#include "hw/xen.h"
#include "qemu-timer.h"
#include "memory.h"
+#include "dma.h"
#include "exec-memory.h"
#if defined(CONFIG_USER_ONLY)
#include <qemu.h>
#include "trace.h"
#endif
-#define WANT_EXEC_OBSOLETE
-#include "exec-obsolete.h"
+#include "cputlb.h"
+
+#include "memory-internal.h"
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
-//#define DEBUG_TLB
//#define DEBUG_UNASSIGNED
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
-//#define DEBUG_TLB_CHECK
//#define DEBUG_IOPORT
//#define DEBUG_SUBPAGE
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
-#if defined(__arm__) || defined(__sparc_v9__)
-/* The prologue must be reachable with a direct jump. ARM and Sparc64
- have limited branch ranges (possibly also PPC) so place it in a
- section close to code segment. */
-#define code_gen_section \
- __attribute__((__section__(".gen_code"))) \
- __attribute__((aligned (32)))
-#elif defined(_WIN32)
-/* Maximum alignment for Win32 is 16. */
-#define code_gen_section \
- __attribute__((aligned (16)))
-#else
-#define code_gen_section \
- __attribute__((aligned (32)))
-#endif
-
-uint8_t code_gen_prologue[1024] code_gen_section;
+uint8_t *code_gen_prologue;
static uint8_t *code_gen_buffer;
-static unsigned long code_gen_buffer_size;
+static size_t code_gen_buffer_size;
/* threshold to flush the translated code buffer */
-static unsigned long code_gen_buffer_max_size;
+static size_t code_gen_buffer_max_size;
static uint8_t *code_gen_ptr;
#if !defined(CONFIG_USER_ONLY)
static MemoryRegion *system_memory;
static MemoryRegion *system_io;
+AddressSpace address_space_io;
+AddressSpace address_space_memory;
+DMAContext dma_context_memory;
+
MemoryRegion io_mem_ram, io_mem_rom, io_mem_unassigned, io_mem_notdirty;
static MemoryRegion io_mem_subpage_ram;
#endif
-CPUState *first_cpu;
+CPUArchState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
-DEFINE_TLS(CPUState *,cpu_single_env);
+DEFINE_TLS(CPUArchState *,cpu_single_env);
/* 0 = Do not count executed instructions.
1 = Precise instruction counting.
2 = Adaptive rate instruction counting. */
#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
-unsigned long qemu_real_host_page_size;
-unsigned long qemu_host_page_size;
-unsigned long qemu_host_page_mask;
+uintptr_t qemu_real_host_page_size;
+uintptr_t qemu_host_page_size;
+uintptr_t qemu_host_page_mask;
/* This is a multi-level map on the virtual address space.
The bottom level has pointers to PageDesc. */
static void *l1_map[V_L1_SIZE];
#if !defined(CONFIG_USER_ONLY)
-typedef struct PhysPageEntry PhysPageEntry;
static MemoryRegionSection *phys_sections;
static unsigned phys_sections_nb, phys_sections_nb_alloc;
static uint16_t phys_section_unassigned;
-
-struct PhysPageEntry {
- union {
- uint16_t leaf; /* index into phys_sections */
- uint16_t node; /* index into phys_map_nodes */
- } u;
-};
+static uint16_t phys_section_notdirty;
+static uint16_t phys_section_rom;
+static uint16_t phys_section_watch;
/* Simple allocator for PhysPageEntry nodes */
static PhysPageEntry (*phys_map_nodes)[L2_SIZE];
static unsigned phys_map_nodes_nb, phys_map_nodes_nb_alloc;
-#define PHYS_MAP_NODE_NIL ((uint16_t)~0)
-
-/* This is a multi-level map on the physical address space.
- The bottom level has pointers to MemoryRegionSections. */
-static PhysPageEntry phys_map = { .u.node = PHYS_MAP_NODE_NIL };
+#define PHYS_MAP_NODE_NIL (((uint16_t)~0) >> 1)
static void io_mem_init(void);
static void memory_map_init(void);
+static void *qemu_safe_ram_ptr(ram_addr_t addr);
-/* io memory support */
-MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
-static char io_mem_used[IO_MEM_NB_ENTRIES];
static MemoryRegion io_mem_watch;
#endif
-
-/* log support */
-#ifdef WIN32
-static const char *logfilename = "qemu.log";
-#else
-static const char *logfilename = "/tmp/qemu.log";
-#endif
-FILE *logfile;
-int loglevel;
-static int log_append = 0;
+static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
+ tb_page_addr_t phys_page2);
/* statistics */
-#if !defined(CONFIG_USER_ONLY)
-static int tlb_flush_count;
-#endif
static int tb_flush_count;
static int tb_phys_invalidate_count;
#ifdef _WIN32
-static void map_exec(void *addr, long size)
+static inline void map_exec(void *addr, long size)
{
DWORD old_protect;
VirtualProtect(addr, size,
}
#else
-static void map_exec(void *addr, long size)
+static inline void map_exec(void *addr, long size)
{
unsigned long start, end, page_size;
assert(ret != PHYS_MAP_NODE_NIL);
assert(ret != phys_map_nodes_nb_alloc);
for (i = 0; i < L2_SIZE; ++i) {
- phys_map_nodes[ret][i].u.node = PHYS_MAP_NODE_NIL;
+ phys_map_nodes[ret][i].is_leaf = 0;
+ phys_map_nodes[ret][i].ptr = PHYS_MAP_NODE_NIL;
}
return ret;
}
}
-static void phys_page_set_level(PhysPageEntry *lp, target_phys_addr_t *index,
- target_phys_addr_t *nb, uint16_t leaf,
+static void phys_page_set_level(PhysPageEntry *lp, hwaddr *index,
+ hwaddr *nb, uint16_t leaf,
int level)
{
PhysPageEntry *p;
int i;
+ hwaddr step = (hwaddr)1 << (level * L2_BITS);
- if (lp->u.node == PHYS_MAP_NODE_NIL) {
- lp->u.node = phys_map_node_alloc();
- p = phys_map_nodes[lp->u.node];
+ if (!lp->is_leaf && lp->ptr == PHYS_MAP_NODE_NIL) {
+ lp->ptr = phys_map_node_alloc();
+ p = phys_map_nodes[lp->ptr];
if (level == 0) {
for (i = 0; i < L2_SIZE; i++) {
- p[i].u.leaf = phys_section_unassigned;
+ p[i].is_leaf = 1;
+ p[i].ptr = phys_section_unassigned;
}
}
} else {
- p = phys_map_nodes[lp->u.node];
+ p = phys_map_nodes[lp->ptr];
}
lp = &p[(*index >> (level * L2_BITS)) & (L2_SIZE - 1)];
while (*nb && lp < &p[L2_SIZE]) {
- if (level == 0) {
- lp->u.leaf = leaf;
- ++*index;
- --*nb;
+ if ((*index & (step - 1)) == 0 && *nb >= step) {
+ lp->is_leaf = true;
+ lp->ptr = leaf;
+ *index += step;
+ *nb -= step;
} else {
phys_page_set_level(lp, index, nb, leaf, level - 1);
}
}
}
-static void phys_page_set(target_phys_addr_t index, target_phys_addr_t nb,
+static void phys_page_set(AddressSpaceDispatch *d,
+ hwaddr index, hwaddr nb,
uint16_t leaf)
{
/* Wildly overreserve - it doesn't matter much. */
- phys_map_node_reserve((nb + L2_SIZE - 1) / L2_SIZE * P_L2_LEVELS);
+ phys_map_node_reserve(3 * P_L2_LEVELS);
- phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
+ phys_page_set_level(&d->phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
}
-static MemoryRegionSection phys_page_find(target_phys_addr_t index)
+MemoryRegionSection *phys_page_find(AddressSpaceDispatch *d, hwaddr index)
{
- PhysPageEntry lp = phys_map;
+ PhysPageEntry lp = d->phys_map;
PhysPageEntry *p;
int i;
- MemoryRegionSection section;
- target_phys_addr_t delta;
uint16_t s_index = phys_section_unassigned;
- for (i = P_L2_LEVELS - 1; i >= 0; i--) {
- if (lp.u.node == PHYS_MAP_NODE_NIL) {
+ for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
+ if (lp.ptr == PHYS_MAP_NODE_NIL) {
goto not_found;
}
- p = phys_map_nodes[lp.u.node];
+ p = phys_map_nodes[lp.ptr];
lp = p[(index >> (i * L2_BITS)) & (L2_SIZE - 1)];
}
- s_index = lp.u.leaf;
+ s_index = lp.ptr;
not_found:
- section = phys_sections[s_index];
- index <<= TARGET_PAGE_BITS;
- assert(section.offset_within_address_space <= index
- && index <= section.offset_within_address_space + section.size-1);
- delta = index - section.offset_within_address_space;
- section.offset_within_address_space += delta;
- section.offset_within_region += delta;
- section.size -= delta;
- return section;
-}
-
-static void tlb_protect_code(ram_addr_t ram_addr);
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
- target_ulong vaddr);
+ return &phys_sections[s_index];
+}
+
+bool memory_region_is_unassigned(MemoryRegion *mr)
+{
+ return mr != &io_mem_ram && mr != &io_mem_rom
+ && mr != &io_mem_notdirty && !mr->rom_device
+ && mr != &io_mem_watch;
+}
+
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
#endif
-#define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
-
#if defined(CONFIG_USER_ONLY)
/* Currently it is not recommended to allocate big chunks of data in
- user mode. It will change when a dedicated libc will be used */
+ user mode. It will change when a dedicated libc will be used. */
+/* ??? 64-bit hosts ought to have no problem mmaping data outside the
+ region in which the guest needs to run. Revisit this. */
#define USE_STATIC_CODE_GEN_BUFFER
#endif
-#ifdef USE_STATIC_CODE_GEN_BUFFER
-static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
- __attribute__((aligned (CODE_GEN_ALIGN)));
+/* ??? Should configure for this, not list operating systems here. */
+#if (defined(__linux__) \
+ || defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
+ || defined(__DragonFly__) || defined(__OpenBSD__) \
+ || defined(__NetBSD__))
+# define USE_MMAP
#endif
-static void code_gen_alloc(unsigned long tb_size)
-{
-#ifdef USE_STATIC_CODE_GEN_BUFFER
- code_gen_buffer = static_code_gen_buffer;
- code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
- map_exec(code_gen_buffer, code_gen_buffer_size);
-#else
- code_gen_buffer_size = tb_size;
- if (code_gen_buffer_size == 0) {
-#if defined(CONFIG_USER_ONLY)
- code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
-#else
- /* XXX: needs adjustments */
- code_gen_buffer_size = (unsigned long)(ram_size / 4);
-#endif
- }
- if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
- code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
- /* The code gen buffer location may have constraints depending on
- the host cpu and OS */
-#if defined(__linux__)
- {
- int flags;
- void *start = NULL;
+/* Minimum size of the code gen buffer. This number is randomly chosen,
+ but not so small that we can't have a fair number of TB's live. */
+#define MIN_CODE_GEN_BUFFER_SIZE (1024u * 1024)
- flags = MAP_PRIVATE | MAP_ANONYMOUS;
+/* Maximum size of the code gen buffer we'd like to use. Unless otherwise
+ indicated, this is constrained by the range of direct branches on the
+ host cpu, as used by the TCG implementation of goto_tb. */
#if defined(__x86_64__)
- flags |= MAP_32BIT;
- /* Cannot map more than that */
- if (code_gen_buffer_size > (800 * 1024 * 1024))
- code_gen_buffer_size = (800 * 1024 * 1024);
-#elif defined(__sparc_v9__)
- // Map the buffer below 2G, so we can use direct calls and branches
- flags |= MAP_FIXED;
- start = (void *) 0x60000000UL;
- if (code_gen_buffer_size > (512 * 1024 * 1024))
- code_gen_buffer_size = (512 * 1024 * 1024);
+# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
+#elif defined(__sparc__)
+# define MAX_CODE_GEN_BUFFER_SIZE (2ul * 1024 * 1024 * 1024)
#elif defined(__arm__)
- /* Keep the buffer no bigger than 16MB to branch between blocks */
- if (code_gen_buffer_size > 16 * 1024 * 1024)
- code_gen_buffer_size = 16 * 1024 * 1024;
+# define MAX_CODE_GEN_BUFFER_SIZE (16u * 1024 * 1024)
#elif defined(__s390x__)
- /* Map the buffer so that we can use direct calls and branches. */
- /* We have a +- 4GB range on the branches; leave some slop. */
- if (code_gen_buffer_size > (3ul * 1024 * 1024 * 1024)) {
- code_gen_buffer_size = 3ul * 1024 * 1024 * 1024;
- }
- start = (void *)0x90000000UL;
+ /* We have a +- 4GB range on the branches; leave some slop. */
+# define MAX_CODE_GEN_BUFFER_SIZE (3ul * 1024 * 1024 * 1024)
+#else
+# define MAX_CODE_GEN_BUFFER_SIZE ((size_t)-1)
#endif
- code_gen_buffer = mmap(start, code_gen_buffer_size,
- PROT_WRITE | PROT_READ | PROT_EXEC,
- flags, -1, 0);
- if (code_gen_buffer == MAP_FAILED) {
- fprintf(stderr, "Could not allocate dynamic translator buffer\n");
- exit(1);
- }
- }
-#elif defined(__FreeBSD__) || defined(__FreeBSD_kernel__) \
- || defined(__DragonFly__) || defined(__OpenBSD__) \
- || defined(__NetBSD__)
- {
- int flags;
- void *addr = NULL;
- flags = MAP_PRIVATE | MAP_ANONYMOUS;
-#if defined(__x86_64__)
- /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
- * 0x40000000 is free */
- flags |= MAP_FIXED;
- addr = (void *)0x40000000;
- /* Cannot map more than that */
- if (code_gen_buffer_size > (800 * 1024 * 1024))
- code_gen_buffer_size = (800 * 1024 * 1024);
-#elif defined(__sparc_v9__)
- // Map the buffer below 2G, so we can use direct calls and branches
- flags |= MAP_FIXED;
- addr = (void *) 0x60000000UL;
- if (code_gen_buffer_size > (512 * 1024 * 1024)) {
- code_gen_buffer_size = (512 * 1024 * 1024);
- }
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE_1 (32u * 1024 * 1024)
+
+#define DEFAULT_CODE_GEN_BUFFER_SIZE \
+ (DEFAULT_CODE_GEN_BUFFER_SIZE_1 < MAX_CODE_GEN_BUFFER_SIZE \
+ ? DEFAULT_CODE_GEN_BUFFER_SIZE_1 : MAX_CODE_GEN_BUFFER_SIZE)
+
+static inline size_t size_code_gen_buffer(size_t tb_size)
+{
+ /* Size the buffer. */
+ if (tb_size == 0) {
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+ tb_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
+#else
+ /* ??? Needs adjustments. */
+ /* ??? If we relax the requirement that CONFIG_USER_ONLY use the
+ static buffer, we could size this on RESERVED_VA, on the text
+ segment size of the executable, or continue to use the default. */
+ tb_size = (unsigned long)(ram_size / 4);
#endif
- code_gen_buffer = mmap(addr, code_gen_buffer_size,
- PROT_WRITE | PROT_READ | PROT_EXEC,
- flags, -1, 0);
- if (code_gen_buffer == MAP_FAILED) {
- fprintf(stderr, "Could not allocate dynamic translator buffer\n");
- exit(1);
- }
}
+ if (tb_size < MIN_CODE_GEN_BUFFER_SIZE) {
+ tb_size = MIN_CODE_GEN_BUFFER_SIZE;
+ }
+ if (tb_size > MAX_CODE_GEN_BUFFER_SIZE) {
+ tb_size = MAX_CODE_GEN_BUFFER_SIZE;
+ }
+ code_gen_buffer_size = tb_size;
+ return tb_size;
+}
+
+#ifdef USE_STATIC_CODE_GEN_BUFFER
+static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE]
+ __attribute__((aligned(CODE_GEN_ALIGN)));
+
+static inline void *alloc_code_gen_buffer(void)
+{
+ map_exec(static_code_gen_buffer, code_gen_buffer_size);
+ return static_code_gen_buffer;
+}
+#elif defined(USE_MMAP)
+static inline void *alloc_code_gen_buffer(void)
+{
+ int flags = MAP_PRIVATE | MAP_ANONYMOUS;
+ uintptr_t start = 0;
+ void *buf;
+
+ /* Constrain the position of the buffer based on the host cpu.
+ Note that these addresses are chosen in concert with the
+ addresses assigned in the relevant linker script file. */
+# if defined(__PIE__) || defined(__PIC__)
+ /* Don't bother setting a preferred location if we're building
+ a position-independent executable. We're more likely to get
+ an address near the main executable if we let the kernel
+ choose the address. */
+# elif defined(__x86_64__) && defined(MAP_32BIT)
+ /* Force the memory down into low memory with the executable.
+ Leave the choice of exact location with the kernel. */
+ flags |= MAP_32BIT;
+ /* Cannot expect to map more than 800MB in low memory. */
+ if (code_gen_buffer_size > 800u * 1024 * 1024) {
+ code_gen_buffer_size = 800u * 1024 * 1024;
+ }
+# elif defined(__sparc__)
+ start = 0x40000000ul;
+# elif defined(__s390x__)
+ start = 0x90000000ul;
+# endif
+
+ buf = mmap((void *)start, code_gen_buffer_size,
+ PROT_WRITE | PROT_READ | PROT_EXEC, flags, -1, 0);
+ return buf == MAP_FAILED ? NULL : buf;
+}
#else
- code_gen_buffer = g_malloc(code_gen_buffer_size);
- map_exec(code_gen_buffer, code_gen_buffer_size);
-#endif
-#endif /* !USE_STATIC_CODE_GEN_BUFFER */
- map_exec(code_gen_prologue, sizeof(code_gen_prologue));
+static inline void *alloc_code_gen_buffer(void)
+{
+ void *buf = g_malloc(code_gen_buffer_size);
+ if (buf) {
+ map_exec(buf, code_gen_buffer_size);
+ }
+ return buf;
+}
+#endif /* USE_STATIC_CODE_GEN_BUFFER, USE_MMAP */
+
+static inline void code_gen_alloc(size_t tb_size)
+{
+ code_gen_buffer_size = size_code_gen_buffer(tb_size);
+ code_gen_buffer = alloc_code_gen_buffer();
+ if (code_gen_buffer == NULL) {
+ fprintf(stderr, "Could not allocate dynamic translator buffer\n");
+ exit(1);
+ }
+
+ qemu_madvise(code_gen_buffer, code_gen_buffer_size, QEMU_MADV_HUGEPAGE);
+
+ /* Steal room for the prologue at the end of the buffer. This ensures
+ (via the MAX_CODE_GEN_BUFFER_SIZE limits above) that direct branches
+ from TB's to the prologue are going to be in range. It also means
+ that we don't need to mark (additional) portions of the data segment
+ as executable. */
+ code_gen_prologue = code_gen_buffer + code_gen_buffer_size - 1024;
+ code_gen_buffer_size -= 1024;
+
code_gen_buffer_max_size = code_gen_buffer_size -
(TCG_MAX_OP_SIZE * OPC_BUF_SIZE);
code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
cpu_gen_init();
code_gen_alloc(tb_size);
code_gen_ptr = code_gen_buffer;
+ tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
page_init();
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
/* There's no guest base to take into account, so go ahead and
static int cpu_common_post_load(void *opaque, int version_id)
{
- CPUState *env = opaque;
+ CPUArchState *env = opaque;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
.minimum_version_id_old = 1,
.post_load = cpu_common_post_load,
.fields = (VMStateField []) {
- VMSTATE_UINT32(halted, CPUState),
- VMSTATE_UINT32(interrupt_request, CPUState),
+ VMSTATE_UINT32(halted, CPUArchState),
+ VMSTATE_UINT32(interrupt_request, CPUArchState),
VMSTATE_END_OF_LIST()
}
};
#endif
-CPUState *qemu_get_cpu(int cpu)
+CPUArchState *qemu_get_cpu(int cpu)
{
- CPUState *env = first_cpu;
+ CPUArchState *env = first_cpu;
while (env) {
if (env->cpu_index == cpu)
return env;
}
-void cpu_exec_init(CPUState *env)
+void cpu_exec_init(CPUArchState *env)
{
- CPUState **penv;
+#ifndef CONFIG_USER_ONLY
+ CPUState *cpu = ENV_GET_CPU(env);
+#endif
+ CPUArchState **penv;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
QTAILQ_INIT(&env->breakpoints);
QTAILQ_INIT(&env->watchpoints);
#ifndef CONFIG_USER_ONLY
- env->thread_id = qemu_get_thread_id();
+ cpu->thread_id = qemu_get_thread_id();
#endif
*penv = env;
#if defined(CONFIG_USER_ONLY)
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
-void tb_flush(CPUState *env1)
+void tb_flush(CPUArchState *env1)
{
- CPUState *env;
+ CPUArchState *env;
#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
(unsigned long)(code_gen_ptr - code_gen_buffer),
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (tb1 == tb) {
*ptb = tb1->page_next[n1];
break;
/* find tb(n) in circular list */
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
if (n1 == 2) {
another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
- tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
+ tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
- CPUState *env;
+ CPUArchState *env;
PageDesc *p;
unsigned int h, n1;
tb_page_addr_t phys_pc;
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
- n1 = (long)tb1 & 3;
+ n1 = (uintptr_t)tb1 & 3;
if (n1 == 2)
break;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
tb2 = tb1->jmp_next[n1];
tb_reset_jump(tb1, n1);
tb1->jmp_next[n1] = NULL;
tb1 = tb2;
}
- tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
tb_phys_invalidate_count++;
}
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
}
}
-TranslationBlock *tb_gen_code(CPUState *env,
+TranslationBlock *tb_gen_code(CPUArchState *env,
target_ulong pc, target_ulong cs_base,
int flags, int cflags)
{
tb->flags = flags;
tb->cflags = cflags;
cpu_gen_code(env, tb, &code_gen_size);
- code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+ code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
+ CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
return tb;
}
-/* invalidate all TBs which intersect with the target physical page
- starting in range [start;end[. NOTE: start and end must refer to
- the same physical page. 'is_cpu_write_access' should be true if called
- from a real cpu write access: the virtual CPU will exit the current
- TB if code is modified inside this TB. */
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end may refer to *different* physical pages.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
+void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access)
+{
+ while (start < end) {
+ tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
+ start &= TARGET_PAGE_MASK;
+ start += TARGET_PAGE_SIZE;
+ }
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end must refer to the *same* physical page.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access)
{
TranslationBlock *tb, *tb_next, *saved_tb;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
tb_page_addr_t tb_start, tb_end;
PageDesc *p;
int n;
/* XXX: see if in some cases it could be faster to invalidate all the code */
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
tb_next = tb->page_next[n];
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
cpu_single_env->mem_io_vaddr, len,
cpu_single_env->eip,
- cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
+ cpu_single_env->eip +
+ (intptr_t)cpu_single_env->segs[R_CS].base);
}
#endif
p = page_find(start >> TARGET_PAGE_BITS);
#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
- unsigned long pc, void *puc)
+ uintptr_t pc, void *puc)
{
TranslationBlock *tb;
PageDesc *p;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
TranslationBlock *current_tb = NULL;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
int current_tb_modified = 0;
target_ulong current_pc = 0;
target_ulong current_cs_base = 0;
}
#endif
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
(current_tb->cflags & CF_COUNT_MASK) != 1) {
#ifndef CONFIG_USER_ONLY
page_already_protected = p->first_tb != NULL;
#endif
- p->first_tb = (TranslationBlock *)((long)tb | n);
+ p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
invalidate_page_bitmap(p);
#if defined(TARGET_HAS_SMC) || 1
/* add a new TB and link it to the physical page tables. phys_page2 is
(-1) to indicate that only one page contains the TB. */
-void tb_link_page(TranslationBlock *tb,
- tb_page_addr_t phys_pc, tb_page_addr_t phys_page2)
+static void tb_link_page(TranslationBlock *tb, tb_page_addr_t phys_pc,
+ tb_page_addr_t phys_page2)
{
unsigned int h;
TranslationBlock **ptb;
else
tb->page_addr[1] = -1;
- tb->jmp_first = (TranslationBlock *)((long)tb | 2);
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
mmap_unlock();
}
+#if defined(CONFIG_QEMU_LDST_OPTIMIZATION) && defined(CONFIG_SOFTMMU)
+/* check whether the given addr is in TCG generated code buffer or not */
+bool is_tcg_gen_code(uintptr_t tc_ptr)
+{
+ /* This can be called during code generation, code_gen_buffer_max_size
+ is used instead of code_gen_ptr for upper boundary checking */
+ return (tc_ptr >= (uintptr_t)code_gen_buffer &&
+ tc_ptr < (uintptr_t)(code_gen_buffer + code_gen_buffer_max_size));
+}
+#endif
+
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
tb[1].tc_ptr. Return NULL if not found */
-TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
{
int m_min, m_max, m;
- unsigned long v;
+ uintptr_t v;
TranslationBlock *tb;
if (nb_tbs <= 0)
return NULL;
- if (tc_ptr < (unsigned long)code_gen_buffer ||
- tc_ptr >= (unsigned long)code_gen_ptr)
+ if (tc_ptr < (uintptr_t)code_gen_buffer ||
+ tc_ptr >= (uintptr_t)code_gen_ptr) {
return NULL;
+ }
/* binary search (cf Knuth) */
m_min = 0;
m_max = nb_tbs - 1;
while (m_min <= m_max) {
m = (m_min + m_max) >> 1;
tb = &tbs[m];
- v = (unsigned long)tb->tc_ptr;
+ v = (uintptr_t)tb->tc_ptr;
if (v == tc_ptr)
return tb;
else if (tc_ptr < v) {
if (tb1 != NULL) {
/* find head of list */
for(;;) {
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
ptb = &tb_next->jmp_first;
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
ptb = &tb1->jmp_next[n1];
#if defined(TARGET_HAS_ICE)
#if defined(CONFIG_USER_ONLY)
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
{
tb_invalidate_phys_page_range(pc, pc + 1, 0);
}
#else
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+void tb_invalidate_phys_addr(hwaddr addr)
{
- target_phys_addr_t addr;
ram_addr_t ram_addr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- addr = cpu_get_phys_page_debug(env, pc);
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!(memory_region_is_ram(section.mr)
- || (section.mr->rom_device && section.mr->readable))) {
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
+ if (!(memory_region_is_ram(section->mr)
+ || (section->mr->rom_device && section->mr->readable))) {
return;
}
- ram_addr = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region) & TARGET_PAGE_MASK;
- ram_addr |= (pc & ~TARGET_PAGE_MASK);
+ ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
}
+
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
+{
+ tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
+ (pc & ~TARGET_PAGE_MASK));
+}
#endif
#endif /* TARGET_HAS_ICE */
#if defined(CONFIG_USER_ONLY)
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
}
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
return -ENOSYS;
}
#else
/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
target_ulong len_mask = ~(len - 1);
CPUWatchpoint *wp;
/* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
- if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
+ if ((len & (len - 1)) || (addr & ~len_mask) ||
+ len == 0 || len > TARGET_PAGE_SIZE) {
fprintf(stderr, "qemu: tried to set invalid watchpoint at "
TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
return -EINVAL;
}
/* Remove a specific watchpoint. */
-int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
int flags)
{
target_ulong len_mask = ~(len - 1);
}
/* Remove a specific watchpoint by reference. */
-void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
+void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
{
QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
}
/* Remove all matching watchpoints. */
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
CPUWatchpoint *wp, *next;
#endif
/* Add a breakpoint. */
-int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint)
{
#if defined(TARGET_HAS_ICE)
}
/* Remove a specific breakpoint. */
-int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
+int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
}
/* Remove a specific breakpoint by reference. */
-void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
+void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
{
#if defined(TARGET_HAS_ICE)
QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
}
/* Remove all matching breakpoints. */
-void cpu_breakpoint_remove_all(CPUState *env, int mask)
+void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp, *next;
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
-void cpu_single_step(CPUState *env, int enabled)
+void cpu_single_step(CPUArchState *env, int enabled)
{
#if defined(TARGET_HAS_ICE)
if (env->singlestep_enabled != enabled) {
#endif
}
-/* enable or disable low levels log */
-void cpu_set_log(int log_flags)
-{
- loglevel = log_flags;
- if (loglevel && !logfile) {
- logfile = fopen(logfilename, log_append ? "a" : "w");
- if (!logfile) {
- perror(logfilename);
- _exit(1);
- }
-#if !defined(CONFIG_SOFTMMU)
- /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
- {
- static char logfile_buf[4096];
- setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
- }
-#elif defined(_WIN32)
- /* Win32 doesn't support line-buffering, so use unbuffered output. */
- setvbuf(logfile, NULL, _IONBF, 0);
-#else
- setvbuf(logfile, NULL, _IOLBF, 0);
-#endif
- log_append = 1;
- }
- if (!loglevel && logfile) {
- fclose(logfile);
- logfile = NULL;
- }
-}
-
-void cpu_set_log_filename(const char *filename)
-{
- logfilename = strdup(filename);
- if (logfile) {
- fclose(logfile);
- logfile = NULL;
- }
- cpu_set_log(loglevel);
-}
-
-static void cpu_unlink_tb(CPUState *env)
+static void cpu_unlink_tb(CPUArchState *env)
{
/* FIXME: TB unchaining isn't SMP safe. For now just ignore the
problem and hope the cpu will stop of its own accord. For userspace
#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
-static void tcg_handle_interrupt(CPUState *env, int mask)
+static void tcg_handle_interrupt(CPUArchState *env, int mask)
{
+ CPUState *cpu = ENV_GET_CPU(env);
int old_mask;
old_mask = env->interrupt_request;
* If called from iothread context, wake the target cpu in
* case its halted.
*/
- if (!qemu_cpu_is_self(env)) {
- qemu_cpu_kick(env);
+ if (!qemu_cpu_is_self(cpu)) {
+ qemu_cpu_kick(cpu);
return;
}
#else /* CONFIG_USER_ONLY */
-void cpu_interrupt(CPUState *env, int mask)
+void cpu_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request |= mask;
cpu_unlink_tb(env);
}
#endif /* CONFIG_USER_ONLY */
-void cpu_reset_interrupt(CPUState *env, int mask)
+void cpu_reset_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request &= ~mask;
}
-void cpu_exit(CPUState *env)
+void cpu_exit(CPUArchState *env)
{
env->exit_request = 1;
cpu_unlink_tb(env);
}
-const CPULogItem cpu_log_items[] = {
- { CPU_LOG_TB_OUT_ASM, "out_asm",
- "show generated host assembly code for each compiled TB" },
- { CPU_LOG_TB_IN_ASM, "in_asm",
- "show target assembly code for each compiled TB" },
- { CPU_LOG_TB_OP, "op",
- "show micro ops for each compiled TB" },
- { CPU_LOG_TB_OP_OPT, "op_opt",
- "show micro ops "
-#ifdef TARGET_I386
- "before eflags optimization and "
-#endif
- "after liveness analysis" },
- { CPU_LOG_INT, "int",
- "show interrupts/exceptions in short format" },
- { CPU_LOG_EXEC, "exec",
- "show trace before each executed TB (lots of logs)" },
- { CPU_LOG_TB_CPU, "cpu",
- "show CPU state before block translation" },
-#ifdef TARGET_I386
- { CPU_LOG_PCALL, "pcall",
- "show protected mode far calls/returns/exceptions" },
- { CPU_LOG_RESET, "cpu_reset",
- "show CPU state before CPU resets" },
-#endif
-#ifdef DEBUG_IOPORT
- { CPU_LOG_IOPORT, "ioport",
- "show all i/o ports accesses" },
-#endif
- { 0, NULL, NULL },
-};
-
-static int cmp1(const char *s1, int n, const char *s2)
-{
- if (strlen(s2) != n)
- return 0;
- return memcmp(s1, s2, n) == 0;
-}
-
-/* takes a comma separated list of log masks. Return 0 if error. */
-int cpu_str_to_log_mask(const char *str)
-{
- const CPULogItem *item;
- int mask;
- const char *p, *p1;
-
- p = str;
- mask = 0;
- for(;;) {
- p1 = strchr(p, ',');
- if (!p1)
- p1 = p + strlen(p);
- if(cmp1(p,p1-p,"all")) {
- for(item = cpu_log_items; item->mask != 0; item++) {
- mask |= item->mask;
- }
- } else {
- for(item = cpu_log_items; item->mask != 0; item++) {
- if (cmp1(p, p1 - p, item->name))
- goto found;
- }
- return 0;
- }
- found:
- mask |= item->mask;
- if (*p1 != ',')
- break;
- p = p1 + 1;
- }
- return mask;
-}
-
-void cpu_abort(CPUState *env, const char *fmt, ...)
+void cpu_abort(CPUArchState *env, const char *fmt, ...)
{
va_list ap;
va_list ap2;
fprintf(stderr, "qemu: fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
-#ifdef TARGET_I386
- cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
-#else
- cpu_dump_state(env, stderr, fprintf, 0);
-#endif
+ cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU | CPU_DUMP_CCOP);
if (qemu_log_enabled()) {
qemu_log("qemu: fatal: ");
qemu_log_vprintf(fmt, ap2);
qemu_log("\n");
-#ifdef TARGET_I386
- log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
-#else
- log_cpu_state(env, 0);
-#endif
+ log_cpu_state(env, CPU_DUMP_FPU | CPU_DUMP_CCOP);
qemu_log_flush();
qemu_log_close();
}
abort();
}
-CPUState *cpu_copy(CPUState *env)
+CPUArchState *cpu_copy(CPUArchState *env)
{
- CPUState *new_env = cpu_init(env->cpu_model_str);
- CPUState *next_cpu = new_env->next_cpu;
+ CPUArchState *new_env = cpu_init(env->cpu_model_str);
+ CPUArchState *next_cpu = new_env->next_cpu;
int cpu_index = new_env->cpu_index;
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
CPUWatchpoint *wp;
#endif
- memcpy(new_env, env, sizeof(CPUState));
+ memcpy(new_env, env, sizeof(CPUArchState));
/* Preserve chaining and index. */
new_env->next_cpu = next_cpu;
}
#if !defined(CONFIG_USER_ONLY)
-
-static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
{
unsigned int i;
TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}
-static CPUTLBEntry s_cputlb_empty_entry = {
- .addr_read = -1,
- .addr_write = -1,
- .addr_code = -1,
- .addend = -1,
-};
-
-/* NOTE:
- * If flush_global is true (the usual case), flush all tlb entries.
- * If flush_global is false, flush (at least) all tlb entries not
- * marked global.
- *
- * Since QEMU doesn't currently implement a global/not-global flag
- * for tlb entries, at the moment tlb_flush() will also flush all
- * tlb entries in the flush_global == false case. This is OK because
- * CPU architectures generally permit an implementation to drop
- * entries from the TLB at any time, so flushing more entries than
- * required is only an efficiency issue, not a correctness issue.
- */
-void tlb_flush(CPUState *env, int flush_global)
-{
- int i;
-
-#if defined(DEBUG_TLB)
- printf("tlb_flush:\n");
-#endif
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- for(i = 0; i < CPU_TLB_SIZE; i++) {
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
- }
- }
-
- memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
-
- env->tlb_flush_addr = -1;
- env->tlb_flush_mask = 0;
- tlb_flush_count++;
-}
-
-static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
+static void tlb_reset_dirty_range_all(ram_addr_t start, ram_addr_t end,
+ uintptr_t length)
{
- if (addr == (tlb_entry->addr_read &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_write &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_code &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
- *tlb_entry = s_cputlb_empty_entry;
- }
-}
+ uintptr_t start1;
-void tlb_flush_page(CPUState *env, target_ulong addr)
-{
- int i;
- int mmu_idx;
-
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
-#endif
- /* Check if we need to flush due to large pages. */
- if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: forced full flush ("
- TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
- env->tlb_flush_addr, env->tlb_flush_mask);
-#endif
- tlb_flush(env, 1);
- return;
+ /* we modify the TLB cache so that the dirty bit will be set again
+ when accessing the range */
+ start1 = (uintptr_t)qemu_safe_ram_ptr(start);
+ /* Check that we don't span multiple blocks - this breaks the
+ address comparisons below. */
+ if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
+ != (end - 1) - start) {
+ abort();
}
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- addr &= TARGET_PAGE_MASK;
- i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
- tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
-
- tlb_flush_jmp_cache(env, addr);
-}
-
-/* update the TLBs so that writes to code in the virtual page 'addr'
- can be detected */
-static void tlb_protect_code(ram_addr_t ram_addr)
-{
- cpu_physical_memory_reset_dirty(ram_addr,
- ram_addr + TARGET_PAGE_SIZE,
- CODE_DIRTY_FLAG);
-}
-
-/* update the TLB so that writes in physical page 'phys_addr' are no longer
- tested for self modifying code */
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
- target_ulong vaddr)
-{
- cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
-}
+ cpu_tlb_reset_dirty_all(start1, length);
-static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
- unsigned long start, unsigned long length)
-{
- unsigned long addr;
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
- addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
- if ((addr - start) < length) {
- tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
- }
- }
}
/* Note: start and end must be within the same ram block. */
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags)
{
- CPUState *env;
- unsigned long length, start1;
- int i;
+ uintptr_t length;
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
return;
cpu_physical_memory_mask_dirty_range(start, length, dirty_flags);
- /* we modify the TLB cache so that the dirty bit will be set again
- when accessing the range */
- start1 = (unsigned long)qemu_safe_ram_ptr(start);
- /* Check that we don't span multiple blocks - this breaks the
- address comparisons below. */
- if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
- != (end - 1) - start) {
- abort();
- }
-
- for(env = first_cpu; env != NULL; env = env->next_cpu) {
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
- start1, length);
- }
+ if (tcg_enabled()) {
+ tlb_reset_dirty_range_all(start, end, length);
}
}
-int cpu_physical_memory_set_dirty_tracking(int enable)
+static int cpu_physical_memory_set_dirty_tracking(int enable)
{
int ret = 0;
in_migration = enable;
return ret;
}
-static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
-{
- ram_addr_t ram_addr;
- void *p;
-
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
- p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
- + tlb_entry->addend);
- ram_addr = qemu_ram_addr_from_host_nofail(p);
- if (!cpu_physical_memory_is_dirty(ram_addr)) {
- tlb_entry->addr_write |= TLB_NOTDIRTY;
- }
- }
-}
-
-/* update the TLB according to the current state of the dirty bits */
-void cpu_tlb_update_dirty(CPUState *env)
-{
- int i;
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
- }
-}
-
-static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
-{
- if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
- tlb_entry->addr_write = vaddr;
-}
-
-/* update the TLB corresponding to virtual page vaddr
- so that it is no longer dirty */
-static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
+hwaddr memory_region_section_get_iotlb(CPUArchState *env,
+ MemoryRegionSection *section,
+ target_ulong vaddr,
+ hwaddr paddr,
+ int prot,
+ target_ulong *address)
{
- int i;
- int mmu_idx;
-
- vaddr &= TARGET_PAGE_MASK;
- i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
- tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
-}
-
-/* Our TLB does not support large pages, so remember the area covered by
- large pages and trigger a full TLB flush if these are invalidated. */
-static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
- target_ulong size)
-{
- target_ulong mask = ~(size - 1);
-
- if (env->tlb_flush_addr == (target_ulong)-1) {
- env->tlb_flush_addr = vaddr & mask;
- env->tlb_flush_mask = mask;
- return;
- }
- /* Extend the existing region to include the new page.
- This is a compromise between unnecessary flushes and the cost
- of maintaining a full variable size TLB. */
- mask &= env->tlb_flush_mask;
- while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
- mask <<= 1;
- }
- env->tlb_flush_addr &= mask;
- env->tlb_flush_mask = mask;
-}
-
-static bool is_ram_rom(MemoryRegionSection *s)
-{
- return memory_region_is_ram(s->mr);
-}
-
-static bool is_romd(MemoryRegionSection *s)
-{
- MemoryRegion *mr = s->mr;
-
- return mr->rom_device && mr->readable;
-}
-
-static bool is_ram_rom_romd(MemoryRegionSection *s)
-{
- return is_ram_rom(s) || is_romd(s);
-}
-
-/* Add a new TLB entry. At most one entry for a given virtual address
- is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
- supplied size is only used by tlb_flush_page. */
-void tlb_set_page(CPUState *env, target_ulong vaddr,
- target_phys_addr_t paddr, int prot,
- int mmu_idx, target_ulong size)
-{
- MemoryRegionSection section;
- unsigned int index;
- target_ulong address;
- target_ulong code_address;
- unsigned long addend;
- CPUTLBEntry *te;
+ hwaddr iotlb;
CPUWatchpoint *wp;
- target_phys_addr_t iotlb;
- assert(size >= TARGET_PAGE_SIZE);
- if (size != TARGET_PAGE_SIZE) {
- tlb_add_large_page(env, vaddr, size);
- }
- section = phys_page_find(paddr >> TARGET_PAGE_BITS);
-#if defined(DEBUG_TLB)
- printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
- " prot=%x idx=%d pd=0x%08lx\n",
- vaddr, paddr, prot, mmu_idx, pd);
-#endif
-
- address = vaddr;
- if (!is_ram_rom_romd(§ion)) {
- /* IO memory case (romd handled later) */
- address |= TLB_MMIO;
- }
- if (is_ram_rom_romd(§ion)) {
- addend = (unsigned long)(memory_region_get_ram_ptr(section.mr)
- + section.offset_within_region);
- } else {
- addend = 0;
- }
- if (is_ram_rom(§ion)) {
+ if (memory_region_is_ram(section->mr)) {
/* Normal RAM. */
- iotlb = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region) & TARGET_PAGE_MASK;
- if (!section.readonly)
- iotlb |= io_mem_notdirty.ram_addr;
- else
- iotlb |= io_mem_rom.ram_addr;
+ iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, paddr);
+ if (!section->readonly) {
+ iotlb |= phys_section_notdirty;
+ } else {
+ iotlb |= phys_section_rom;
+ }
} else {
/* IO handlers are currently passed a physical address.
It would be nice to pass an offset from the base address
and avoid full address decoding in every device.
We can't use the high bits of pd for this because
IO_MEM_ROMD uses these as a ram address. */
- iotlb = memory_region_get_ram_addr(section.mr) & ~TARGET_PAGE_MASK;
- iotlb += section.offset_within_region;
+ iotlb = section - phys_sections;
+ iotlb += memory_region_section_addr(section, paddr);
}
- code_address = address;
/* Make accesses to pages with watchpoints go via the
watchpoint trap routines. */
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
/* Avoid trapping reads of pages with a write breakpoint. */
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
- iotlb = io_mem_watch.ram_addr + paddr;
- address |= TLB_MMIO;
+ iotlb = phys_section_watch + paddr;
+ *address |= TLB_MMIO;
break;
}
}
}
- index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- env->iotlb[mmu_idx][index] = iotlb - vaddr;
- te = &env->tlb_table[mmu_idx][index];
- te->addend = addend - vaddr;
- if (prot & PAGE_READ) {
- te->addr_read = address;
- } else {
- te->addr_read = -1;
- }
-
- if (prot & PAGE_EXEC) {
- te->addr_code = code_address;
- } else {
- te->addr_code = -1;
- }
- if (prot & PAGE_WRITE) {
- if ((memory_region_is_ram(section.mr) && section.readonly)
- || is_romd(§ion)) {
- /* Write access calls the I/O callback. */
- te->addr_write = address | TLB_MMIO;
- } else if (memory_region_is_ram(section.mr)
- && !cpu_physical_memory_is_dirty(
- section.mr->ram_addr
- + section.offset_within_region)) {
- te->addr_write = address | TLB_NOTDIRTY;
- } else {
- te->addr_write = address;
- }
- } else {
- te->addr_write = -1;
- }
+ return iotlb;
}
#else
-
-void tlb_flush(CPUState *env, int flush_global)
-{
-}
-
-void tlb_flush_page(CPUState *env, target_ulong addr)
-{
-}
-
/*
* Walks guest process memory "regions" one by one
* and calls callback function 'fn' for each region.
{
walk_memory_regions_fn fn;
void *priv;
- unsigned long start;
+ uintptr_t start;
int prot;
};
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
struct walk_memory_regions_data data;
- unsigned long i;
+ uintptr_t i;
data.fn = fn;
data.priv = priv;
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was successfully handled. */
-int page_unprotect(target_ulong address, unsigned long pc, void *puc)
+int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
unsigned int prot;
PageDesc *p;
mmap_unlock();
return 0;
}
-
-static inline void tlb_set_dirty(CPUState *env,
- unsigned long addr, target_ulong vaddr)
-{
-}
#endif /* defined(CONFIG_USER_ONLY) */
#if !defined(CONFIG_USER_ONLY)
#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
typedef struct subpage_t {
MemoryRegion iomem;
- target_phys_addr_t base;
+ hwaddr base;
uint16_t sub_section[TARGET_PAGE_SIZE];
} subpage_t;
static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
uint16_t section);
-static subpage_t *subpage_init(target_phys_addr_t base);
+static subpage_t *subpage_init(hwaddr base);
static void destroy_page_desc(uint16_t section_index)
{
MemoryRegionSection *section = &phys_sections[section_index];
unsigned i;
PhysPageEntry *p;
- if (lp->u.node == PHYS_MAP_NODE_NIL) {
+ if (lp->ptr == PHYS_MAP_NODE_NIL) {
return;
}
- p = phys_map_nodes[lp->u.node];
+ p = phys_map_nodes[lp->ptr];
for (i = 0; i < L2_SIZE; ++i) {
- if (level > 0) {
+ if (!p[i].is_leaf) {
destroy_l2_mapping(&p[i], level - 1);
} else {
- destroy_page_desc(p[i].u.leaf);
+ destroy_page_desc(p[i].ptr);
}
}
- lp->u.node = PHYS_MAP_NODE_NIL;
+ lp->is_leaf = 0;
+ lp->ptr = PHYS_MAP_NODE_NIL;
}
-static void destroy_all_mappings(void)
+static void destroy_all_mappings(AddressSpaceDispatch *d)
{
- destroy_l2_mapping(&phys_map, P_L2_LEVELS - 1);
+ destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
phys_map_nodes_reset();
}
phys_sections_nb = 0;
}
-/* register physical memory.
- For RAM, 'size' must be a multiple of the target page size.
- If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
- io memory page. The address used when calling the IO function is
- the offset from the start of the region, plus region_offset. Both
- start_addr and region_offset are rounded down to a page boundary
- before calculating this offset. This should not be a problem unless
- the low bits of start_addr and region_offset differ. */
-static void register_subpage(MemoryRegionSection *section)
+static void register_subpage(AddressSpaceDispatch *d, MemoryRegionSection *section)
{
subpage_t *subpage;
- target_phys_addr_t base = section->offset_within_address_space
+ hwaddr base = section->offset_within_address_space
& TARGET_PAGE_MASK;
- MemoryRegionSection existing = phys_page_find(base >> TARGET_PAGE_BITS);
+ MemoryRegionSection *existing = phys_page_find(d, base >> TARGET_PAGE_BITS);
MemoryRegionSection subsection = {
.offset_within_address_space = base,
.size = TARGET_PAGE_SIZE,
};
- target_phys_addr_t start, end;
+ hwaddr start, end;
- assert(existing.mr->subpage || existing.mr == &io_mem_unassigned);
+ assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
- if (!(existing.mr->subpage)) {
+ if (!(existing->mr->subpage)) {
subpage = subpage_init(base);
subsection.mr = &subpage->iomem;
- phys_page_set(base >> TARGET_PAGE_BITS, 1,
+ phys_page_set(d, base >> TARGET_PAGE_BITS, 1,
phys_section_add(&subsection));
} else {
- subpage = container_of(existing.mr, subpage_t, iomem);
+ subpage = container_of(existing->mr, subpage_t, iomem);
}
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
- end = start + section->size;
+ end = start + section->size - 1;
subpage_register(subpage, start, end, phys_section_add(section));
}
-static void register_multipage(MemoryRegionSection *section)
+static void register_multipage(AddressSpaceDispatch *d, MemoryRegionSection *section)
{
- target_phys_addr_t start_addr = section->offset_within_address_space;
+ hwaddr start_addr = section->offset_within_address_space;
ram_addr_t size = section->size;
- target_phys_addr_t addr;
+ hwaddr addr;
uint16_t section_index = phys_section_add(section);
assert(size);
addr = start_addr;
- phys_page_set(addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
+ phys_page_set(d, addr >> TARGET_PAGE_BITS, size >> TARGET_PAGE_BITS,
section_index);
}
-void cpu_register_physical_memory_log(MemoryRegionSection *section,
- bool readonly)
+static void mem_add(MemoryListener *listener, MemoryRegionSection *section)
{
+ AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
MemoryRegionSection now = *section, remain = *section;
if ((now.offset_within_address_space & ~TARGET_PAGE_MASK)
now.size = MIN(TARGET_PAGE_ALIGN(now.offset_within_address_space)
- now.offset_within_address_space,
now.size);
- register_subpage(&now);
+ register_subpage(d, &now);
remain.size -= now.size;
remain.offset_within_address_space += now.size;
remain.offset_within_region += now.size;
}
- now = remain;
- now.size &= TARGET_PAGE_MASK;
- if (now.size) {
- register_multipage(&now);
+ while (remain.size >= TARGET_PAGE_SIZE) {
+ now = remain;
+ if (remain.offset_within_region & ~TARGET_PAGE_MASK) {
+ now.size = TARGET_PAGE_SIZE;
+ register_subpage(d, &now);
+ } else {
+ now.size &= TARGET_PAGE_MASK;
+ register_multipage(d, &now);
+ }
remain.size -= now.size;
remain.offset_within_address_space += now.size;
remain.offset_within_region += now.size;
}
now = remain;
if (now.size) {
- register_subpage(&now);
+ register_subpage(d, &now);
}
}
-
-void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
-{
- if (kvm_enabled())
- kvm_coalesce_mmio_region(addr, size);
-}
-
-void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
-{
- if (kvm_enabled())
- kvm_uncoalesce_mmio_region(addr, size);
-}
-
void qemu_flush_coalesced_mmio_buffer(void)
{
if (kvm_enabled())
return offset;
}
-static ram_addr_t last_ram_offset(void)
+ram_addr_t last_ram_offset(void)
{
RAMBlock *block;
ram_addr_t last = 0;
return last;
}
+static void qemu_ram_setup_dump(void *addr, ram_addr_t size)
+{
+ int ret;
+ QemuOpts *machine_opts;
+
+ /* Use MADV_DONTDUMP, if user doesn't want the guest memory in the core */
+ machine_opts = qemu_opts_find(qemu_find_opts("machine"), 0);
+ if (machine_opts &&
+ !qemu_opt_get_bool(machine_opts, "dump-guest-core", true)) {
+ ret = qemu_madvise(addr, size, QEMU_MADV_DONTDUMP);
+ if (ret) {
+ perror("qemu_madvise");
+ fprintf(stderr, "madvise doesn't support MADV_DONTDUMP, "
+ "but dump_guest_core=off specified\n");
+ }
+ }
+}
+
void qemu_ram_set_idstr(ram_addr_t addr, const char *name, DeviceState *dev)
{
RAMBlock *new_block, *block;
assert(new_block);
assert(!new_block->idstr[0]);
- if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
- char *id = dev->parent_bus->info->get_dev_path(dev);
+ if (dev) {
+ char *id = qdev_get_dev_path(dev);
if (id) {
snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
g_free(id);
}
}
+static int memory_try_enable_merging(void *addr, size_t len)
+{
+ QemuOpts *opts;
+
+ opts = qemu_opts_find(qemu_find_opts("machine"), 0);
+ if (opts && !qemu_opt_get_bool(opts, "mem-merge", true)) {
+ /* disabled by the user */
+ return 0;
+ }
+
+ return qemu_madvise(addr, len, QEMU_MADV_MERGEABLE);
+}
+
ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
MemoryRegion *mr)
{
new_block->host = file_ram_alloc(new_block, size, mem_path);
if (!new_block->host) {
new_block->host = qemu_vmalloc(size);
- qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+ memory_try_enable_merging(new_block->host, size);
}
#else
fprintf(stderr, "-mem-path option unsupported\n");
exit(1);
#endif
} else {
-#if defined(TARGET_S390X) && defined(CONFIG_KVM)
- /* S390 KVM requires the topmost vma of the RAM to be smaller than
- an system defined value, which is at least 256GB. Larger systems
- have larger values. We put the guest between the end of data
- segment (system break) and this value. We use 32GB as a base to
- have enough room for the system break to grow. */
- new_block->host = mmap((void*)0x800000000, size,
- PROT_EXEC|PROT_READ|PROT_WRITE,
- MAP_SHARED | MAP_ANONYMOUS | MAP_FIXED, -1, 0);
- if (new_block->host == MAP_FAILED) {
- fprintf(stderr, "Allocating RAM failed\n");
- abort();
- }
-#else
if (xen_enabled()) {
xen_ram_alloc(new_block->offset, size, mr);
+ } else if (kvm_enabled()) {
+ /* some s390/kvm configurations have special constraints */
+ new_block->host = kvm_vmalloc(size);
} else {
new_block->host = qemu_vmalloc(size);
}
-#endif
- qemu_madvise(new_block->host, size, QEMU_MADV_MERGEABLE);
+ memory_try_enable_merging(new_block->host, size);
}
}
new_block->length = size;
ram_list.phys_dirty = g_realloc(ram_list.phys_dirty,
last_ram_offset() >> TARGET_PAGE_BITS);
memset(ram_list.phys_dirty + (new_block->offset >> TARGET_PAGE_BITS),
- 0xff, size >> TARGET_PAGE_BITS);
+ 0, size >> TARGET_PAGE_BITS);
+ cpu_physical_memory_set_dirty_range(new_block->offset, size, 0xff);
+
+ qemu_ram_setup_dump(new_block->host, size);
+ qemu_madvise(new_block->host, size, QEMU_MADV_HUGEPAGE);
if (kvm_enabled())
kvm_setup_guest_memory(new_block->host, size);
length, addr);
exit(1);
}
- qemu_madvise(vaddr, length, QEMU_MADV_MERGEABLE);
+ memory_try_enable_merging(vaddr, length);
+ qemu_ram_setup_dump(vaddr, length);
}
return;
}
/* Return a host pointer to ram allocated with qemu_ram_alloc.
* Same as qemu_get_ram_ptr but avoid reordering ramblocks.
*/
-void *qemu_safe_ram_ptr(ram_addr_t addr)
+static void *qemu_safe_ram_ptr(ram_addr_t addr)
{
RAMBlock *block;
/* Return a host pointer to guest's ram. Similar to qemu_get_ram_ptr
* but takes a size argument */
-void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
+static void *qemu_ram_ptr_length(ram_addr_t addr, ram_addr_t *size)
{
if (*size == 0) {
return NULL;
return ram_addr;
}
-static uint64_t unassigned_mem_read(void *opaque, target_phys_addr_t addr,
+static uint64_t unassigned_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
#ifdef DEBUG_UNASSIGNED
return 0;
}
-static void unassigned_mem_write(void *opaque, target_phys_addr_t addr,
+static void unassigned_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
#ifdef DEBUG_UNASSIGNED
.endianness = DEVICE_NATIVE_ENDIAN,
};
-static uint64_t error_mem_read(void *opaque, target_phys_addr_t addr,
+static uint64_t error_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
abort();
}
-static void error_mem_write(void *opaque, target_phys_addr_t addr,
+static void error_mem_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
abort();
.endianness = DEVICE_NATIVE_ENDIAN,
};
-static void notdirty_mem_write(void *opaque, target_phys_addr_t ram_addr,
+static void notdirty_mem_write(void *opaque, hwaddr ram_addr,
uint64_t val, unsigned size)
{
int dirty_flags;
/* Generate a debug exception if a watchpoint has been hit. */
static void check_watchpoint(int offset, int len_mask, int flags)
{
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
target_ulong pc, cs_base;
TranslationBlock *tb;
target_ulong vaddr;
tb_phys_invalidate(tb, -1);
if (wp->flags & BP_STOP_BEFORE_ACCESS) {
env->exception_index = EXCP_DEBUG;
+ cpu_loop_exit(env);
} else {
cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
tb_gen_code(env, pc, cs_base, cpu_flags, 1);
+ cpu_resume_from_signal(env, NULL);
}
- cpu_resume_from_signal(env, NULL);
}
} else {
wp->flags &= ~BP_WATCHPOINT_HIT;
/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
so these check for a hit then pass through to the normal out-of-line
phys routines. */
-static uint64_t watch_mem_read(void *opaque, target_phys_addr_t addr,
+static uint64_t watch_mem_read(void *opaque, hwaddr addr,
unsigned size)
{
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_READ);
}
}
-static void watch_mem_write(void *opaque, target_phys_addr_t addr,
+static void watch_mem_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
check_watchpoint(addr & ~TARGET_PAGE_MASK, ~(size - 1), BP_MEM_WRITE);
switch (size) {
- case 1: stb_phys(addr, val);
- case 2: stw_phys(addr, val);
- case 4: stl_phys(addr, val);
+ case 1:
+ stb_phys(addr, val);
+ break;
+ case 2:
+ stw_phys(addr, val);
+ break;
+ case 4:
+ stl_phys(addr, val);
+ break;
default: abort();
}
}
.endianness = DEVICE_NATIVE_ENDIAN,
};
-static uint64_t subpage_read(void *opaque, target_phys_addr_t addr,
+static uint64_t subpage_read(void *opaque, hwaddr addr,
unsigned len)
{
subpage_t *mmio = opaque;
addr += mmio->base;
addr -= section->offset_within_address_space;
addr += section->offset_within_region;
- return io_mem_read(section->mr->ram_addr, addr, len);
+ return io_mem_read(section->mr, addr, len);
}
-static void subpage_write(void *opaque, target_phys_addr_t addr,
+static void subpage_write(void *opaque, hwaddr addr,
uint64_t value, unsigned len)
{
subpage_t *mmio = opaque;
addr += mmio->base;
addr -= section->offset_within_address_space;
addr += section->offset_within_region;
- io_mem_write(section->mr->ram_addr, addr, value, len);
+ io_mem_write(section->mr, addr, value, len);
}
static const MemoryRegionOps subpage_ops = {
.endianness = DEVICE_NATIVE_ENDIAN,
};
-static uint64_t subpage_ram_read(void *opaque, target_phys_addr_t addr,
+static uint64_t subpage_ram_read(void *opaque, hwaddr addr,
unsigned size)
{
ram_addr_t raddr = addr;
}
}
-static void subpage_ram_write(void *opaque, target_phys_addr_t addr,
+static void subpage_ram_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
ram_addr_t raddr = addr;
return 0;
}
-static subpage_t *subpage_init(target_phys_addr_t base)
+static subpage_t *subpage_init(hwaddr base)
{
subpage_t *mmio;
return mmio;
}
-static int get_free_io_mem_idx(void)
-{
- int i;
-
- for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
- if (!io_mem_used[i]) {
- io_mem_used[i] = 1;
- return i;
- }
- fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
- return -1;
-}
-
-/* mem_read and mem_write are arrays of functions containing the
- function to access byte (index 0), word (index 1) and dword (index
- 2). Functions can be omitted with a NULL function pointer.
- If io_index is non zero, the corresponding io zone is
- modified. If it is zero, a new io zone is allocated. The return
- value can be used with cpu_register_physical_memory(). (-1) is
- returned if error. */
-static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
-{
- if (io_index <= 0) {
- io_index = get_free_io_mem_idx();
- if (io_index == -1)
- return io_index;
- } else {
- if (io_index >= IO_MEM_NB_ENTRIES)
- return -1;
- }
-
- io_mem_region[io_index] = mr;
-
- return io_index;
-}
-
-int cpu_register_io_memory(MemoryRegion *mr)
-{
- return cpu_register_io_memory_fixed(0, mr);
-}
-
-void cpu_unregister_io_memory(int io_index)
-{
- io_mem_region[io_index] = NULL;
- io_mem_used[io_index] = 0;
-}
-
static uint16_t dummy_section(MemoryRegion *mr)
{
MemoryRegionSection section = {
return phys_section_add(§ion);
}
-static void io_mem_init(void)
+MemoryRegion *iotlb_to_region(hwaddr index)
{
- int i;
+ return phys_sections[index & ~TARGET_PAGE_MASK].mr;
+}
- /* Must be first: */
+static void io_mem_init(void)
+{
memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
- assert(io_mem_ram.ram_addr == 0);
memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
"unassigned", UINT64_MAX);
"notdirty", UINT64_MAX);
memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
"subpage-ram", UINT64_MAX);
- for (i=0; i<5; i++)
- io_mem_used[i] = 1;
-
memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
"watch", UINT64_MAX);
}
+static void mem_begin(MemoryListener *listener)
+{
+ AddressSpaceDispatch *d = container_of(listener, AddressSpaceDispatch, listener);
+
+ destroy_all_mappings(d);
+ d->phys_map.ptr = PHYS_MAP_NODE_NIL;
+}
+
static void core_begin(MemoryListener *listener)
{
- destroy_all_mappings();
phys_sections_clear();
- phys_map.u.node = PHYS_MAP_NODE_NIL;
phys_section_unassigned = dummy_section(&io_mem_unassigned);
+ phys_section_notdirty = dummy_section(&io_mem_notdirty);
+ phys_section_rom = dummy_section(&io_mem_rom);
+ phys_section_watch = dummy_section(&io_mem_watch);
}
-static void core_commit(MemoryListener *listener)
+static void tcg_commit(MemoryListener *listener)
{
- CPUState *env;
+ CPUArchState *env;
/* since each CPU stores ram addresses in its TLB cache, we must
reset the modified entries */
}
}
-static void core_region_add(MemoryListener *listener,
- MemoryRegionSection *section)
-{
- cpu_register_physical_memory_log(section, section->readonly);
-}
-
-static void core_region_del(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
-static void core_region_nop(MemoryListener *listener,
- MemoryRegionSection *section)
-{
- cpu_register_physical_memory_log(section, section->readonly);
-}
-
-static void core_log_start(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
-static void core_log_stop(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
-static void core_log_sync(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
static void core_log_global_start(MemoryListener *listener)
{
cpu_physical_memory_set_dirty_tracking(1);
cpu_physical_memory_set_dirty_tracking(0);
}
-static void core_eventfd_add(MemoryListener *listener,
- MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
-{
-}
-
-static void core_eventfd_del(MemoryListener *listener,
- MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
-{
-}
-
-static void io_begin(MemoryListener *listener)
-{
-}
-
-static void io_commit(MemoryListener *listener)
-{
-}
-
static void io_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
- iorange_init(§ion->mr->iorange, &memory_region_iorange_ops,
+ MemoryRegionIORange *mrio = g_new(MemoryRegionIORange, 1);
+
+ mrio->mr = section->mr;
+ mrio->offset = section->offset_within_region;
+ iorange_init(&mrio->iorange, &memory_region_iorange_ops,
section->offset_within_address_space, section->size);
- ioport_register(§ion->mr->iorange);
+ ioport_register(&mrio->iorange);
}
static void io_region_del(MemoryListener *listener,
isa_unassign_ioport(section->offset_within_address_space, section->size);
}
-static void io_region_nop(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
-static void io_log_start(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
-static void io_log_stop(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
-static void io_log_sync(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
-static void io_log_global_start(MemoryListener *listener)
-{
-}
-
-static void io_log_global_stop(MemoryListener *listener)
-{
-}
-
-static void io_eventfd_add(MemoryListener *listener,
- MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
-{
-}
-
-static void io_eventfd_del(MemoryListener *listener,
- MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
-{
-}
-
static MemoryListener core_memory_listener = {
.begin = core_begin,
- .commit = core_commit,
- .region_add = core_region_add,
- .region_del = core_region_del,
- .region_nop = core_region_nop,
- .log_start = core_log_start,
- .log_stop = core_log_stop,
- .log_sync = core_log_sync,
.log_global_start = core_log_global_start,
.log_global_stop = core_log_global_stop,
- .eventfd_add = core_eventfd_add,
- .eventfd_del = core_eventfd_del,
- .priority = 0,
+ .priority = 1,
};
static MemoryListener io_memory_listener = {
- .begin = io_begin,
- .commit = io_commit,
.region_add = io_region_add,
.region_del = io_region_del,
- .region_nop = io_region_nop,
- .log_start = io_log_start,
- .log_stop = io_log_stop,
- .log_sync = io_log_sync,
- .log_global_start = io_log_global_start,
- .log_global_stop = io_log_global_stop,
- .eventfd_add = io_eventfd_add,
- .eventfd_del = io_eventfd_del,
.priority = 0,
};
+static MemoryListener tcg_memory_listener = {
+ .commit = tcg_commit,
+};
+
+void address_space_init_dispatch(AddressSpace *as)
+{
+ AddressSpaceDispatch *d = g_new(AddressSpaceDispatch, 1);
+
+ d->phys_map = (PhysPageEntry) { .ptr = PHYS_MAP_NODE_NIL, .is_leaf = 0 };
+ d->listener = (MemoryListener) {
+ .begin = mem_begin,
+ .region_add = mem_add,
+ .region_nop = mem_add,
+ .priority = 0,
+ };
+ as->dispatch = d;
+ memory_listener_register(&d->listener, as);
+}
+
+void address_space_destroy_dispatch(AddressSpace *as)
+{
+ AddressSpaceDispatch *d = as->dispatch;
+
+ memory_listener_unregister(&d->listener);
+ destroy_l2_mapping(&d->phys_map, P_L2_LEVELS - 1);
+ g_free(d);
+ as->dispatch = NULL;
+}
+
static void memory_map_init(void)
{
system_memory = g_malloc(sizeof(*system_memory));
memory_region_init(system_memory, "system", INT64_MAX);
- set_system_memory_map(system_memory);
+ address_space_init(&address_space_memory, system_memory);
+ address_space_memory.name = "memory";
system_io = g_malloc(sizeof(*system_io));
memory_region_init(system_io, "io", 65536);
- set_system_io_map(system_io);
+ address_space_init(&address_space_io, system_io);
+ address_space_io.name = "I/O";
+
+ memory_listener_register(&core_memory_listener, &address_space_memory);
+ memory_listener_register(&io_memory_listener, &address_space_io);
+ memory_listener_register(&tcg_memory_listener, &address_space_memory);
- memory_listener_register(&core_memory_listener, system_memory);
- memory_listener_register(&io_memory_listener, system_io);
+ dma_context_init(&dma_context_memory, &address_space_memory,
+ NULL, NULL, NULL);
}
MemoryRegion *get_system_memory(void)
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l, flags;
}
#else
-void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
- int len, int is_write)
+
+static void invalidate_and_set_dirty(hwaddr addr,
+ hwaddr length)
{
- int l, io_index;
+ if (!cpu_physical_memory_is_dirty(addr)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr, addr + length, 0);
+ /* set dirty bit */
+ cpu_physical_memory_set_dirty_flags(addr, (0xff & ~CODE_DIRTY_FLAG));
+ }
+ xen_modified_memory(addr, length);
+}
+
+void address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
+ int len, bool is_write)
+{
+ AddressSpaceDispatch *d = as->dispatch;
+ int l;
uint8_t *ptr;
uint32_t val;
- target_phys_addr_t page;
- MemoryRegionSection section;
+ hwaddr page;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- section = phys_page_find(page >> TARGET_PAGE_BITS);
+ section = phys_page_find(d, page >> TARGET_PAGE_BITS);
if (is_write) {
- if (!memory_region_is_ram(section.mr)) {
- target_phys_addr_t addr1;
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr1 = (addr & ~TARGET_PAGE_MASK)
- + section.offset_within_region;
+ if (!memory_region_is_ram(section->mr)) {
+ hwaddr addr1;
+ addr1 = memory_region_section_addr(section, addr);
/* XXX: could force cpu_single_env to NULL to avoid
potential bugs */
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit write access */
val = ldl_p(buf);
- io_mem_write(io_index, addr1, val, 4);
+ io_mem_write(section->mr, addr1, val, 4);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit write access */
val = lduw_p(buf);
- io_mem_write(io_index, addr1, val, 2);
+ io_mem_write(section->mr, addr1, val, 2);
l = 2;
} else {
/* 8 bit write access */
val = ldub_p(buf);
- io_mem_write(io_index, addr1, val, 1);
+ io_mem_write(section->mr, addr1, val, 1);
l = 1;
}
- } else if (!section.readonly) {
+ } else if (!section->readonly) {
ram_addr_t addr1;
- addr1 = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region)
- | (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
- if (!cpu_physical_memory_is_dirty(addr1)) {
- /* invalidate code */
- tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
- /* set dirty bit */
- cpu_physical_memory_set_dirty_flags(
- addr1, (0xff & ~CODE_DIRTY_FLAG));
- }
+ invalidate_and_set_dirty(addr1, l);
qemu_put_ram_ptr(ptr);
}
} else {
- if (!is_ram_rom_romd(§ion)) {
- target_phys_addr_t addr1;
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
+ hwaddr addr1;
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr1 = (addr & ~TARGET_PAGE_MASK)
- + section.offset_within_region;
+ addr1 = memory_region_section_addr(section, addr);
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit read access */
- val = io_mem_read(io_index, addr1, 4);
+ val = io_mem_read(section->mr, addr1, 4);
stl_p(buf, val);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit read access */
- val = io_mem_read(io_index, addr1, 2);
+ val = io_mem_read(section->mr, addr1, 2);
stw_p(buf, val);
l = 2;
} else {
/* 8 bit read access */
- val = io_mem_read(io_index, addr1, 1);
+ val = io_mem_read(section->mr, addr1, 1);
stb_p(buf, val);
l = 1;
}
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(section.mr->ram_addr
- + section.offset_within_region);
- memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
+ ptr = qemu_get_ram_ptr(section->mr->ram_addr
+ + memory_region_section_addr(section,
+ addr));
+ memcpy(buf, ptr, l);
qemu_put_ram_ptr(ptr);
}
}
}
}
+void address_space_write(AddressSpace *as, hwaddr addr,
+ const uint8_t *buf, int len)
+{
+ address_space_rw(as, addr, (uint8_t *)buf, len, true);
+}
+
+/**
+ * address_space_read: read from an address space.
+ *
+ * @as: #AddressSpace to be accessed
+ * @addr: address within that address space
+ * @buf: buffer with the data transferred
+ */
+void address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len)
+{
+ address_space_rw(as, addr, buf, len, false);
+}
+
+
+void cpu_physical_memory_rw(hwaddr addr, uint8_t *buf,
+ int len, int is_write)
+{
+ return address_space_rw(&address_space_memory, addr, buf, len, is_write);
+}
+
/* used for ROM loading : can write in RAM and ROM */
-void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+void cpu_physical_memory_write_rom(hwaddr addr,
const uint8_t *buf, int len)
{
+ AddressSpaceDispatch *d = address_space_memory.dispatch;
int l;
uint8_t *ptr;
- target_phys_addr_t page;
- MemoryRegionSection section;
+ hwaddr page;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- section = phys_page_find(page >> TARGET_PAGE_BITS);
+ section = phys_page_find(d, page >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* do nothing */
} else {
unsigned long addr1;
- addr1 = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
/* ROM/RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
+ invalidate_and_set_dirty(addr1, l);
qemu_put_ram_ptr(ptr);
}
len -= l;
typedef struct {
void *buffer;
- target_phys_addr_t addr;
- target_phys_addr_t len;
+ hwaddr addr;
+ hwaddr len;
} BounceBuffer;
static BounceBuffer bounce;
return client;
}
-void cpu_unregister_map_client(void *_client)
+static void cpu_unregister_map_client(void *_client)
{
MapClient *client = (MapClient *)_client;
* Use cpu_register_map_client() to know when retrying the map operation is
* likely to succeed.
*/
-void *cpu_physical_memory_map(target_phys_addr_t addr,
- target_phys_addr_t *plen,
- int is_write)
-{
- target_phys_addr_t len = *plen;
- target_phys_addr_t todo = 0;
+void *address_space_map(AddressSpace *as,
+ hwaddr addr,
+ hwaddr *plen,
+ bool is_write)
+{
+ AddressSpaceDispatch *d = as->dispatch;
+ hwaddr len = *plen;
+ hwaddr todo = 0;
int l;
- target_phys_addr_t page;
- MemoryRegionSection section;
+ hwaddr page;
+ MemoryRegionSection *section;
ram_addr_t raddr = RAM_ADDR_MAX;
ram_addr_t rlen;
void *ret;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- section = phys_page_find(page >> TARGET_PAGE_BITS);
+ section = phys_page_find(d, page >> TARGET_PAGE_BITS);
- if (!(memory_region_is_ram(section.mr) && !section.readonly)) {
+ if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
if (todo || bounce.buffer) {
break;
}
bounce.addr = addr;
bounce.len = l;
if (!is_write) {
- cpu_physical_memory_read(addr, bounce.buffer, l);
+ address_space_read(as, addr, bounce.buffer, l);
}
*plen = l;
return bounce.buffer;
}
if (!todo) {
- raddr = memory_region_get_ram_addr(section.mr)
- + section.offset_within_region
- + (addr & ~TARGET_PAGE_MASK);
+ raddr = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
}
len -= l;
return ret;
}
-/* Unmaps a memory region previously mapped by cpu_physical_memory_map().
+/* Unmaps a memory region previously mapped by address_space_map().
* Will also mark the memory as dirty if is_write == 1. access_len gives
* the amount of memory that was actually read or written by the caller.
*/
-void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
- int is_write, target_phys_addr_t access_len)
+void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
+ int is_write, hwaddr access_len)
{
if (buffer != bounce.buffer) {
if (is_write) {
l = TARGET_PAGE_SIZE;
if (l > access_len)
l = access_len;
- if (!cpu_physical_memory_is_dirty(addr1)) {
- /* invalidate code */
- tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
- /* set dirty bit */
- cpu_physical_memory_set_dirty_flags(
- addr1, (0xff & ~CODE_DIRTY_FLAG));
- }
+ invalidate_and_set_dirty(addr1, l);
addr1 += l;
access_len -= l;
}
return;
}
if (is_write) {
- cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
+ address_space_write(as, bounce.addr, bounce.buffer, access_len);
}
qemu_vfree(bounce.buffer);
bounce.buffer = NULL;
cpu_notify_map_clients();
}
+void *cpu_physical_memory_map(hwaddr addr,
+ hwaddr *plen,
+ int is_write)
+{
+ return address_space_map(&address_space_memory, addr, plen, is_write);
+}
+
+void cpu_physical_memory_unmap(void *buffer, hwaddr len,
+ int is_write, hwaddr access_len)
+{
+ return address_space_unmap(&address_space_memory, buffer, len, is_write, access_len);
+}
+
/* warning: addr must be aligned */
-static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
+static inline uint32_t ldl_phys_internal(hwaddr addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint32_t val;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
- val = io_mem_read(io_index, addr, 4);
+ addr = memory_region_section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 4);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region) +
- (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldl_le_p(ptr);
return val;
}
-uint32_t ldl_phys(target_phys_addr_t addr)
+uint32_t ldl_phys(hwaddr addr)
{
return ldl_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
}
-uint32_t ldl_le_phys(target_phys_addr_t addr)
+uint32_t ldl_le_phys(hwaddr addr)
{
return ldl_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
}
-uint32_t ldl_be_phys(target_phys_addr_t addr)
+uint32_t ldl_be_phys(hwaddr addr)
{
return ldl_phys_internal(addr, DEVICE_BIG_ENDIAN);
}
/* warning: addr must be aligned */
-static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
+static inline uint64_t ldq_phys_internal(hwaddr addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
+ addr = memory_region_section_addr(section, addr);
/* XXX This is broken when device endian != cpu endian.
Fix and add "endian" variable check */
#ifdef TARGET_WORDS_BIGENDIAN
- val = io_mem_read(io_index, addr, 4) << 32;
- val |= io_mem_read(io_index, addr + 4, 4);
+ val = io_mem_read(section->mr, addr, 4) << 32;
+ val |= io_mem_read(section->mr, addr + 4, 4);
#else
- val = io_mem_read(io_index, addr, 4);
- val |= io_mem_read(io_index, addr + 4, 4) << 32;
+ val = io_mem_read(section->mr, addr, 4);
+ val |= io_mem_read(section->mr, addr + 4, 4) << 32;
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldq_le_p(ptr);
return val;
}
-uint64_t ldq_phys(target_phys_addr_t addr)
+uint64_t ldq_phys(hwaddr addr)
{
return ldq_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
}
-uint64_t ldq_le_phys(target_phys_addr_t addr)
+uint64_t ldq_le_phys(hwaddr addr)
{
return ldq_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
}
-uint64_t ldq_be_phys(target_phys_addr_t addr)
+uint64_t ldq_be_phys(hwaddr addr)
{
return ldq_phys_internal(addr, DEVICE_BIG_ENDIAN);
}
/* XXX: optimize */
-uint32_t ldub_phys(target_phys_addr_t addr)
+uint32_t ldub_phys(hwaddr addr)
{
uint8_t val;
cpu_physical_memory_read(addr, &val, 1);
}
/* warning: addr must be aligned */
-static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
+static inline uint32_t lduw_phys_internal(hwaddr addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
- val = io_mem_read(io_index, addr, 2);
+ addr = memory_region_section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 2);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = lduw_le_p(ptr);
return val;
}
-uint32_t lduw_phys(target_phys_addr_t addr)
+uint32_t lduw_phys(hwaddr addr)
{
return lduw_phys_internal(addr, DEVICE_NATIVE_ENDIAN);
}
-uint32_t lduw_le_phys(target_phys_addr_t addr)
+uint32_t lduw_le_phys(hwaddr addr)
{
return lduw_phys_internal(addr, DEVICE_LITTLE_ENDIAN);
}
-uint32_t lduw_be_phys(target_phys_addr_t addr)
+uint32_t lduw_be_phys(hwaddr addr)
{
return lduw_phys_internal(addr, DEVICE_BIG_ENDIAN);
}
/* warning: addr must be aligned. The ram page is not masked as dirty
and the code inside is not invalidated. It is useful if the dirty
bits are used to track modified PTEs */
-void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
+void stl_phys_notdirty(hwaddr addr, uint32_t val)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
- io_mem_write(io_index, addr, val, 4);
+ io_mem_write(section->mr, addr, val, 4);
} else {
- unsigned long addr1 = (memory_region_get_ram_addr(section.mr)
+ unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr);
ptr = qemu_get_ram_ptr(addr1);
stl_p(ptr, val);
}
}
-void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
+void stq_phys_notdirty(hwaddr addr, uint64_t val)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
#ifdef TARGET_WORDS_BIGENDIAN
- io_mem_write(io_index, addr, val >> 32, 4);
- io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
+ io_mem_write(section->mr, addr, val >> 32, 4);
+ io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
#else
- io_mem_write(io_index, addr, (uint32_t)val, 4);
- io_mem_write(io_index, addr + 4, val >> 32, 4);
+ io_mem_write(section->mr, addr, (uint32_t)val, 4);
+ io_mem_write(section->mr, addr + 4, val >> 32, 4);
#endif
} else {
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
stq_p(ptr, val);
}
}
/* warning: addr must be aligned */
-static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
+static inline void stl_phys_internal(hwaddr addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
val = bswap32(val);
}
#endif
- io_mem_write(io_index, addr, val, 4);
+ io_mem_write(section->mr, addr, val, 4);
} else {
unsigned long addr1;
- addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
- + section.offset_within_region
- + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
stl_p(ptr, val);
break;
}
- if (!cpu_physical_memory_is_dirty(addr1)) {
- /* invalidate code */
- tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
- /* set dirty bit */
- cpu_physical_memory_set_dirty_flags(addr1,
- (0xff & ~CODE_DIRTY_FLAG));
- }
+ invalidate_and_set_dirty(addr1, 4);
}
}
-void stl_phys(target_phys_addr_t addr, uint32_t val)
+void stl_phys(hwaddr addr, uint32_t val)
{
stl_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
}
-void stl_le_phys(target_phys_addr_t addr, uint32_t val)
+void stl_le_phys(hwaddr addr, uint32_t val)
{
stl_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
}
-void stl_be_phys(target_phys_addr_t addr, uint32_t val)
+void stl_be_phys(hwaddr addr, uint32_t val)
{
stl_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
}
/* XXX: optimize */
-void stb_phys(target_phys_addr_t addr, uint32_t val)
+void stb_phys(hwaddr addr, uint32_t val)
{
uint8_t v = val;
cpu_physical_memory_write(addr, &v, 1);
}
/* warning: addr must be aligned */
-static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
+static inline void stw_phys_internal(hwaddr addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- section = phys_page_find(addr >> TARGET_PAGE_BITS);
+ section = phys_page_find(address_space_memory.dispatch, addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
val = bswap16(val);
}
#endif
- io_mem_write(io_index, addr, val, 2);
+ io_mem_write(section->mr, addr, val, 2);
} else {
unsigned long addr1;
- addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
- + section.offset_within_region + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
stw_p(ptr, val);
break;
}
- if (!cpu_physical_memory_is_dirty(addr1)) {
- /* invalidate code */
- tb_invalidate_phys_page_range(addr1, addr1 + 2, 0);
- /* set dirty bit */
- cpu_physical_memory_set_dirty_flags(addr1,
- (0xff & ~CODE_DIRTY_FLAG));
- }
+ invalidate_and_set_dirty(addr1, 2);
}
}
-void stw_phys(target_phys_addr_t addr, uint32_t val)
+void stw_phys(hwaddr addr, uint32_t val)
{
stw_phys_internal(addr, val, DEVICE_NATIVE_ENDIAN);
}
-void stw_le_phys(target_phys_addr_t addr, uint32_t val)
+void stw_le_phys(hwaddr addr, uint32_t val)
{
stw_phys_internal(addr, val, DEVICE_LITTLE_ENDIAN);
}
-void stw_be_phys(target_phys_addr_t addr, uint32_t val)
+void stw_be_phys(hwaddr addr, uint32_t val)
{
stw_phys_internal(addr, val, DEVICE_BIG_ENDIAN);
}
/* XXX: optimize */
-void stq_phys(target_phys_addr_t addr, uint64_t val)
+void stq_phys(hwaddr addr, uint64_t val)
{
val = tswap64(val);
cpu_physical_memory_write(addr, &val, 8);
}
-void stq_le_phys(target_phys_addr_t addr, uint64_t val)
+void stq_le_phys(hwaddr addr, uint64_t val)
{
val = cpu_to_le64(val);
cpu_physical_memory_write(addr, &val, 8);
}
-void stq_be_phys(target_phys_addr_t addr, uint64_t val)
+void stq_be_phys(hwaddr addr, uint64_t val)
{
val = cpu_to_be64(val);
cpu_physical_memory_write(addr, &val, 8);
}
/* virtual memory access for debug (includes writing to ROM) */
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l;
- target_phys_addr_t phys_addr;
+ hwaddr phys_addr;
target_ulong page;
while (len > 0) {
/* in deterministic execution mode, instructions doing device I/Os
must be at the end of the TB */
-void cpu_io_recompile(CPUState *env, void *retaddr)
+void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
{
TranslationBlock *tb;
uint32_t n, cflags;
target_ulong pc, cs_base;
uint64_t flags;
- tb = tb_find_pc((unsigned long)retaddr);
+ tb = tb_find_pc(retaddr);
if (!tb) {
cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
- retaddr);
+ (void *)retaddr);
}
n = env->icount_decr.u16.low + tb->icount;
- cpu_restore_state(tb, env, (unsigned long)retaddr);
+ cpu_restore_state(tb, env, retaddr);
/* Calculate how many instructions had been executed before the fault
occurred. */
n = n - env->icount_decr.u16.low;
}
/* XXX: avoid using doubles ? */
cpu_fprintf(f, "Translation buffer state:\n");
- cpu_fprintf(f, "gen code size %td/%ld\n",
+ cpu_fprintf(f, "gen code size %td/%zd\n",
code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
cpu_fprintf(f, "TB count %d/%d\n",
nb_tbs, code_gen_max_blocks);
tcg_dump_info(f, cpu_fprintf);
}
-/* NOTE: this function can trigger an exception */
-/* NOTE2: the returned address is not exactly the physical address: it
- is the offset relative to phys_ram_base */
-tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
-{
- int mmu_idx, page_index, pd;
- void *p;
-
- page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- mmu_idx = cpu_mmu_index(env1);
- if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
- (addr & TARGET_PAGE_MASK))) {
- ldub_code(addr);
- }
- pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
- if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
- && !io_mem_region[pd]->rom_device) {
-#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
- cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
-#else
- cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
-#endif
- }
- p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
- return qemu_ram_addr_from_host_nofail(p);
-}
-
/*
* A helper function for the _utterly broken_ virtio device model to find out if
* it's running on a big endian machine. Don't do this at home kids!
#endif
}
-#define MMUSUFFIX _cmmu
-#undef GETPC
-#define GETPC() NULL
-#define env cpu_single_env
-#define SOFTMMU_CODE_ACCESS
-
-#define SHIFT 0
-#include "softmmu_template.h"
-
-#define SHIFT 1
-#include "softmmu_template.h"
-
-#define SHIFT 2
-#include "softmmu_template.h"
+#endif
-#define SHIFT 3
-#include "softmmu_template.h"
+#ifndef CONFIG_USER_ONLY
+bool cpu_physical_memory_is_io(hwaddr phys_addr)
+{
+ MemoryRegionSection *section;
-#undef env
+ section = phys_page_find(address_space_memory.dispatch,
+ phys_addr >> TARGET_PAGE_BITS);
+ return !(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr));
+}
#endif