* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
- * License along with this library; if not, write to the Free Software
- * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
+ * License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
+#ifndef _EXEC_ALL_H_
+#define _EXEC_ALL_H_
+
+#include "qemu-common.h"
+
/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS
#define DISAS_UPDATE 2 /* cpu state was modified dynamically */
#define DISAS_TB_JUMP 3 /* only pc was modified statically */
-struct TranslationBlock;
+typedef struct TranslationBlock TranslationBlock;
/* XXX: make safe guess about sizes */
-#define MAX_OP_PER_INSTR 64
+#define MAX_OP_PER_INSTR 96
/* A Call op needs up to 6 + 2N parameters (N = number of arguments). */
#define MAX_OPC_PARAM 10
-#define OPC_BUF_SIZE 512
+#define OPC_BUF_SIZE 640
#define OPC_MAX_SIZE (OPC_BUF_SIZE - MAX_OP_PER_INSTR)
/* Maximum size a TCG op can expand to. This is complicated because a
- single op may require several host instructions and regirster reloads.
- For now take a wild guess at 128 bytes, which should allow at least
+ single op may require several host instructions and register reloads.
+ For now take a wild guess at 192 bytes, which should allow at least
a couple of fixup instructions per argument. */
-#define TCG_MAX_OP_SIZE 128
+#define TCG_MAX_OP_SIZE 192
#define OPPARAM_BUF_SIZE (OPC_BUF_SIZE * MAX_OPC_PARAM)
extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
+extern uint16_t gen_opc_icount[OPC_BUF_SIZE];
extern target_ulong gen_opc_jump_pc[2];
extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
-typedef void (GenOpFunc)(void);
-typedef void (GenOpFunc1)(long);
-typedef void (GenOpFunc2)(long, long);
-typedef void (GenOpFunc3)(long, long, long);
+#include "qemu-log.h"
-extern FILE *logfile;
-extern int loglevel;
-
-int gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
-int gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
+void gen_intermediate_code(CPUState *env, struct TranslationBlock *tb);
+void gen_intermediate_code_pc(CPUState *env, struct TranslationBlock *tb);
void gen_pc_load(CPUState *env, struct TranslationBlock *tb,
unsigned long searched_pc, int pc_pos, void *puc);
CPUState *env, unsigned long searched_pc,
void *puc);
void cpu_resume_from_signal(CPUState *env1, void *puc);
+void cpu_io_recompile(CPUState *env, void *retaddr);
+TranslationBlock *tb_gen_code(CPUState *env,
+ target_ulong pc, target_ulong cs_base, int flags,
+ int cflags);
void cpu_exec_init(CPUState *env);
+void QEMU_NORETURN cpu_loop_exit(void);
int page_unprotect(target_ulong address, unsigned long pc, void *puc);
void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
int is_cpu_write_access);
#define CODE_GEN_AVG_BLOCK_SIZE 64
#endif
-#if defined(__powerpc__) || defined(__x86_64__) || defined(__arm__)
-#define USE_DIRECT_JUMP
-#endif
-#if defined(__i386__) && !defined(_WIN32)
+#if defined(_ARCH_PPC) || defined(__x86_64__) || defined(__arm__) || defined(__i386__)
#define USE_DIRECT_JUMP
#endif
-typedef struct TranslationBlock {
+struct TranslationBlock {
target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
target_ulong cs_base; /* CS base for this block */
uint64_t flags; /* flags defining in which context the code was generated */
uint16_t size; /* size of target code for this block (1 <=
size <= TARGET_PAGE_SIZE) */
uint16_t cflags; /* compile flags */
-#define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
-#define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
-#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
+#define CF_COUNT_MASK 0x7fff
+#define CF_LAST_IO 0x8000 /* Last insn may be an IO access. */
uint8_t *tc_ptr; /* pointer to the translated code */
/* next matching tb for physical address. */
jmp_first */
struct TranslationBlock *jmp_next[2];
struct TranslationBlock *jmp_first;
-} TranslationBlock;
+ uint32_t icount;
+};
static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
{
}
TranslationBlock *tb_alloc(target_ulong pc);
+void tb_free(TranslationBlock *tb);
void tb_flush(CPUState *env);
void tb_link_phys(TranslationBlock *tb,
target_ulong phys_pc, target_ulong phys_page2);
+void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr);
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
extern uint8_t *code_gen_ptr;
#if defined(USE_DIRECT_JUMP)
-#if defined(__powerpc__)
-static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
-{
- uint32_t val, *ptr;
-
- /* patch the branch destination */
- ptr = (uint32_t *)jmp_addr;
- val = *ptr;
- val = (val & ~0x03fffffc) | ((addr - jmp_addr) & 0x03fffffc);
- *ptr = val;
- /* flush icache */
- asm volatile ("dcbst 0,%0" : : "r"(ptr) : "memory");
- asm volatile ("sync" : : : "memory");
- asm volatile ("icbi 0,%0" : : "r"(ptr) : "memory");
- asm volatile ("sync" : : : "memory");
- asm volatile ("isync" : : : "memory");
-}
+#if defined(_ARCH_PPC)
+extern void ppc_tb_set_jmp_target(unsigned long jmp_addr, unsigned long addr);
+#define tb_set_jmp_target1 ppc_tb_set_jmp_target
#elif defined(__i386__) || defined(__x86_64__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
/* patch the branch destination */
*(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
- /* no need to flush icache explicitely */
+ /* no need to flush icache explicitly */
}
#elif defined(__arm__)
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
+#if QEMU_GNUC_PREREQ(4, 1)
+ void __clear_cache(char *beg, char *end);
+#else
register unsigned long _beg __asm ("a1");
register unsigned long _end __asm ("a2");
register unsigned long _flg __asm ("a3");
+#endif
/* we could use a ldr pc, [pc, #-4] kind of branch and avoid the flush */
- *(uint32_t *)jmp_addr |= ((addr - (jmp_addr + 8)) >> 2) & 0xffffff;
+ *(uint32_t *)jmp_addr =
+ (*(uint32_t *)jmp_addr & ~0xffffff)
+ | (((addr - (jmp_addr + 8)) >> 2) & 0xffffff);
+#if QEMU_GNUC_PREREQ(4, 1)
+ __clear_cache((char *) jmp_addr, (char *) jmp_addr + 4);
+#else
/* flush icache */
_beg = jmp_addr;
_end = jmp_addr + 4;
_flg = 0;
__asm __volatile__ ("swi 0x9f0002" : : "r" (_beg), "r" (_end), "r" (_flg));
+#endif
}
#endif
TranslationBlock *tb_find_pc(unsigned long pc_ptr);
-#ifndef offsetof
-#define offsetof(type, field) ((size_t) &((type *)0)->field)
-#endif
-
-#if defined(_WIN32)
-#define ASM_DATA_SECTION ".section \".data\"\n"
-#define ASM_PREVIOUS_SECTION ".section .text\n"
-#elif defined(__APPLE__)
-#define ASM_DATA_SECTION ".data\n"
-#define ASM_PREVIOUS_SECTION ".text\n"
-#else
-#define ASM_DATA_SECTION ".section \".data\"\n"
-#define ASM_PREVIOUS_SECTION ".previous\n"
-#endif
-
-#define ASM_OP_LABEL_NAME(n, opname) \
- ASM_NAME(__op_label) #n "." ASM_NAME(opname)
-
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
-#if defined(__hppa__)
-
-typedef int spinlock_t[4];
-
-#define SPIN_LOCK_UNLOCKED { 1, 1, 1, 1 }
-
-static inline void resetlock (spinlock_t *p)
-{
- (*p)[0] = (*p)[1] = (*p)[2] = (*p)[3] = 1;
-}
-
-#else
-
-typedef int spinlock_t;
-
-#define SPIN_LOCK_UNLOCKED 0
-
-static inline void resetlock (spinlock_t *p)
-{
- *p = SPIN_LOCK_UNLOCKED;
-}
-
-#endif
-
-#if defined(__powerpc__)
-static inline int testandset (int *p)
-{
- int ret;
- __asm__ __volatile__ (
- "0: lwarx %0,0,%1\n"
- " xor. %0,%3,%0\n"
- " bne 1f\n"
- " stwcx. %2,0,%1\n"
- " bne- 0b\n"
- "1: "
- : "=&r" (ret)
- : "r" (p), "r" (1), "r" (0)
- : "cr0", "memory");
- return ret;
-}
-#elif defined(__i386__)
-static inline int testandset (int *p)
-{
- long int readval = 0;
-
- __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
- : "+m" (*p), "+a" (readval)
- : "r" (1)
- : "cc");
- return readval;
-}
-#elif defined(__x86_64__)
-static inline int testandset (int *p)
-{
- long int readval = 0;
-
- __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
- : "+m" (*p), "+a" (readval)
- : "r" (1)
- : "cc");
- return readval;
-}
-#elif defined(__s390__)
-static inline int testandset (int *p)
-{
- int ret;
-
- __asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
- " jl 0b"
- : "=&d" (ret)
- : "r" (1), "a" (p), "0" (*p)
- : "cc", "memory" );
- return ret;
-}
-#elif defined(__alpha__)
-static inline int testandset (int *p)
-{
- int ret;
- unsigned long one;
-
- __asm__ __volatile__ ("0: mov 1,%2\n"
- " ldl_l %0,%1\n"
- " stl_c %2,%1\n"
- " beq %2,1f\n"
- ".subsection 2\n"
- "1: br 0b\n"
- ".previous"
- : "=r" (ret), "=m" (*p), "=r" (one)
- : "m" (*p));
- return ret;
-}
-#elif defined(__sparc__)
-static inline int testandset (int *p)
-{
- int ret;
-
- __asm__ __volatile__("ldstub [%1], %0"
- : "=r" (ret)
- : "r" (p)
- : "memory");
-
- return (ret ? 1 : 0);
-}
-#elif defined(__arm__)
-static inline int testandset (int *spinlock)
-{
- register unsigned int ret;
- __asm__ __volatile__("swp %0, %1, [%2]"
- : "=r"(ret)
- : "0"(1), "r"(spinlock));
-
- return ret;
-}
-#elif defined(__mc68000)
-static inline int testandset (int *p)
-{
- char ret;
- __asm__ __volatile__("tas %1; sne %0"
- : "=r" (ret)
- : "m" (p)
- : "cc","memory");
- return ret;
-}
-#elif defined(__hppa__)
-
-/* Because malloc only guarantees 8-byte alignment for malloc'd data,
- and GCC only guarantees 8-byte alignment for stack locals, we can't
- be assured of 16-byte alignment for atomic lock data even if we
- specify "__attribute ((aligned(16)))" in the type declaration. So,
- we use a struct containing an array of four ints for the atomic lock
- type and dynamically select the 16-byte aligned int from the array
- for the semaphore. */
-#define __PA_LDCW_ALIGNMENT 16
-static inline void *ldcw_align (void *p) {
- unsigned long a = (unsigned long)p;
- a = (a + __PA_LDCW_ALIGNMENT - 1) & ~(__PA_LDCW_ALIGNMENT - 1);
- return (void *)a;
-}
-
-static inline int testandset (spinlock_t *p)
-{
- unsigned int ret;
- p = ldcw_align(p);
- __asm__ __volatile__("ldcw 0(%1),%0"
- : "=r" (ret)
- : "r" (p)
- : "memory" );
- return !ret;
-}
-
-#elif defined(__ia64)
-
-#include <ia64intrin.h>
-
-static inline int testandset (int *p)
-{
- return __sync_lock_test_and_set (p, 1);
-}
-#elif defined(__mips__)
-static inline int testandset (int *p)
-{
- int ret;
-
- __asm__ __volatile__ (
- " .set push \n"
- " .set noat \n"
- " .set mips2 \n"
- "1: li $1, 1 \n"
- " ll %0, %1 \n"
- " sc $1, %1 \n"
- " beqz $1, 1b \n"
- " .set pop "
- : "=r" (ret), "+R" (*p)
- :
- : "memory");
-
- return ret;
-}
-#else
-#error unimplemented CPU support
-#endif
-
-#if defined(CONFIG_USER_ONLY)
-static inline void spin_lock(spinlock_t *lock)
-{
- while (testandset(lock));
-}
-
-static inline void spin_unlock(spinlock_t *lock)
-{
- resetlock(lock);
-}
-
-static inline int spin_trylock(spinlock_t *lock)
-{
- return !testandset(lock);
-}
-#else
-static inline void spin_lock(spinlock_t *lock)
-{
-}
-
-static inline void spin_unlock(spinlock_t *lock)
-{
-}
-
-static inline int spin_trylock(spinlock_t *lock)
-{
- return 1;
-}
-#endif
+#include "qemu-lock.h"
extern spinlock_t tb_lock;
void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
void *retaddr);
+#include "softmmu_defs.h"
+
#define ACCESS_TYPE (NB_MMU_MODES + 1)
#define MEMSUFFIX _code
#define env cpu_single_env
static inline target_ulong get_phys_addr_code(CPUState *env1, target_ulong addr)
{
int mmu_idx, page_index, pd;
+ void *p;
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = cpu_mmu_index(env1);
- if (__builtin_expect(env1->tlb_table[mmu_idx][page_index].addr_code !=
- (addr & TARGET_PAGE_MASK), 0)) {
+ if (unlikely(env1->tlb_table[mmu_idx][page_index].addr_code !=
+ (addr & TARGET_PAGE_MASK))) {
ldub_code(addr);
}
pd = env1->tlb_table[mmu_idx][page_index].addr_code & ~TARGET_PAGE_MASK;
if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
- do_unassigned_access(addr, 0, 1, 0);
+ do_unassigned_access(addr, 0, 1, 0, 4);
#else
cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
#endif
}
- return addr + env1->tlb_table[mmu_idx][page_index].addend - (unsigned long)phys_ram_base;
+ p = (void *)(unsigned long)addr
+ + env1->tlb_table[mmu_idx][page_index].addend;
+ return qemu_ram_addr_from_host(p);
}
-#endif
-#ifdef USE_KQEMU
-#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
+/* Deterministic execution requires that IO only be performed on the last
+ instruction of a TB so that interrupts take effect immediately. */
+static inline int can_do_io(CPUState *env)
+{
+ if (!use_icount)
+ return 1;
-int kqemu_init(CPUState *env);
-int kqemu_cpu_exec(CPUState *env);
-void kqemu_flush_page(CPUState *env, target_ulong addr);
-void kqemu_flush(CPUState *env, int global);
-void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
-void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
-void kqemu_cpu_interrupt(CPUState *env);
-void kqemu_record_dump(void);
+ /* If not executing code then assume we are ok. */
+ if (!env->current_tb)
+ return 1;
-static inline int kqemu_is_ok(CPUState *env)
-{
- return(env->kqemu_enabled &&
- (env->cr[0] & CR0_PE_MASK) &&
- !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
- (env->eflags & IF_MASK) &&
- !(env->eflags & VM_MASK) &&
- (env->kqemu_enabled == 2 ||
- ((env->hflags & HF_CPL_MASK) == 3 &&
- (env->eflags & IOPL_MASK) != IOPL_MASK)));
+ return env->can_do_io != 0;
}
+#endif
+
+typedef void (CPUDebugExcpHandler)(CPUState *env);
+
+CPUDebugExcpHandler *cpu_set_debug_excp_handler(CPUDebugExcpHandler *handler);
+
+/* vl.c */
+extern int singlestep;
#endif