#include "trace.h"
#endif
+#include "cputlb.h"
+
#define WANT_EXEC_OBSOLETE
#include "exec-obsolete.h"
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
-//#define DEBUG_TLB
//#define DEBUG_UNASSIGNED
/* make various TB consistency checks */
//#define DEBUG_TB_CHECK
-//#define DEBUG_TLB_CHECK
//#define DEBUG_IOPORT
//#define DEBUG_SUBPAGE
#define code_gen_section \
__attribute__((__section__(".gen_code"))) \
__attribute__((aligned (32)))
-#elif defined(_WIN32)
-/* Maximum alignment for Win32 is 16. */
+#elif defined(_WIN32) && !defined(_WIN64)
#define code_gen_section \
__attribute__((aligned (16)))
#else
#endif
-CPUState *first_cpu;
+CPUArchState *first_cpu;
/* current CPU in the current thread. It is only valid inside
cpu_exec() */
-DEFINE_TLS(CPUState *,cpu_single_env);
+DEFINE_TLS(CPUArchState *,cpu_single_env);
/* 0 = Do not count executed instructions.
1 = Precise instruction counting.
2 = Adaptive rate instruction counting. */
#define V_L1_SHIFT (L1_MAP_ADDR_SPACE_BITS - TARGET_PAGE_BITS - V_L1_BITS)
-unsigned long qemu_real_host_page_size;
-unsigned long qemu_host_page_size;
-unsigned long qemu_host_page_mask;
+uintptr_t qemu_real_host_page_size;
+uintptr_t qemu_host_page_size;
+uintptr_t qemu_host_page_mask;
/* This is a multi-level map on the virtual address space.
The bottom level has pointers to PageDesc. */
static MemoryRegionSection *phys_sections;
static unsigned phys_sections_nb, phys_sections_nb_alloc;
static uint16_t phys_section_unassigned;
+static uint16_t phys_section_notdirty;
+static uint16_t phys_section_rom;
+static uint16_t phys_section_watch;
struct PhysPageEntry {
uint16_t is_leaf : 1;
static void io_mem_init(void);
static void memory_map_init(void);
-/* io memory support */
-MemoryRegion *io_mem_region[IO_MEM_NB_ENTRIES];
-static char io_mem_used[IO_MEM_NB_ENTRIES];
static MemoryRegion io_mem_watch;
#endif
-/* log support */
-#ifdef WIN32
-static const char *logfilename = "qemu.log";
-#else
-static const char *logfilename = "/tmp/qemu.log";
-#endif
-FILE *logfile;
-int loglevel;
-static int log_append = 0;
-
/* statistics */
-#if !defined(CONFIG_USER_ONLY)
-static int tlb_flush_count;
-#endif
static int tb_flush_count;
static int tb_phys_invalidate_count;
phys_page_set_level(&phys_map, &index, &nb, leaf, P_L2_LEVELS - 1);
}
-static MemoryRegionSection phys_page_find(target_phys_addr_t index)
+MemoryRegionSection *phys_page_find(target_phys_addr_t index)
{
PhysPageEntry lp = phys_map;
PhysPageEntry *p;
int i;
- MemoryRegionSection section;
- target_phys_addr_t delta;
uint16_t s_index = phys_section_unassigned;
for (i = P_L2_LEVELS - 1; i >= 0 && !lp.is_leaf; i--) {
s_index = lp.ptr;
not_found:
- section = phys_sections[s_index];
- index <<= TARGET_PAGE_BITS;
- assert(section.offset_within_address_space <= index
- && index <= section.offset_within_address_space + section.size-1);
- delta = index - section.offset_within_address_space;
- section.offset_within_address_space += delta;
- section.offset_within_region += delta;
- section.size -= delta;
- return section;
-}
-
-static void tlb_protect_code(ram_addr_t ram_addr);
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
- target_ulong vaddr);
+ return &phys_sections[s_index];
+}
+
+bool memory_region_is_unassigned(MemoryRegion *mr)
+{
+ return mr != &io_mem_ram && mr != &io_mem_rom
+ && mr != &io_mem_notdirty && !mr->rom_device
+ && mr != &io_mem_watch;
+}
+
#define mmap_lock() do { } while(0)
#define mmap_unlock() do { } while(0)
#endif
cpu_gen_init();
code_gen_alloc(tb_size);
code_gen_ptr = code_gen_buffer;
+ tcg_register_jit(code_gen_buffer, code_gen_buffer_size);
page_init();
#if !defined(CONFIG_USER_ONLY) || !defined(CONFIG_USE_GUEST_BASE)
/* There's no guest base to take into account, so go ahead and
static int cpu_common_post_load(void *opaque, int version_id)
{
- CPUState *env = opaque;
+ CPUArchState *env = opaque;
/* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
version_id is increased. */
.minimum_version_id_old = 1,
.post_load = cpu_common_post_load,
.fields = (VMStateField []) {
- VMSTATE_UINT32(halted, CPUState),
- VMSTATE_UINT32(interrupt_request, CPUState),
+ VMSTATE_UINT32(halted, CPUArchState),
+ VMSTATE_UINT32(interrupt_request, CPUArchState),
VMSTATE_END_OF_LIST()
}
};
#endif
-CPUState *qemu_get_cpu(int cpu)
+CPUArchState *qemu_get_cpu(int cpu)
{
- CPUState *env = first_cpu;
+ CPUArchState *env = first_cpu;
while (env) {
if (env->cpu_index == cpu)
return env;
}
-void cpu_exec_init(CPUState *env)
+void cpu_exec_init(CPUArchState *env)
{
- CPUState **penv;
+ CPUArchState **penv;
int cpu_index;
#if defined(CONFIG_USER_ONLY)
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
-void tb_flush(CPUState *env1)
+void tb_flush(CPUArchState *env1)
{
- CPUState *env;
+ CPUArchState *env;
#if defined(DEBUG_FLUSH)
printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
(unsigned long)(code_gen_ptr - code_gen_buffer),
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (tb1 == tb) {
*ptb = tb1->page_next[n1];
break;
/* find tb(n) in circular list */
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
if (n1 == 2) {
another TB */
static inline void tb_reset_jump(TranslationBlock *tb, int n)
{
- tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
+ tb_set_jmp_target(tb, n, (uintptr_t)(tb->tc_ptr + tb->tb_next_offset[n]));
}
void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr)
{
- CPUState *env;
+ CPUArchState *env;
PageDesc *p;
unsigned int h, n1;
tb_page_addr_t phys_pc;
/* suppress any remaining jumps to this TB */
tb1 = tb->jmp_first;
for(;;) {
- n1 = (long)tb1 & 3;
+ n1 = (uintptr_t)tb1 & 3;
if (n1 == 2)
break;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
tb2 = tb1->jmp_next[n1];
tb_reset_jump(tb1, n1);
tb1->jmp_next[n1] = NULL;
tb1 = tb2;
}
- tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2); /* fail safe */
tb_phys_invalidate_count++;
}
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
/* NOTE: tb_end may be after the end of the page, but
}
}
-TranslationBlock *tb_gen_code(CPUState *env,
+TranslationBlock *tb_gen_code(CPUArchState *env,
target_ulong pc, target_ulong cs_base,
int flags, int cflags)
{
tb->flags = flags;
tb->cflags = cflags;
cpu_gen_code(env, tb, &code_gen_size);
- code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
+ code_gen_ptr = (void *)(((uintptr_t)code_gen_ptr + code_gen_size +
+ CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
return tb;
}
-/* invalidate all TBs which intersect with the target physical page
- starting in range [start;end[. NOTE: start and end must refer to
- the same physical page. 'is_cpu_write_access' should be true if called
- from a real cpu write access: the virtual CPU will exit the current
- TB if code is modified inside this TB. */
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end may refer to *different* physical pages.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
+void tb_invalidate_phys_range(tb_page_addr_t start, tb_page_addr_t end,
+ int is_cpu_write_access)
+{
+ while (start < end) {
+ tb_invalidate_phys_page_range(start, end, is_cpu_write_access);
+ start &= TARGET_PAGE_MASK;
+ start += TARGET_PAGE_SIZE;
+ }
+}
+
+/*
+ * Invalidate all TBs which intersect with the target physical address range
+ * [start;end[. NOTE: start and end must refer to the *same* physical page.
+ * 'is_cpu_write_access' should be true if called from a real cpu write
+ * access: the virtual CPU will exit the current TB if code is modified inside
+ * this TB.
+ */
void tb_invalidate_phys_page_range(tb_page_addr_t start, tb_page_addr_t end,
int is_cpu_write_access)
{
TranslationBlock *tb, *tb_next, *saved_tb;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
tb_page_addr_t tb_start, tb_end;
PageDesc *p;
int n;
/* XXX: see if in some cases it could be faster to invalidate all the code */
tb = p->first_tb;
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
tb_next = tb->page_next[n];
/* NOTE: this is subtle as a TB may span two physical pages */
if (n == 0) {
qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
cpu_single_env->mem_io_vaddr, len,
cpu_single_env->eip,
- cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
+ cpu_single_env->eip +
+ (intptr_t)cpu_single_env->segs[R_CS].base);
}
#endif
p = page_find(start >> TARGET_PAGE_BITS);
#if !defined(CONFIG_SOFTMMU)
static void tb_invalidate_phys_page(tb_page_addr_t addr,
- unsigned long pc, void *puc)
+ uintptr_t pc, void *puc)
{
TranslationBlock *tb;
PageDesc *p;
int n;
#ifdef TARGET_HAS_PRECISE_SMC
TranslationBlock *current_tb = NULL;
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
int current_tb_modified = 0;
target_ulong current_pc = 0;
target_ulong current_cs_base = 0;
}
#endif
while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
+ n = (uintptr_t)tb & 3;
+ tb = (TranslationBlock *)((uintptr_t)tb & ~3);
#ifdef TARGET_HAS_PRECISE_SMC
if (current_tb == tb &&
(current_tb->cflags & CF_COUNT_MASK) != 1) {
#ifndef CONFIG_USER_ONLY
page_already_protected = p->first_tb != NULL;
#endif
- p->first_tb = (TranslationBlock *)((long)tb | n);
+ p->first_tb = (TranslationBlock *)((uintptr_t)tb | n);
invalidate_page_bitmap(p);
#if defined(TARGET_HAS_SMC) || 1
else
tb->page_addr[1] = -1;
- tb->jmp_first = (TranslationBlock *)((long)tb | 2);
+ tb->jmp_first = (TranslationBlock *)((uintptr_t)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
tb[1].tc_ptr. Return NULL if not found */
-TranslationBlock *tb_find_pc(unsigned long tc_ptr)
+TranslationBlock *tb_find_pc(uintptr_t tc_ptr)
{
int m_min, m_max, m;
- unsigned long v;
+ uintptr_t v;
TranslationBlock *tb;
if (nb_tbs <= 0)
return NULL;
- if (tc_ptr < (unsigned long)code_gen_buffer ||
- tc_ptr >= (unsigned long)code_gen_ptr)
+ if (tc_ptr < (uintptr_t)code_gen_buffer ||
+ tc_ptr >= (uintptr_t)code_gen_ptr) {
return NULL;
+ }
/* binary search (cf Knuth) */
m_min = 0;
m_max = nb_tbs - 1;
while (m_min <= m_max) {
m = (m_min + m_max) >> 1;
tb = &tbs[m];
- v = (unsigned long)tb->tc_ptr;
+ v = (uintptr_t)tb->tc_ptr;
if (v == tc_ptr)
return tb;
else if (tc_ptr < v) {
if (tb1 != NULL) {
/* find head of list */
for(;;) {
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == 2)
break;
tb1 = tb1->jmp_next[n1];
ptb = &tb_next->jmp_first;
for(;;) {
tb1 = *ptb;
- n1 = (long)tb1 & 3;
- tb1 = (TranslationBlock *)((long)tb1 & ~3);
+ n1 = (uintptr_t)tb1 & 3;
+ tb1 = (TranslationBlock *)((uintptr_t)tb1 & ~3);
if (n1 == n && tb1 == tb)
break;
ptb = &tb1->jmp_next[n1];
#if defined(TARGET_HAS_ICE)
#if defined(CONFIG_USER_ONLY)
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
{
tb_invalidate_phys_page_range(pc, pc + 1, 0);
}
#else
-static void breakpoint_invalidate(CPUState *env, target_ulong pc)
+void tb_invalidate_phys_addr(target_phys_addr_t addr)
{
- target_phys_addr_t addr;
ram_addr_t ram_addr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
- addr = cpu_get_phys_page_debug(env, pc);
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!(memory_region_is_ram(section.mr)
- || (section.mr->rom_device && section.mr->readable))) {
+ if (!(memory_region_is_ram(section->mr)
+ || (section->mr->rom_device && section->mr->readable))) {
return;
}
- ram_addr = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region) & TARGET_PAGE_MASK;
- ram_addr |= (pc & ~TARGET_PAGE_MASK);
+ ram_addr = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
}
+
+static void breakpoint_invalidate(CPUArchState *env, target_ulong pc)
+{
+ tb_invalidate_phys_addr(cpu_get_phys_page_debug(env, pc) |
+ (pc & ~TARGET_PAGE_MASK));
+}
#endif
#endif /* TARGET_HAS_ICE */
#if defined(CONFIG_USER_ONLY)
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
}
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
return -ENOSYS;
}
#else
/* Add a watchpoint. */
-int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_insert(CPUArchState *env, target_ulong addr, target_ulong len,
int flags, CPUWatchpoint **watchpoint)
{
target_ulong len_mask = ~(len - 1);
}
/* Remove a specific watchpoint. */
-int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
+int cpu_watchpoint_remove(CPUArchState *env, target_ulong addr, target_ulong len,
int flags)
{
target_ulong len_mask = ~(len - 1);
}
/* Remove a specific watchpoint by reference. */
-void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
+void cpu_watchpoint_remove_by_ref(CPUArchState *env, CPUWatchpoint *watchpoint)
{
QTAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
}
/* Remove all matching watchpoints. */
-void cpu_watchpoint_remove_all(CPUState *env, int mask)
+void cpu_watchpoint_remove_all(CPUArchState *env, int mask)
{
CPUWatchpoint *wp, *next;
#endif
/* Add a breakpoint. */
-int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
+int cpu_breakpoint_insert(CPUArchState *env, target_ulong pc, int flags,
CPUBreakpoint **breakpoint)
{
#if defined(TARGET_HAS_ICE)
}
/* Remove a specific breakpoint. */
-int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
+int cpu_breakpoint_remove(CPUArchState *env, target_ulong pc, int flags)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
}
/* Remove a specific breakpoint by reference. */
-void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
+void cpu_breakpoint_remove_by_ref(CPUArchState *env, CPUBreakpoint *breakpoint)
{
#if defined(TARGET_HAS_ICE)
QTAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
}
/* Remove all matching breakpoints. */
-void cpu_breakpoint_remove_all(CPUState *env, int mask)
+void cpu_breakpoint_remove_all(CPUArchState *env, int mask)
{
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp, *next;
/* enable or disable single step mode. EXCP_DEBUG is returned by the
CPU loop after each instruction */
-void cpu_single_step(CPUState *env, int enabled)
+void cpu_single_step(CPUArchState *env, int enabled)
{
#if defined(TARGET_HAS_ICE)
if (env->singlestep_enabled != enabled) {
#endif
}
-/* enable or disable low levels log */
-void cpu_set_log(int log_flags)
-{
- loglevel = log_flags;
- if (loglevel && !logfile) {
- logfile = fopen(logfilename, log_append ? "a" : "w");
- if (!logfile) {
- perror(logfilename);
- _exit(1);
- }
-#if !defined(CONFIG_SOFTMMU)
- /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
- {
- static char logfile_buf[4096];
- setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
- }
-#elif defined(_WIN32)
- /* Win32 doesn't support line-buffering, so use unbuffered output. */
- setvbuf(logfile, NULL, _IONBF, 0);
-#else
- setvbuf(logfile, NULL, _IOLBF, 0);
-#endif
- log_append = 1;
- }
- if (!loglevel && logfile) {
- fclose(logfile);
- logfile = NULL;
- }
-}
-
-void cpu_set_log_filename(const char *filename)
-{
- logfilename = strdup(filename);
- if (logfile) {
- fclose(logfile);
- logfile = NULL;
- }
- cpu_set_log(loglevel);
-}
-
-static void cpu_unlink_tb(CPUState *env)
+static void cpu_unlink_tb(CPUArchState *env)
{
/* FIXME: TB unchaining isn't SMP safe. For now just ignore the
problem and hope the cpu will stop of its own accord. For userspace
#ifndef CONFIG_USER_ONLY
/* mask must never be zero, except for A20 change call */
-static void tcg_handle_interrupt(CPUState *env, int mask)
+static void tcg_handle_interrupt(CPUArchState *env, int mask)
{
int old_mask;
#else /* CONFIG_USER_ONLY */
-void cpu_interrupt(CPUState *env, int mask)
+void cpu_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request |= mask;
cpu_unlink_tb(env);
}
#endif /* CONFIG_USER_ONLY */
-void cpu_reset_interrupt(CPUState *env, int mask)
+void cpu_reset_interrupt(CPUArchState *env, int mask)
{
env->interrupt_request &= ~mask;
}
-void cpu_exit(CPUState *env)
+void cpu_exit(CPUArchState *env)
{
env->exit_request = 1;
cpu_unlink_tb(env);
}
-const CPULogItem cpu_log_items[] = {
- { CPU_LOG_TB_OUT_ASM, "out_asm",
- "show generated host assembly code for each compiled TB" },
- { CPU_LOG_TB_IN_ASM, "in_asm",
- "show target assembly code for each compiled TB" },
- { CPU_LOG_TB_OP, "op",
- "show micro ops for each compiled TB" },
- { CPU_LOG_TB_OP_OPT, "op_opt",
- "show micro ops "
-#ifdef TARGET_I386
- "before eflags optimization and "
-#endif
- "after liveness analysis" },
- { CPU_LOG_INT, "int",
- "show interrupts/exceptions in short format" },
- { CPU_LOG_EXEC, "exec",
- "show trace before each executed TB (lots of logs)" },
- { CPU_LOG_TB_CPU, "cpu",
- "show CPU state before block translation" },
-#ifdef TARGET_I386
- { CPU_LOG_PCALL, "pcall",
- "show protected mode far calls/returns/exceptions" },
- { CPU_LOG_RESET, "cpu_reset",
- "show CPU state before CPU resets" },
-#endif
-#ifdef DEBUG_IOPORT
- { CPU_LOG_IOPORT, "ioport",
- "show all i/o ports accesses" },
-#endif
- { 0, NULL, NULL },
-};
-
-static int cmp1(const char *s1, int n, const char *s2)
-{
- if (strlen(s2) != n)
- return 0;
- return memcmp(s1, s2, n) == 0;
-}
-
-/* takes a comma separated list of log masks. Return 0 if error. */
-int cpu_str_to_log_mask(const char *str)
-{
- const CPULogItem *item;
- int mask;
- const char *p, *p1;
-
- p = str;
- mask = 0;
- for(;;) {
- p1 = strchr(p, ',');
- if (!p1)
- p1 = p + strlen(p);
- if(cmp1(p,p1-p,"all")) {
- for(item = cpu_log_items; item->mask != 0; item++) {
- mask |= item->mask;
- }
- } else {
- for(item = cpu_log_items; item->mask != 0; item++) {
- if (cmp1(p, p1 - p, item->name))
- goto found;
- }
- return 0;
- }
- found:
- mask |= item->mask;
- if (*p1 != ',')
- break;
- p = p1 + 1;
- }
- return mask;
-}
-
-void cpu_abort(CPUState *env, const char *fmt, ...)
+void cpu_abort(CPUArchState *env, const char *fmt, ...)
{
va_list ap;
va_list ap2;
abort();
}
-CPUState *cpu_copy(CPUState *env)
+CPUArchState *cpu_copy(CPUArchState *env)
{
- CPUState *new_env = cpu_init(env->cpu_model_str);
- CPUState *next_cpu = new_env->next_cpu;
+ CPUArchState *new_env = cpu_init(env->cpu_model_str);
+ CPUArchState *next_cpu = new_env->next_cpu;
int cpu_index = new_env->cpu_index;
#if defined(TARGET_HAS_ICE)
CPUBreakpoint *bp;
CPUWatchpoint *wp;
#endif
- memcpy(new_env, env, sizeof(CPUState));
+ memcpy(new_env, env, sizeof(CPUArchState));
/* Preserve chaining and index. */
new_env->next_cpu = next_cpu;
}
#if !defined(CONFIG_USER_ONLY)
-
-static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
+void tb_flush_jmp_cache(CPUArchState *env, target_ulong addr)
{
unsigned int i;
TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
}
-static CPUTLBEntry s_cputlb_empty_entry = {
- .addr_read = -1,
- .addr_write = -1,
- .addr_code = -1,
- .addend = -1,
-};
-
-/* NOTE:
- * If flush_global is true (the usual case), flush all tlb entries.
- * If flush_global is false, flush (at least) all tlb entries not
- * marked global.
- *
- * Since QEMU doesn't currently implement a global/not-global flag
- * for tlb entries, at the moment tlb_flush() will also flush all
- * tlb entries in the flush_global == false case. This is OK because
- * CPU architectures generally permit an implementation to drop
- * entries from the TLB at any time, so flushing more entries than
- * required is only an efficiency issue, not a correctness issue.
- */
-void tlb_flush(CPUState *env, int flush_global)
-{
- int i;
-
-#if defined(DEBUG_TLB)
- printf("tlb_flush:\n");
-#endif
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- for(i = 0; i < CPU_TLB_SIZE; i++) {
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
- }
- }
-
- memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
-
- env->tlb_flush_addr = -1;
- env->tlb_flush_mask = 0;
- tlb_flush_count++;
-}
-
-static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
-{
- if (addr == (tlb_entry->addr_read &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_write &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
- addr == (tlb_entry->addr_code &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
- *tlb_entry = s_cputlb_empty_entry;
- }
-}
-
-void tlb_flush_page(CPUState *env, target_ulong addr)
-{
- int i;
- int mmu_idx;
-
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
-#endif
- /* Check if we need to flush due to large pages. */
- if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
-#if defined(DEBUG_TLB)
- printf("tlb_flush_page: forced full flush ("
- TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
- env->tlb_flush_addr, env->tlb_flush_mask);
-#endif
- tlb_flush(env, 1);
- return;
- }
- /* must reset current TB so that interrupts cannot modify the
- links while we are modifying them */
- env->current_tb = NULL;
-
- addr &= TARGET_PAGE_MASK;
- i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
- tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
-
- tlb_flush_jmp_cache(env, addr);
-}
-
-/* update the TLBs so that writes to code in the virtual page 'addr'
- can be detected */
-static void tlb_protect_code(ram_addr_t ram_addr)
-{
- cpu_physical_memory_reset_dirty(ram_addr,
- ram_addr + TARGET_PAGE_SIZE,
- CODE_DIRTY_FLAG);
-}
-
-/* update the TLB so that writes in physical page 'phys_addr' are no longer
- tested for self modifying code */
-static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
- target_ulong vaddr)
-{
- cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
-}
-
-static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
- unsigned long start, unsigned long length)
-{
- unsigned long addr;
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
- addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
- if ((addr - start) < length) {
- tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
- }
- }
-}
-
/* Note: start and end must be within the same ram block. */
void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags)
{
- CPUState *env;
- unsigned long length, start1;
- int i;
+ uintptr_t length, start1;
start &= TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
/* we modify the TLB cache so that the dirty bit will be set again
when accessing the range */
- start1 = (unsigned long)qemu_safe_ram_ptr(start);
+ start1 = (uintptr_t)qemu_safe_ram_ptr(start);
/* Check that we don't span multiple blocks - this breaks the
address comparisons below. */
- if ((unsigned long)qemu_safe_ram_ptr(end - 1) - start1
+ if ((uintptr_t)qemu_safe_ram_ptr(end - 1) - start1
!= (end - 1) - start) {
abort();
}
-
- for(env = first_cpu; env != NULL; env = env->next_cpu) {
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
- start1, length);
- }
- }
+ cpu_tlb_reset_dirty_all(start1, length);
}
int cpu_physical_memory_set_dirty_tracking(int enable)
return ret;
}
-static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
+target_phys_addr_t memory_region_section_get_iotlb(CPUArchState *env,
+ MemoryRegionSection *section,
+ target_ulong vaddr,
+ target_phys_addr_t paddr,
+ int prot,
+ target_ulong *address)
{
- ram_addr_t ram_addr;
- void *p;
-
- if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == io_mem_ram.ram_addr) {
- p = (void *)(unsigned long)((tlb_entry->addr_write & TARGET_PAGE_MASK)
- + tlb_entry->addend);
- ram_addr = qemu_ram_addr_from_host_nofail(p);
- if (!cpu_physical_memory_is_dirty(ram_addr)) {
- tlb_entry->addr_write |= TLB_NOTDIRTY;
- }
- }
-}
-
-/* update the TLB according to the current state of the dirty bits */
-void cpu_tlb_update_dirty(CPUState *env)
-{
- int i;
- int mmu_idx;
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_update_dirty(&env->tlb_table[mmu_idx][i]);
- }
-}
-
-static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
-{
- if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
- tlb_entry->addr_write = vaddr;
-}
-
-/* update the TLB corresponding to virtual page vaddr
- so that it is no longer dirty */
-static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
-{
- int i;
- int mmu_idx;
-
- vaddr &= TARGET_PAGE_MASK;
- i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++)
- tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
-}
-
-/* Our TLB does not support large pages, so remember the area covered by
- large pages and trigger a full TLB flush if these are invalidated. */
-static void tlb_add_large_page(CPUState *env, target_ulong vaddr,
- target_ulong size)
-{
- target_ulong mask = ~(size - 1);
-
- if (env->tlb_flush_addr == (target_ulong)-1) {
- env->tlb_flush_addr = vaddr & mask;
- env->tlb_flush_mask = mask;
- return;
- }
- /* Extend the existing region to include the new page.
- This is a compromise between unnecessary flushes and the cost
- of maintaining a full variable size TLB. */
- mask &= env->tlb_flush_mask;
- while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
- mask <<= 1;
- }
- env->tlb_flush_addr &= mask;
- env->tlb_flush_mask = mask;
-}
-
-static bool is_ram_rom(MemoryRegionSection *s)
-{
- return memory_region_is_ram(s->mr);
-}
-
-static bool is_romd(MemoryRegionSection *s)
-{
- MemoryRegion *mr = s->mr;
-
- return mr->rom_device && mr->readable;
-}
-
-static bool is_ram_rom_romd(MemoryRegionSection *s)
-{
- return is_ram_rom(s) || is_romd(s);
-}
-
-/* Add a new TLB entry. At most one entry for a given virtual address
- is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
- supplied size is only used by tlb_flush_page. */
-void tlb_set_page(CPUState *env, target_ulong vaddr,
- target_phys_addr_t paddr, int prot,
- int mmu_idx, target_ulong size)
-{
- MemoryRegionSection section;
- unsigned int index;
- target_ulong address;
- target_ulong code_address;
- unsigned long addend;
- CPUTLBEntry *te;
- CPUWatchpoint *wp;
target_phys_addr_t iotlb;
+ CPUWatchpoint *wp;
- assert(size >= TARGET_PAGE_SIZE);
- if (size != TARGET_PAGE_SIZE) {
- tlb_add_large_page(env, vaddr, size);
- }
- section = phys_page_find(paddr >> TARGET_PAGE_BITS);
-#if defined(DEBUG_TLB)
- printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
- " prot=%x idx=%d pd=0x%08lx\n",
- vaddr, paddr, prot, mmu_idx, pd);
-#endif
-
- address = vaddr;
- if (!is_ram_rom_romd(§ion)) {
- /* IO memory case (romd handled later) */
- address |= TLB_MMIO;
- }
- if (is_ram_rom_romd(§ion)) {
- addend = (unsigned long)(memory_region_get_ram_ptr(section.mr)
- + section.offset_within_region);
- } else {
- addend = 0;
- }
- if (is_ram_rom(§ion)) {
+ if (memory_region_is_ram(section->mr)) {
/* Normal RAM. */
- iotlb = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region) & TARGET_PAGE_MASK;
- if (!section.readonly)
- iotlb |= io_mem_notdirty.ram_addr;
- else
- iotlb |= io_mem_rom.ram_addr;
+ iotlb = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, paddr);
+ if (!section->readonly) {
+ iotlb |= phys_section_notdirty;
+ } else {
+ iotlb |= phys_section_rom;
+ }
} else {
/* IO handlers are currently passed a physical address.
It would be nice to pass an offset from the base address
and avoid full address decoding in every device.
We can't use the high bits of pd for this because
IO_MEM_ROMD uses these as a ram address. */
- iotlb = memory_region_get_ram_addr(section.mr) & ~TARGET_PAGE_MASK;
- iotlb += section.offset_within_region;
+ iotlb = section - phys_sections;
+ iotlb += memory_region_section_addr(section, paddr);
}
- code_address = address;
/* Make accesses to pages with watchpoints go via the
watchpoint trap routines. */
QTAILQ_FOREACH(wp, &env->watchpoints, entry) {
if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
/* Avoid trapping reads of pages with a write breakpoint. */
if ((prot & PAGE_WRITE) || (wp->flags & BP_MEM_READ)) {
- iotlb = io_mem_watch.ram_addr + paddr;
- address |= TLB_MMIO;
+ iotlb = phys_section_watch + paddr;
+ *address |= TLB_MMIO;
break;
}
}
}
- index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- env->iotlb[mmu_idx][index] = iotlb - vaddr;
- te = &env->tlb_table[mmu_idx][index];
- te->addend = addend - vaddr;
- if (prot & PAGE_READ) {
- te->addr_read = address;
- } else {
- te->addr_read = -1;
- }
-
- if (prot & PAGE_EXEC) {
- te->addr_code = code_address;
- } else {
- te->addr_code = -1;
- }
- if (prot & PAGE_WRITE) {
- if ((memory_region_is_ram(section.mr) && section.readonly)
- || is_romd(§ion)) {
- /* Write access calls the I/O callback. */
- te->addr_write = address | TLB_MMIO;
- } else if (memory_region_is_ram(section.mr)
- && !cpu_physical_memory_is_dirty(
- section.mr->ram_addr
- + section.offset_within_region)) {
- te->addr_write = address | TLB_NOTDIRTY;
- } else {
- te->addr_write = address;
- }
- } else {
- te->addr_write = -1;
- }
+ return iotlb;
}
#else
-
-void tlb_flush(CPUState *env, int flush_global)
-{
-}
-
-void tlb_flush_page(CPUState *env, target_ulong addr)
-{
-}
-
/*
* Walks guest process memory "regions" one by one
* and calls callback function 'fn' for each region.
{
walk_memory_regions_fn fn;
void *priv;
- unsigned long start;
+ uintptr_t start;
int prot;
};
int walk_memory_regions(void *priv, walk_memory_regions_fn fn)
{
struct walk_memory_regions_data data;
- unsigned long i;
+ uintptr_t i;
data.fn = fn;
data.priv = priv;
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was successfully handled. */
-int page_unprotect(target_ulong address, unsigned long pc, void *puc)
+int page_unprotect(target_ulong address, uintptr_t pc, void *puc)
{
unsigned int prot;
PageDesc *p;
mmap_unlock();
return 0;
}
-
-static inline void tlb_set_dirty(CPUState *env,
- unsigned long addr, target_ulong vaddr)
-{
-}
#endif /* defined(CONFIG_USER_ONLY) */
#if !defined(CONFIG_USER_ONLY)
subpage_t *subpage;
target_phys_addr_t base = section->offset_within_address_space
& TARGET_PAGE_MASK;
- MemoryRegionSection existing = phys_page_find(base >> TARGET_PAGE_BITS);
+ MemoryRegionSection *existing = phys_page_find(base >> TARGET_PAGE_BITS);
MemoryRegionSection subsection = {
.offset_within_address_space = base,
.size = TARGET_PAGE_SIZE,
};
target_phys_addr_t start, end;
- assert(existing.mr->subpage || existing.mr == &io_mem_unassigned);
+ assert(existing->mr->subpage || existing->mr == &io_mem_unassigned);
- if (!(existing.mr->subpage)) {
+ if (!(existing->mr->subpage)) {
subpage = subpage_init(base);
subsection.mr = &subpage->iomem;
phys_page_set(base >> TARGET_PAGE_BITS, 1,
phys_section_add(&subsection));
} else {
- subpage = container_of(existing.mr, subpage_t, iomem);
+ subpage = container_of(existing->mr, subpage_t, iomem);
}
start = section->offset_within_address_space & ~TARGET_PAGE_MASK;
end = start + section->size;
assert(new_block);
assert(!new_block->idstr[0]);
- if (dev && dev->parent_bus && dev->parent_bus->info->get_dev_path) {
- char *id = dev->parent_bus->info->get_dev_path(dev);
+ if (dev) {
+ char *id = qdev_get_dev_path(dev);
if (id) {
snprintf(new_block->idstr, sizeof(new_block->idstr), "%s/", id);
g_free(id);
/* Generate a debug exception if a watchpoint has been hit. */
static void check_watchpoint(int offset, int len_mask, int flags)
{
- CPUState *env = cpu_single_env;
+ CPUArchState *env = cpu_single_env;
target_ulong pc, cs_base;
TranslationBlock *tb;
target_ulong vaddr;
addr += mmio->base;
addr -= section->offset_within_address_space;
addr += section->offset_within_region;
- return io_mem_read(section->mr->ram_addr, addr, len);
+ return io_mem_read(section->mr, addr, len);
}
static void subpage_write(void *opaque, target_phys_addr_t addr,
addr += mmio->base;
addr -= section->offset_within_address_space;
addr += section->offset_within_region;
- io_mem_write(section->mr->ram_addr, addr, value, len);
+ io_mem_write(section->mr, addr, value, len);
}
static const MemoryRegionOps subpage_ops = {
return mmio;
}
-static int get_free_io_mem_idx(void)
-{
- int i;
-
- for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
- if (!io_mem_used[i]) {
- io_mem_used[i] = 1;
- return i;
- }
- fprintf(stderr, "RAN out out io_mem_idx, max %d !\n", IO_MEM_NB_ENTRIES);
- return -1;
-}
-
-/* mem_read and mem_write are arrays of functions containing the
- function to access byte (index 0), word (index 1) and dword (index
- 2). Functions can be omitted with a NULL function pointer.
- If io_index is non zero, the corresponding io zone is
- modified. If it is zero, a new io zone is allocated. The return
- value can be used with cpu_register_physical_memory(). (-1) is
- returned if error. */
-static int cpu_register_io_memory_fixed(int io_index, MemoryRegion *mr)
-{
- if (io_index <= 0) {
- io_index = get_free_io_mem_idx();
- if (io_index == -1)
- return io_index;
- } else {
- if (io_index >= IO_MEM_NB_ENTRIES)
- return -1;
- }
-
- io_mem_region[io_index] = mr;
-
- return io_index;
-}
-
-int cpu_register_io_memory(MemoryRegion *mr)
-{
- return cpu_register_io_memory_fixed(0, mr);
-}
-
-void cpu_unregister_io_memory(int io_index)
-{
- io_mem_region[io_index] = NULL;
- io_mem_used[io_index] = 0;
-}
-
static uint16_t dummy_section(MemoryRegion *mr)
{
MemoryRegionSection section = {
return phys_section_add(§ion);
}
-static void io_mem_init(void)
+MemoryRegion *iotlb_to_region(target_phys_addr_t index)
{
- int i;
+ return phys_sections[index & ~TARGET_PAGE_MASK].mr;
+}
- /* Must be first: */
+static void io_mem_init(void)
+{
memory_region_init_io(&io_mem_ram, &error_mem_ops, NULL, "ram", UINT64_MAX);
- assert(io_mem_ram.ram_addr == 0);
memory_region_init_io(&io_mem_rom, &rom_mem_ops, NULL, "rom", UINT64_MAX);
memory_region_init_io(&io_mem_unassigned, &unassigned_mem_ops, NULL,
"unassigned", UINT64_MAX);
"notdirty", UINT64_MAX);
memory_region_init_io(&io_mem_subpage_ram, &subpage_ram_ops, NULL,
"subpage-ram", UINT64_MAX);
- for (i=0; i<5; i++)
- io_mem_used[i] = 1;
-
memory_region_init_io(&io_mem_watch, &watch_mem_ops, NULL,
"watch", UINT64_MAX);
}
phys_sections_clear();
phys_map.ptr = PHYS_MAP_NODE_NIL;
phys_section_unassigned = dummy_section(&io_mem_unassigned);
+ phys_section_notdirty = dummy_section(&io_mem_notdirty);
+ phys_section_rom = dummy_section(&io_mem_rom);
+ phys_section_watch = dummy_section(&io_mem_watch);
}
static void core_commit(MemoryListener *listener)
{
- CPUState *env;
+ CPUArchState *env;
/* since each CPU stores ram addresses in its TLB cache, we must
reset the modified entries */
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l, flags;
void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
{
- int l, io_index;
+ int l;
uint8_t *ptr;
uint32_t val;
target_phys_addr_t page;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
section = phys_page_find(page >> TARGET_PAGE_BITS);
if (is_write) {
- if (!memory_region_is_ram(section.mr)) {
+ if (!memory_region_is_ram(section->mr)) {
target_phys_addr_t addr1;
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr1 = (addr & ~TARGET_PAGE_MASK)
- + section.offset_within_region;
+ addr1 = memory_region_section_addr(section, addr);
/* XXX: could force cpu_single_env to NULL to avoid
potential bugs */
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit write access */
val = ldl_p(buf);
- io_mem_write(io_index, addr1, val, 4);
+ io_mem_write(section->mr, addr1, val, 4);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit write access */
val = lduw_p(buf);
- io_mem_write(io_index, addr1, val, 2);
+ io_mem_write(section->mr, addr1, val, 2);
l = 2;
} else {
/* 8 bit write access */
val = ldub_p(buf);
- io_mem_write(io_index, addr1, val, 1);
+ io_mem_write(section->mr, addr1, val, 1);
l = 1;
}
- } else if (!section.readonly) {
+ } else if (!section->readonly) {
ram_addr_t addr1;
- addr1 = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region)
- | (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
qemu_put_ram_ptr(ptr);
}
} else {
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
target_phys_addr_t addr1;
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr1 = (addr & ~TARGET_PAGE_MASK)
- + section.offset_within_region;
+ addr1 = memory_region_section_addr(section, addr);
if (l >= 4 && ((addr1 & 3) == 0)) {
/* 32 bit read access */
- val = io_mem_read(io_index, addr1, 4);
+ val = io_mem_read(section->mr, addr1, 4);
stl_p(buf, val);
l = 4;
} else if (l >= 2 && ((addr1 & 1) == 0)) {
/* 16 bit read access */
- val = io_mem_read(io_index, addr1, 2);
+ val = io_mem_read(section->mr, addr1, 2);
stw_p(buf, val);
l = 2;
} else {
/* 8 bit read access */
- val = io_mem_read(io_index, addr1, 1);
+ val = io_mem_read(section->mr, addr1, 1);
stb_p(buf, val);
l = 1;
}
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr(section.mr->ram_addr
- + section.offset_within_region);
- memcpy(buf, ptr + (addr & ~TARGET_PAGE_MASK), l);
+ ptr = qemu_get_ram_ptr(section->mr->ram_addr
+ + memory_region_section_addr(section,
+ addr));
+ memcpy(buf, ptr, l);
qemu_put_ram_ptr(ptr);
}
}
int l;
uint8_t *ptr;
target_phys_addr_t page;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = len;
section = phys_page_find(page >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* do nothing */
} else {
unsigned long addr1;
- addr1 = (memory_region_get_ram_addr(section.mr)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ addr1 = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
/* ROM/RAM case */
ptr = qemu_get_ram_ptr(addr1);
memcpy(ptr, buf, l);
target_phys_addr_t todo = 0;
int l;
target_phys_addr_t page;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
ram_addr_t raddr = RAM_ADDR_MAX;
ram_addr_t rlen;
void *ret;
l = len;
section = phys_page_find(page >> TARGET_PAGE_BITS);
- if (!(memory_region_is_ram(section.mr) && !section.readonly)) {
+ if (!(memory_region_is_ram(section->mr) && !section->readonly)) {
if (todo || bounce.buffer) {
break;
}
return bounce.buffer;
}
if (!todo) {
- raddr = memory_region_get_ram_addr(section.mr)
- + section.offset_within_region
- + (addr & ~TARGET_PAGE_MASK);
+ raddr = memory_region_get_ram_addr(section->mr)
+ + memory_region_section_addr(section, addr);
}
len -= l;
static inline uint32_t ldl_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint32_t val;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
- val = io_mem_read(io_index, addr, 4);
+ addr = memory_region_section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 4);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region) +
- (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldl_le_p(ptr);
static inline uint64_t ldq_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
+ addr = memory_region_section_addr(section, addr);
/* XXX This is broken when device endian != cpu endian.
Fix and add "endian" variable check */
#ifdef TARGET_WORDS_BIGENDIAN
- val = io_mem_read(io_index, addr, 4) << 32;
- val |= io_mem_read(io_index, addr + 4, 4);
+ val = io_mem_read(section->mr, addr, 4) << 32;
+ val |= io_mem_read(section->mr, addr + 4, 4);
#else
- val = io_mem_read(io_index, addr, 4);
- val |= io_mem_read(io_index, addr + 4, 4) << 32;
+ val = io_mem_read(section->mr, addr, 4);
+ val |= io_mem_read(section->mr, addr + 4, 4) << 32;
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = ldq_le_p(ptr);
static inline uint32_t lduw_phys_internal(target_phys_addr_t addr,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
uint64_t val;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!is_ram_rom_romd(§ion)) {
+ if (!(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr))) {
/* I/O case */
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
- val = io_mem_read(io_index, addr, 2);
+ addr = memory_region_section_addr(section, addr);
+ val = io_mem_read(section->mr, addr, 2);
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
#endif
} else {
/* RAM case */
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
switch (endian) {
case DEVICE_LITTLE_ENDIAN:
val = lduw_le_p(ptr);
bits are used to track modified PTEs */
void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
- io_mem_write(io_index, addr, val, 4);
+ io_mem_write(section->mr, addr, val, 4);
} else {
- unsigned long addr1 = (memory_region_get_ram_addr(section.mr)
+ unsigned long addr1 = (memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr);
ptr = qemu_get_ram_ptr(addr1);
stl_p(ptr, val);
void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
#ifdef TARGET_WORDS_BIGENDIAN
- io_mem_write(io_index, addr, val >> 32, 4);
- io_mem_write(io_index, addr + 4, (uint32_t)val, 4);
+ io_mem_write(section->mr, addr, val >> 32, 4);
+ io_mem_write(section->mr, addr + 4, (uint32_t)val, 4);
#else
- io_mem_write(io_index, addr, (uint32_t)val, 4);
- io_mem_write(io_index, addr + 4, val >> 32, 4);
+ io_mem_write(section->mr, addr, (uint32_t)val, 4);
+ io_mem_write(section->mr, addr + 4, val >> 32, 4);
#endif
} else {
- ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section.mr)
+ ptr = qemu_get_ram_ptr((memory_region_get_ram_addr(section->mr)
& TARGET_PAGE_MASK)
- + section.offset_within_region)
- + (addr & ~TARGET_PAGE_MASK);
+ + memory_region_section_addr(section, addr));
stq_p(ptr, val);
}
}
static inline void stl_phys_internal(target_phys_addr_t addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap32(val);
val = bswap32(val);
}
#endif
- io_mem_write(io_index, addr, val, 4);
+ io_mem_write(section->mr, addr, val, 4);
} else {
unsigned long addr1;
- addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
- + section.offset_within_region
- + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
static inline void stw_phys_internal(target_phys_addr_t addr, uint32_t val,
enum device_endian endian)
{
- int io_index;
uint8_t *ptr;
- MemoryRegionSection section;
+ MemoryRegionSection *section;
section = phys_page_find(addr >> TARGET_PAGE_BITS);
- if (!memory_region_is_ram(section.mr) || section.readonly) {
- if (memory_region_is_ram(section.mr)) {
- io_index = io_mem_rom.ram_addr;
- } else {
- io_index = memory_region_get_ram_addr(section.mr)
- & (IO_MEM_NB_ENTRIES - 1);
+ if (!memory_region_is_ram(section->mr) || section->readonly) {
+ addr = memory_region_section_addr(section, addr);
+ if (memory_region_is_ram(section->mr)) {
+ section = &phys_sections[phys_section_rom];
}
- addr = (addr & ~TARGET_PAGE_MASK) + section.offset_within_region;
#if defined(TARGET_WORDS_BIGENDIAN)
if (endian == DEVICE_LITTLE_ENDIAN) {
val = bswap16(val);
val = bswap16(val);
}
#endif
- io_mem_write(io_index, addr, val, 2);
+ io_mem_write(section->mr, addr, val, 2);
} else {
unsigned long addr1;
- addr1 = (memory_region_get_ram_addr(section.mr) & TARGET_PAGE_MASK)
- + section.offset_within_region + (addr & ~TARGET_PAGE_MASK);
+ addr1 = (memory_region_get_ram_addr(section->mr) & TARGET_PAGE_MASK)
+ + memory_region_section_addr(section, addr);
/* RAM case */
ptr = qemu_get_ram_ptr(addr1);
switch (endian) {
}
/* virtual memory access for debug (includes writing to ROM) */
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUArchState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l;
/* in deterministic execution mode, instructions doing device I/Os
must be at the end of the TB */
-void cpu_io_recompile(CPUState *env, void *retaddr)
+void cpu_io_recompile(CPUArchState *env, uintptr_t retaddr)
{
TranslationBlock *tb;
uint32_t n, cflags;
target_ulong pc, cs_base;
uint64_t flags;
- tb = tb_find_pc((unsigned long)retaddr);
+ tb = tb_find_pc(retaddr);
if (!tb) {
cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
- retaddr);
+ (void *)retaddr);
}
n = env->icount_decr.u16.low + tb->icount;
- cpu_restore_state(tb, env, (unsigned long)retaddr);
+ cpu_restore_state(tb, env, retaddr);
/* Calculate how many instructions had been executed before the fault
occurred. */
n = n - env->icount_decr.u16.low;
tcg_dump_info(f, cpu_fprintf);
}
-/* NOTE: this function can trigger an exception */
-/* NOTE2: the returned address is not exactly the physical address: it
- is the offset relative to phys_ram_base */
-tb_page_addr_t get_page_addr_code(CPUState *env1, target_ulong addr)
-{
- int mmu_idx, page_index, pd;
- void *p;
-
- page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- mmu_idx = cpu_mmu_index(env1);
- if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
- (addr & TARGET_PAGE_MASK))) {
- ldub_code(addr);
- }
- pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
- if (pd != io_mem_ram.ram_addr && pd != io_mem_rom.ram_addr
- && !io_mem_region[pd]->rom_device) {
-#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
- cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
-#else
- cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
-#endif
- }
- p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
- return qemu_ram_addr_from_host_nofail(p);
-}
-
/*
* A helper function for the _utterly broken_ virtio device model to find out if
* it's running on a big endian machine. Don't do this at home kids!
#endif
}
-#define MMUSUFFIX _cmmu
-#undef GETPC
-#define GETPC() NULL
-#define env cpu_single_env
-#define SOFTMMU_CODE_ACCESS
-
-#define SHIFT 0
-#include "softmmu_template.h"
-
-#define SHIFT 1
-#include "softmmu_template.h"
-
-#define SHIFT 2
-#include "softmmu_template.h"
+#endif
-#define SHIFT 3
-#include "softmmu_template.h"
+#ifndef CONFIG_USER_ONLY
+bool cpu_physical_memory_is_io(target_phys_addr_t phys_addr)
+{
+ MemoryRegionSection *section;
-#undef env
+ section = phys_page_find(phys_addr >> TARGET_PAGE_BITS);
+ return !(memory_region_is_ram(section->mr) ||
+ memory_region_is_romd(section->mr));
+}
#endif