int dirty_flags)
-{
- return phys_ram_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
-}
-
-static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
-{
- phys_ram_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
-}
-
-void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
- int dirty_flags);
-void cpu_tlb_update_dirty(CPUState *env);
-
-int cpu_physical_memory_set_dirty_tracking(int enable);
-
-int cpu_physical_memory_get_dirty_tracking(void);
-
-void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr);
-
-void dump_exec_info(FILE *f,
- int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
-
-/*******************************************/
-/* host CPU ticks (if available) */
-
-#if defined(__powerpc__)
-
-static inline uint32_t get_tbl(void)
-{
- uint32_t tbl;
- asm volatile("mftb %0" : "=r" (tbl));
- return tbl;
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] == 0xff;
}
-static inline uint32_t get_tbu(void)
+static inline int cpu_physical_memory_get_dirty_flags(ram_addr_t addr)
{
- uint32_t tbl;
- asm volatile("mftbu %0" : "=r" (tbl));
- return tbl;
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS];
}
-static inline int64_t cpu_get_real_ticks(void)
+static inline int cpu_physical_memory_get_dirty(ram_addr_t addr,
+ int dirty_flags)
{
- uint32_t l, h, h1;
- /* NOTE: we test if wrapping has occurred */
- do {
- h = get_tbu();
- l = get_tbl();
- h1 = get_tbu();
- } while (h != h1);
- return ((int64_t)h << 32) | l;
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] & dirty_flags;
}
-#elif defined(__i386__)
-
-static inline int64_t cpu_get_real_ticks(void)
+static inline void cpu_physical_memory_set_dirty(ram_addr_t addr)
{
- int64_t val;
- asm volatile ("rdtsc" : "=A" (val));
- return val;
+ ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] = 0xff;
}
-#elif defined(__x86_64__)
-
-static inline int64_t cpu_get_real_ticks(void)
+static inline int cpu_physical_memory_set_dirty_flags(ram_addr_t addr,
+ int dirty_flags)
{
- uint32_t low,high;
- int64_t val;
- asm volatile("rdtsc" : "=a" (low), "=d" (high));
- val = high;
- val <<= 32;
- val |= low;
- return val;
+ return ram_list.phys_dirty[addr >> TARGET_PAGE_BITS] |= dirty_flags;
}
-#elif defined(__hppa__)
-
-static inline int64_t cpu_get_real_ticks(void)
+static inline void cpu_physical_memory_mask_dirty_range(ram_addr_t start,
+ int length,
+ int dirty_flags)
{
- int val;
- asm volatile ("mfctl %%cr16, %0" : "=r"(val));
- return val;
-}
-
-#elif defined(__ia64)
+ int i, mask, len;
+ uint8_t *p;
-static inline int64_t cpu_get_real_ticks(void)
-{
- int64_t val;
- asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
- return val;
+ len = length >> TARGET_PAGE_BITS;
+ mask = ~dirty_flags;
+ p = ram_list.phys_dirty + (start >> TARGET_PAGE_BITS);
+ for (i = 0; i < len; i++) {
+ p[i] &= mask;
+ }
}
-#elif defined(__s390__)
-
-static inline int64_t cpu_get_real_ticks(void)
-{
- int64_t val;
- asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
- return val;
-}
-
-#elif defined(__sparc_v8plus__) || defined(__sparc_v8plusa__) || defined(__sparc_v9__)
-
-static inline int64_t cpu_get_real_ticks (void)
-{
-#if defined(_LP64)
- uint64_t rval;
- asm volatile("rd %%tick,%0" : "=r"(rval));
- return rval;
-#else
- union {
- uint64_t i64;
- struct {
- uint32_t high;
- uint32_t low;
- } i32;
- } rval;
- asm volatile("rd %%tick,%1; srlx %1,32,%0"
- : "=r"(rval.i32.high), "=r"(rval.i32.low));
- return rval.i64;
-#endif
-}
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
+ int dirty_flags);
+void cpu_tlb_update_dirty(CPUState *env);
-#elif defined(__mips__)
+int cpu_physical_memory_set_dirty_tracking(int enable);
-static inline int64_t cpu_get_real_ticks(void)
-{
-#if __mips_isa_rev >= 2
- uint32_t count;
- static uint32_t cyc_per_count = 0;
+int cpu_physical_memory_get_dirty_tracking(void);
- if (!cyc_per_count)
- __asm__ __volatile__("rdhwr %0, $3" : "=r" (cyc_per_count));
+int cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr,
+ target_phys_addr_t end_addr);
- __asm__ __volatile__("rdhwr %1, $2" : "=r" (count));
- return (int64_t)(count * cyc_per_count);
-#else
- /* FIXME */
- static int64_t ticks = 0;
- return ticks++;
-#endif
-}
-
-#else
-/* The host CPU doesn't have an easily accessible cycle counter.
- Just return a monotonically increasing value. This will be
- totally wrong, but hopefully better than nothing. */
-static inline int64_t cpu_get_real_ticks (void)
-{
- static int64_t ticks = 0;
- return ticks++;
-}
-#endif
+void dump_exec_info(FILE *f,
+ int (*cpu_fprintf)(FILE *f, const char *fmt, ...));
+#endif /* !CONFIG_USER_ONLY */
-/* profiling */
-#ifdef CONFIG_PROFILER
-static inline int64_t profile_getclock(void)
-{
- return cpu_get_real_ticks();
-}
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+ uint8_t *buf, int len, int is_write);
-extern int64_t kqemu_time, kqemu_time_start;
-extern int64_t qemu_time, qemu_time_start;
-extern int64_t tlb_flush_time;
-extern int64_t kqemu_exec_count;
-extern int64_t dev_time;
-extern int64_t kqemu_ret_int_count;
-extern int64_t kqemu_ret_excp_count;
-extern int64_t kqemu_ret_intr_count;
-#endif
+void cpu_inject_x86_mce(CPUState *cenv, int bank, uint64_t status,
+ uint64_t mcg_status, uint64_t addr, uint64_t misc);
#endif /* CPU_ALL_H */