]> Git Repo - qemu.git/blobdiff - qemu-doc.texi
CRIS: Reduce the number of tb dependent flags.
[qemu.git] / qemu-doc.texi
index 1f056065bde1b5fc7cbb294f356531b72e9b3d4b..1f409f47f4b5e85c122ecfbe52cca0f4be0e0da3 100644 (file)
@@ -1,16 +1,46 @@
 \input texinfo @c -*- texinfo -*-
+@c %**start of header
+@setfilename qemu-doc.info
+@settitle QEMU Emulator User Documentation
+@exampleindent 0
+@paragraphindent 0
+@c %**end of header
 
 @iftex
-@settitle QEMU CPU Emulator User Documentation
 @titlepage
 @sp 7
-@center @titlefont{QEMU CPU Emulator User Documentation}
+@center @titlefont{QEMU Emulator}
+@sp 1
+@center @titlefont{User Documentation}
 @sp 3
 @end titlepage
 @end iftex
 
+@ifnottex
+@node Top
+@top
+
+@menu
+* Introduction::
+* Installation::
+* QEMU PC System emulator::
+* QEMU System emulator for non PC targets::
+* QEMU User space emulator::
+* compilation:: Compilation from the sources
+* Index::
+@end menu
+@end ifnottex
+
+@contents
+
+@node Introduction
 @chapter Introduction
 
+@menu
+* intro_features:: Features
+@end menu
+
+@node intro_features
 @section Features
 
 QEMU is a FAST! processor emulator using dynamic translation to
@@ -20,154 +50,148 @@ QEMU has two operating modes:
 
 @itemize @minus
 
-@item 
+@item
 Full system emulation. In this mode, QEMU emulates a full system (for
-example a PC), including a processor and various peripherials. It can
-be used to launch different Operating Systems without rebooting the
-PC or to debug system code.
+example a PC), including one or several processors and various
+peripherals. It can be used to launch different Operating Systems
+without rebooting the PC or to debug system code.
 
-@item 
-User mode emulation (Linux host only). In this mode, QEMU can launch
-Linux processes compiled for one CPU on another CPU. It can be used to
+@item
+User mode emulation. In this mode, QEMU can launch
+processes compiled for one CPU on another CPU. It can be used to
 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
 to ease cross-compilation and cross-debugging.
 
 @end itemize
 
-As QEMU requires no host kernel driver to run, it is very safe and
-easy to use.
-
-For system emulation, only the x86 PC emulator is currently
-usable. The PowerPC system emulator is being developped.
-
-For user emulation, x86, PowerPC, ARM, and SPARC CPUs are supported.
-
-@chapter Installation
-
-@section Linux
-
-If you want to compile QEMU, please read the @file{README} which gives
-the related information. Otherwise just download the binary
-distribution (@file{qemu-XXX-i386.tar.gz}) and untar it as root in
-@file{/}:
-
-@example
-su
-cd /
-tar zxvf /tmp/qemu-XXX-i386.tar.gz
-@end example
+QEMU can run without an host kernel driver and yet gives acceptable
+performance.
 
-@section Windows
-w
+For system emulation, the following hardware targets are supported:
 @itemize
-@item Install the current versions of MSYS and MinGW from
-@url{http://www.mingw.org/}. You can find detailed installation
-instructions in the download section and the FAQ.
-
-@item Download 
-the MinGW development library of SDL 1.2.x
-(@file{SDL-devel-1.2.x-mingw32.tar.gz}) from
-@url{http://www.libsdl.org}. Unpack it in a temporary place, and
-unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
-directory. Edit the @file{sdl-config} script so that it gives the
-correct SDL directory when invoked.
-
-@item Extract the current version of QEMU.
-@item Start the MSYS shell (file @file{msys.bat}).
-
-@item Change to the QEMU directory. Launch @file{./configure} and 
-@file{make}.  If you have problems using SDL, verify that
-@file{sdl-config} can be launched from the MSYS command line.
-
-@item You can install QEMU in @file{Program Files/Qemu} by typing 
-@file{make install}. Don't forget to copy @file{SDL.dll} in
-@file{Program Files/Qemu}.
-
+@item PC (x86 or x86_64 processor)
+@item ISA PC (old style PC without PCI bus)
+@item PREP (PowerPC processor)
+@item G3 BW PowerMac (PowerPC processor)
+@item Mac99 PowerMac (PowerPC processor, in progress)
+@item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
+@item Sun4u (64-bit Sparc processor, in progress)
+@item Malta board (32-bit and 64-bit MIPS processors)
+@item MIPS Magnum (64-bit MIPS processor)
+@item ARM Integrator/CP (ARM)
+@item ARM Versatile baseboard (ARM)
+@item ARM RealView Emulation baseboard (ARM)
+@item Spitz, Akita, Borzoi and Terrier PDAs (PXA270 processor)
+@item Luminary Micro LM3S811EVB (ARM Cortex-M3)
+@item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
+@item Freescale MCF5208EVB (ColdFire V2).
+@item Arnewsh MCF5206 evaluation board (ColdFire V2).
+@item Palm Tungsten|E PDA (OMAP310 processor)
 @end itemize
 
-@section Cross compilation for Windows with Linux
-
-@itemize
-@item
-Install the MinGW cross compilation tools available at
-@url{http://www.mingw.org/}.
+For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
 
-@item 
-Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
-unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
-variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
-the QEMU configuration script.
+@node Installation
+@chapter Installation
 
-@item 
-Configure QEMU for Windows cross compilation:
-@example
-./configure --enable-mingw32
-@end example
-If necessary, you can change the cross-prefix according to the prefix
-choosen for the MinGW tools with --cross-prefix. You can also use
---prefix to set the Win32 install path.
+If you want to compile QEMU yourself, see @ref{compilation}.
 
-@item You can install QEMU in the installation directory by typing 
-@file{make install}. Don't forget to copy @file{SDL.dll} in the
-installation directory. 
+@menu
+* install_linux::   Linux
+* install_windows:: Windows
+* install_mac::     Macintosh
+@end menu
 
-@end itemize
+@node install_linux
+@section Linux
 
-Note: Currently, Wine does not seem able to launch
-QEMU for Win32.
+If a precompiled package is available for your distribution - you just
+have to install it. Otherwise, see @ref{compilation}.
 
-@section Mac OS X
+@node install_windows
+@section Windows
 
-Mac OS X is currently not supported.
+Download the experimental binary installer at
+@url{http://www.free.oszoo.org/@/download.html}.
 
-@chapter QEMU System emulator invocation
+@node install_mac
+@section Mac OS X
 
+Download the experimental binary installer at
+@url{http://www.free.oszoo.org/@/download.html}.
+
+@node QEMU PC System emulator
+@chapter QEMU PC System emulator
+
+@menu
+* pcsys_introduction:: Introduction
+* pcsys_quickstart::   Quick Start
+* sec_invocation::     Invocation
+* pcsys_keys::         Keys
+* pcsys_monitor::      QEMU Monitor
+* disk_images::        Disk Images
+* pcsys_network::      Network emulation
+* direct_linux_boot::  Direct Linux Boot
+* pcsys_usb::          USB emulation
+* vnc_security::       VNC security
+* gdb_usage::          GDB usage
+* pcsys_os_specific::  Target OS specific information
+@end menu
+
+@node pcsys_introduction
 @section Introduction
 
 @c man begin DESCRIPTION
 
-The QEMU System emulator simulates a complete PC. 
-
-In order to meet specific user needs, two versions of QEMU are
-available:
-
-@enumerate
-
-@item 
-@code{qemu-fast} uses the host Memory Management Unit (MMU) to simulate 
-the x86 MMU. It is @emph{fast} but has limitations because the whole 4 GB
-address space cannot be used and some memory mapped peripherials
-cannot be emulated accurately yet. Therefore, a specific Linux kernel
-must be used (@xref{linux_compile}).
-
-@item 
-@code{qemu} uses a software MMU. It is about @emph{two times 
-slower} but gives a more accurate emulation. 
-
-@end enumerate
-
-QEMU emulates the following PC peripherials:
+The QEMU PC System emulator simulates the
+following peripherals:
 
 @itemize @minus
 @item
-VGA (hardware level, including all non standard modes)
+i440FX host PCI bridge and PIIX3 PCI to ISA bridge
+@item
+Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
+extensions (hardware level, including all non standard modes).
 @item
 PS/2 mouse and keyboard
-@item 
-2 IDE interfaces with hard disk and CD-ROM support
+@item
+2 PCI IDE interfaces with hard disk and CD-ROM support
 @item
 Floppy disk
-@item 
-up to 6 NE2000 network adapters
 @item
-Serial port
-@item 
-Soundblaster 16 card
+PCI/ISA PCI network adapters
+@item
+Serial ports
+@item
+Creative SoundBlaster 16 sound card
+@item
+ENSONIQ AudioPCI ES1370 sound card
+@item
+Intel 82801AA AC97 Audio compatible sound card
+@item
+Adlib(OPL2) - Yamaha YM3812 compatible chip
+@item
+Gravis Ultrasound GF1 sound card
+@item
+PCI UHCI USB controller and a virtual USB hub.
 @end itemize
 
+SMP is supported with up to 255 CPUs.
+
+Note that adlib, ac97 and gus are only available when QEMU was configured
+with --enable-adlib, --enable-ac97 or --enable-gus respectively.
+
+QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
+VGA BIOS.
+
+QEMU uses YM3812 emulation by Tatsuyuki Satoh.
+
+QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
+by Tibor "TS" Schütz.
+
 @c man end
 
+@node pcsys_quickstart
 @section Quick Start
 
 Download and uncompress the linux image (@file{linux.img}) and type:
@@ -178,11 +202,12 @@ qemu linux.img
 
 Linux should boot and give you a prompt.
 
+@node sec_invocation
 @section Invocation
 
 @example
 @c man begin SYNOPSIS
-usage: qemu [options] [disk_image]
+usage: qemu [options] [@var{disk_image}]
 @c man end
 @end example
 
@@ -191,639 +216,2330 @@ usage: qemu [options] [disk_image]
 
 General options:
 @table @option
-@item -fda file
-@item -fdb file
-Use @var{file} as floppy disk 0/1 image (@xref{disk_images}).
+@item -M @var{machine}
+Select the emulated @var{machine} (@code{-M ?} for list)
+
+@item -fda @var{file}
+@item -fdb @var{file}
+Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
+use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
+
+@item -hda @var{file}
+@item -hdb @var{file}
+@item -hdc @var{file}
+@item -hdd @var{file}
+Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
+
+@item -cdrom @var{file}
+Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
+@option{-cdrom} at the same time). You can use the host CD-ROM by
+using @file{/dev/cdrom} as filename (@pxref{host_drives}).
+
+@item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
+
+Define a new drive. Valid options are:
+
+@table @code
+@item file=@var{file}
+This option defines which disk image (@pxref{disk_images}) to use with
+this drive. If the filename contains comma, you must double it
+(for instance, "file=my,,file" to use file "my,file").
+@item if=@var{interface}
+This option defines on which type on interface the drive is connected.
+Available types are: ide, scsi, sd, mtd, floppy, pflash.
+@item bus=@var{bus},unit=@var{unit}
+These options define where is connected the drive by defining the bus number and
+the unit id.
+@item index=@var{index}
+This option defines where is connected the drive by using an index in the list
+of available connectors of a given interface type.
+@item media=@var{media}
+This option defines the type of the media: disk or cdrom.
+@item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
+These options have the same definition as they have in @option{-hdachs}.
+@item snapshot=@var{snapshot}
+@var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
+@item cache=@var{cache}
+@var{cache} is "on" or "off" and allows to disable host cache to access data.
+@item format=@var{format}
+Specify which disk @var{format} will be used rather than detecting
+the format.  Can be used to specifiy format=raw to avoid interpreting
+an untrusted format header.
+@end table
 
-@item -hda file
-@item -hdb file
-@item -hdc file
-@item -hdd file
-Use @var{file} as hard disk 0, 1, 2 or 3 image (@xref{disk_images}).
+Instead of @option{-cdrom} you can use:
+@example
+qemu -drive file=file,index=2,media=cdrom
+@end example
 
-@item -cdrom file
-Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and and
-@option{-cdrom} at the same time).
+Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
+use:
+@example
+qemu -drive file=file,index=0,media=disk
+qemu -drive file=file,index=1,media=disk
+qemu -drive file=file,index=2,media=disk
+qemu -drive file=file,index=3,media=disk
+@end example
 
-@item -boot [a|c|d]
-Boot on floppy (a), hard disk (c) or CD-ROM (d). Hard disk boot is
-the default.
+You can connect a CDROM to the slave of ide0:
+@example
+qemu -drive file=file,if=ide,index=1,media=cdrom
+@end example
 
-@item -snapshot
-Write to temporary files instead of disk image files. In this case,
-the raw disk image you use is not written back. You can however force
-the write back by pressing @key{C-a s} (@xref{disk_images}). 
+If you don't specify the "file=" argument, you define an empty drive:
+@example
+qemu -drive if=ide,index=1,media=cdrom
+@end example
 
-@item -m megs
-Set virtual RAM size to @var{megs} megabytes.
+You can connect a SCSI disk with unit ID 6 on the bus #0:
+@example
+qemu -drive file=file,if=scsi,bus=0,unit=6
+@end example
 
-@item -initrd file
-Use @var{file} as initial ram disk.
+Instead of @option{-fda}, @option{-fdb}, you can use:
+@example
+qemu -drive file=file,index=0,if=floppy
+qemu -drive file=file,index=1,if=floppy
+@end example
 
-@item -nographic
+By default, @var{interface} is "ide" and @var{index} is automatically
+incremented:
+@example
+qemu -drive file=a -drive file=b"
+@end example
+is interpreted like:
+@example
+qemu -hda a -hdb b
+@end example
 
-Normally, QEMU uses SDL to display the VGA output. With this option,
-you can totally disable graphical output so that QEMU is a simple
-command line application. The emulated serial port is redirected on
-the console. Therefore, you can still use QEMU to debug a Linux kernel
-with a serial console.
+@item -boot [a|c|d|n]
+Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
+is the default.
 
-@end table
+@item -snapshot
+Write to temporary files instead of disk image files. In this case,
+the raw disk image you use is not written back. You can however force
+the write back by pressing @key{C-a s} (@pxref{disk_images}).
 
-Network options:
+@item -no-fd-bootchk
+Disable boot signature checking for floppy disks in Bochs BIOS. It may
+be needed to boot from old floppy disks.
 
-@table @option
+@item -m @var{megs}
+Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
+a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
+gigabytes respectively.
 
-@item -n script      
-Set network init script [default=/etc/qemu-ifup]. This script is
-launched to configure the host network interface (usually tun0)
-corresponding to the virtual NE2000 card.
+@item -smp @var{n}
+Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
+CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
+to 4.
 
-@item nics n
-Simulate @var{n} network interfaces (default=1).
+@item -audio-help
 
-@item -macaddr addr   
+Will show the audio subsystem help: list of drivers, tunable
+parameters.
 
-Set the mac address of the first interface (the format is
-aa:bb:cc:dd:ee:ff in hexa). The mac address is incremented for each
-new network interface.
+@item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
 
-@item -tun-fd fd1,...
-Assumes @var{fd} talks to tap/tun and use it. Read
-@url{http://bellard.org/qemu/tetrinet.html} to have an example of its
-use.
+Enable audio and selected sound hardware. Use ? to print all
+available sound hardware.
 
-@end table
+@example
+qemu -soundhw sb16,adlib hda
+qemu -soundhw es1370 hda
+qemu -soundhw ac97 hda
+qemu -soundhw all hda
+qemu -soundhw ?
+@end example
 
-Linux boot specific. When using this options, you can use a given
-Linux kernel without installing it in the disk image. It can be useful
-for easier testing of various kernels.
+Note that Linux's i810_audio OSS kernel (for AC97) module might
+require manually specifying clocking.
 
-@table @option
+@example
+modprobe i810_audio clocking=48000
+@end example
 
-@item -kernel bzImage 
-Use @var{bzImage} as kernel image.
+@item -localtime
+Set the real time clock to local time (the default is to UTC
+time). This option is needed to have correct date in MS-DOS or
+Windows.
 
-@item -append cmdline 
-Use @var{cmdline} as kernel command line
+@item -startdate @var{date}
+Set the initial date of the real time clock. Valid format for
+@var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
+@code{2006-06-17}. The default value is @code{now}.
 
-@item -initrd file
-Use @var{file} as initial ram disk.
+@item -pidfile @var{file}
+Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
+from a script.
 
-@end table
+@item -daemonize
+Daemonize the QEMU process after initialization.  QEMU will not detach from
+standard IO until it is ready to receive connections on any of its devices.
+This option is a useful way for external programs to launch QEMU without having
+to cope with initialization race conditions.
 
-Debug options:
-@table @option
-@item -s
-Wait gdb connection to port 1234 (@xref{gdb_usage}). 
-@item -p port
-Change gdb connection port.
-@item -d             
-Output log in /tmp/qemu.log
-@end table
+@item -win2k-hack
+Use it when installing Windows 2000 to avoid a disk full bug. After
+Windows 2000 is installed, you no longer need this option (this option
+slows down the IDE transfers).
 
-During emulation, if you are using the serial console, use @key{C-a h}
-to get terminal commands:
+@item -option-rom @var{file}
+Load the contents of @var{file} as an option ROM.
+This option is useful to load things like EtherBoot.
 
-@table @key
-@item C-a h
-Print this help
-@item C-a x    
-Exit emulatior
-@item C-a s    
-Save disk data back to file (if -snapshot)
-@item C-a b
-Send break (magic sysrq in Linux)
-@item C-a c
-Switch between console and monitor
-@item C-a C-a
-Send C-a
-@end table
-@c man end
+@item -name @var{name}
+Sets the @var{name} of the guest.
+This name will be display in the SDL window caption.
+The @var{name} will also be used for the VNC server.
 
-@ignore
+@end table
 
-@setfilename qemu 
-@settitle QEMU System Emulator
+Display options:
+@table @option
 
-@c man begin SEEALSO
-The HTML documentation of QEMU for more precise information and Linux
-user mode emulator invocation.
-@c man end
+@item -nographic
 
-@c man begin AUTHOR
-Fabrice Bellard
-@c man end
+Normally, QEMU uses SDL to display the VGA output. With this option,
+you can totally disable graphical output so that QEMU is a simple
+command line application. The emulated serial port is redirected on
+the console. Therefore, you can still use QEMU to debug a Linux kernel
+with a serial console.
 
-@end ignore
+@item -curses
 
-@end ignore
+Normally, QEMU uses SDL to display the VGA output.  With this option,
+QEMU can display the VGA output when in text mode using a 
+curses/ncurses interface.  Nothing is displayed in graphical mode.
 
+@item -no-frame
 
-@section QEMU Monitor
+Do not use decorations for SDL windows and start them using the whole
+available screen space. This makes the using QEMU in a dedicated desktop
+workspace more convenient.
 
-The QEMU monitor is used to give complex commands to the QEMU
-emulator. You can use it to:
+@item -no-quit
 
-@itemize @minus
+Disable SDL window close capability.
 
-@item
-Remove or insert removable medias images
-(such as CD-ROM or floppies)
+@item -full-screen
+Start in full screen.
 
-@item 
-Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
-from a disk file.
+@item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
 
-@item Inspect the VM state without an external debugger.
+Normally, QEMU uses SDL to display the VGA output.  With this option,
+you can have QEMU listen on VNC display @var{display} and redirect the VGA
+display over the VNC session.  It is very useful to enable the usb
+tablet device when using this option (option @option{-usbdevice
+tablet}). When using the VNC display, you must use the @option{-k}
+parameter to set the keyboard layout if you are not using en-us. Valid
+syntax for the @var{display} is
 
-@end itemize
+@table @code
 
-@subsection Commands
+@item @var{host}:@var{d}
 
-The following commands are available:
+TCP connections will only be allowed from @var{host} on display @var{d}.
+By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
+be omitted in which case the server will accept connections from any host.
 
-@table @option
+@item @code{unix}:@var{path}
 
-@item help or ? [cmd]
-Show the help for all commands or just for command @var{cmd}.
+Connections will be allowed over UNIX domain sockets where @var{path} is the
+location of a unix socket to listen for connections on.
 
-@item commit  
-Commit changes to the disk images (if -snapshot is used)
+@item none
 
-@item info subcommand 
-show various information about the system state
+VNC is initialized but not started. The monitor @code{change} command
+can be used to later start the VNC server.
 
-@table @option
-@item info network
-show the network state
-@item info block
-show the block devices
-@item info registers
-show the cpu registers
-@item info history
-show the command line history
 @end table
 
-@item q or quit
-Quit the emulator.
+Following the @var{display} value there may be one or more @var{option} flags
+separated by commas. Valid options are
 
-@item eject [-f] device
-Eject a removable media (use -f to force it).
+@table @code
 
-@item change device filename
-Change a removable media.
+@item reverse
 
-@item screendump filename
-Save screen into PPM image @var{filename}.
+Connect to a listening VNC client via a ``reverse'' connection. The
+client is specified by the @var{display}. For reverse network
+connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
+is a TCP port number, not a display number.
 
-@item log item1[,...]
-Activate logging of the specified items to @file{/tmp/qemu.log}.
+@item password
 
-@item savevm filename
-Save the whole virtual machine state to @var{filename}.
+Require that password based authentication is used for client connections.
+The password must be set separately using the @code{change} command in the
+@ref{pcsys_monitor}
 
-@item loadvm filename
-Restore the whole virtual machine state from @var{filename}.
+@item tls
 
-@item stop
-Stop emulation.
+Require that client use TLS when communicating with the VNC server. This
+uses anonymous TLS credentials so is susceptible to a man-in-the-middle
+attack. It is recommended that this option be combined with either the
+@var{x509} or @var{x509verify} options.
 
-@item c or cont
-Resume emulation.
+@item x509=@var{/path/to/certificate/dir}
 
-@item gdbserver [port]
-Start gdbserver session (default port=1234)
+Valid if @option{tls} is specified. Require that x509 credentials are used
+for negotiating the TLS session. The server will send its x509 certificate
+to the client. It is recommended that a password be set on the VNC server
+to provide authentication of the client when this is used. The path following
+this option specifies where the x509 certificates are to be loaded from.
+See the @ref{vnc_security} section for details on generating certificates.
 
-@item x/fmt addr
-Virtual memory dump starting at @var{addr}.
+@item x509verify=@var{/path/to/certificate/dir}
 
-@item xp /fmt addr
-Physical memory dump starting at @var{addr}.
+Valid if @option{tls} is specified. Require that x509 credentials are used
+for negotiating the TLS session. The server will send its x509 certificate
+to the client, and request that the client send its own x509 certificate.
+The server will validate the client's certificate against the CA certificate,
+and reject clients when validation fails. If the certificate authority is
+trusted, this is a sufficient authentication mechanism. You may still wish
+to set a password on the VNC server as a second authentication layer. The
+path following this option specifies where the x509 certificates are to
+be loaded from. See the @ref{vnc_security} section for details on generating
+certificates.
 
-@var{fmt} is a format which tells the command how to format the
-data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
+@end table
 
-@table @var
-@item count 
-is the number of items to be dumped.
+@item -k @var{language}
 
-@item format
-can be x (hexa), d (signed decimal), u (unsigned decimal), o (octal),
-c (char) or i (asm instruction).
+Use keyboard layout @var{language} (for example @code{fr} for
+French). This option is only needed where it is not easy to get raw PC
+keycodes (e.g. on Macs, with some X11 servers or with a VNC
+display). You don't normally need to use it on PC/Linux or PC/Windows
+hosts.
 
-@item size
-can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits)
+The available layouts are:
+@example
+ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
+da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
+de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
+@end example
+
+The default is @code{en-us}.
 
 @end table
 
-Examples: 
-@itemize
-@item
-Dump 10 instructions at the current instruction pointer:
-@example 
-(qemu) x/10i $eip
-0x90107063:  ret
-0x90107064:  sti
-0x90107065:  lea    0x0(%esi,1),%esi
-0x90107069:  lea    0x0(%edi,1),%edi
-0x90107070:  ret
-0x90107071:  jmp    0x90107080
-0x90107073:  nop
-0x90107074:  nop
-0x90107075:  nop
-0x90107076:  nop
-@end example
+USB options:
+@table @option
 
-@item
-Dump 80 16 bit values at the start of the video memory.
-@example 
-(qemu) xp/80hx 0xb8000
-0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
-0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
-0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
-0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
-0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
-0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
-0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
-0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
-0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
-0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
-@end example
-@end itemize
+@item -usb
+Enable the USB driver (will be the default soon)
 
-@item p or print/fmt expr
+@item -usbdevice @var{devname}
+Add the USB device @var{devname}. @xref{usb_devices}.
 
-Print expression value. Only the @var{format} part of @var{fmt} is
-used.
+@table @code
 
-@end table
+@item mouse
+Virtual Mouse. This will override the PS/2 mouse emulation when activated.
 
-@subsection Integer expressions
+@item tablet
+Pointer device that uses absolute coordinates (like a touchscreen). This
+means qemu is able to report the mouse position without having to grab the
+mouse. Also overrides the PS/2 mouse emulation when activated.
 
-The monitor understands integers expressions for every integer
-argument. You can use register names to get the value of specifics
-CPU registers by prefixing them with @emph{$}.
+@item disk:file
+Mass storage device based on file
 
-@node disk_images
-@section Disk Images
+@item host:bus.addr
+Pass through the host device identified by bus.addr (Linux only).
 
-@subsection Raw disk images
+@item host:vendor_id:product_id
+Pass through the host device identified by vendor_id:product_id (Linux only).
 
-The disk images can simply be raw images of the hard disk. You can
-create them with the command:
-@example
-dd if=/dev/zero of=myimage bs=1024 count=mysize
-@end example
-where @var{myimage} is the image filename and @var{mysize} is its size
-in kilobytes.
+@item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
+Serial converter to host character device @var{dev}, see @code{-serial} for the
+available devices.
 
-@subsection Snapshot mode
+@item braille
+Braille device.  This will use BrlAPI to display the braille output on a real
+or fake device.
 
-If you use the option @option{-snapshot}, all disk images are
-considered as read only. When sectors in written, they are written in
-a temporary file created in @file{/tmp}. You can however force the
-write back to the raw disk images by pressing @key{C-a s}.
+@end table
 
-NOTE: The snapshot mode only works with raw disk images.
+@end table
 
-@subsection Copy On Write disk images
+Network options:
 
-QEMU also supports user mode Linux
-(@url{http://user-mode-linux.sourceforge.net/}) Copy On Write (COW)
-disk images. The COW disk images are much smaller than normal images
-as they store only modified sectors. They also permit the use of the
-same disk image template for many users.
+@table @option
 
-To create a COW disk images, use the command:
+@item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}]
+Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
+= 0 is the default). The NIC is an ne2k_pci by default on the PC
+target. Optionally, the MAC address can be changed. If no
+@option{-net} option is specified, a single NIC is created.
+Qemu can emulate several different models of network card.
+Valid values for @var{type} are
+@code{i82551}, @code{i82557b}, @code{i82559er},
+@code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
+@code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
+Not all devices are supported on all targets.  Use -net nic,model=?
+for a list of available devices for your target.
+
+@item -net user[,vlan=@var{n}][,hostname=@var{name}]
+Use the user mode network stack which requires no administrator
+privilege to run.  @option{hostname=name} can be used to specify the client
+hostname reported by the builtin DHCP server.
+
+@item -net tap[,vlan=@var{n}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}]
+Connect the host TAP network interface @var{name} to VLAN @var{n} and
+use the network script @var{file} to configure it. The default
+network script is @file{/etc/qemu-ifup}. Use @option{script=no} to
+disable script execution. If @var{name} is not
+provided, the OS automatically provides one. @option{fd}=@var{h} can be
+used to specify the handle of an already opened host TAP interface. Example:
 
 @example
-qemu-mkcow -f myrawimage.bin mycowimage.cow
+qemu linux.img -net nic -net tap
 @end example
 
-@file{myrawimage.bin} is a raw image you want to use as original disk
-image. It will never be written to.
+More complicated example (two NICs, each one connected to a TAP device)
+@example
+qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
+               -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
+@end example
 
-@file{mycowimage.cow} is the COW disk image which is created by
-@code{qemu-mkcow}. You can use it directly with the @option{-hdx}
-options. You must not modify the original raw disk image if you use
-COW images, as COW images only store the modified sectors from the raw
-disk image. QEMU stores the original raw disk image name and its
-modified time in the COW disk image so that chances of mistakes are
-reduced.
 
-If the raw disk image is not read-only, by pressing @key{C-a s} you
-can flush the COW disk image back into the raw disk image, as in
-snapshot mode.
+@item -net socket[,vlan=@var{n}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
 
-COW disk images can also be created without a corresponding raw disk
-image. It is useful to have a big initial virtual disk image without
-using much disk space. Use:
+Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
+machine using a TCP socket connection. If @option{listen} is
+specified, QEMU waits for incoming connections on @var{port}
+(@var{host} is optional). @option{connect} is used to connect to
+another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
+specifies an already opened TCP socket.
 
+Example:
 @example
-qemu-mkcow mycowimage.cow 1024
+# launch a first QEMU instance
+qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
+               -net socket,listen=:1234
+# connect the VLAN 0 of this instance to the VLAN 0
+# of the first instance
+qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
+               -net socket,connect=127.0.0.1:1234
 @end example
 
-to create a 1 gigabyte empty COW disk image.
+@item -net socket[,vlan=@var{n}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
 
-NOTES: 
+Create a VLAN @var{n} shared with another QEMU virtual
+machines using a UDP multicast socket, effectively making a bus for
+every QEMU with same multicast address @var{maddr} and @var{port}.
+NOTES:
 @enumerate
 @item
-COW disk images must be created on file systems supporting
-@emph{holes} such as ext2 or ext3.
-@item 
-Since holes are used, the displayed size of the COW disk image is not
-the real one. To know it, use the @code{ls -ls} command.
-@end enumerate
+Several QEMU can be running on different hosts and share same bus (assuming
+correct multicast setup for these hosts).
+@item
+mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
+@url{http://user-mode-linux.sf.net}.
+@item
+Use @option{fd=h} to specify an already opened UDP multicast socket.
+@end enumerate
+
+Example:
+@example
+# launch one QEMU instance
+qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
+               -net socket,mcast=230.0.0.1:1234
+# launch another QEMU instance on same "bus"
+qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
+               -net socket,mcast=230.0.0.1:1234
+# launch yet another QEMU instance on same "bus"
+qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
+               -net socket,mcast=230.0.0.1:1234
+@end example
+
+Example (User Mode Linux compat.):
+@example
+# launch QEMU instance (note mcast address selected
+# is UML's default)
+qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
+               -net socket,mcast=239.192.168.1:1102
+# launch UML
+/path/to/linux ubd0=/path/to/root_fs eth0=mcast
+@end example
+
+@item -net none
+Indicate that no network devices should be configured. It is used to
+override the default configuration (@option{-net nic -net user}) which
+is activated if no @option{-net} options are provided.
+
+@item -tftp @var{dir}
+When using the user mode network stack, activate a built-in TFTP
+server. The files in @var{dir} will be exposed as the root of a TFTP server.
+The TFTP client on the guest must be configured in binary mode (use the command
+@code{bin} of the Unix TFTP client). The host IP address on the guest is as
+usual 10.0.2.2.
+
+@item -bootp @var{file}
+When using the user mode network stack, broadcast @var{file} as the BOOTP
+filename.  In conjunction with @option{-tftp}, this can be used to network boot
+a guest from a local directory.
+
+Example (using pxelinux):
+@example
+qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
+@end example
+
+@item -smb @var{dir}
+When using the user mode network stack, activate a built-in SMB
+server so that Windows OSes can access to the host files in @file{@var{dir}}
+transparently.
+
+In the guest Windows OS, the line:
+@example
+10.0.2.4 smbserver
+@end example
+must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
+or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
+
+Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
+
+Note that a SAMBA server must be installed on the host OS in
+@file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
+2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
+
+@item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
+
+When using the user mode network stack, redirect incoming TCP or UDP
+connections to the host port @var{host-port} to the guest
+@var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
+is not specified, its value is 10.0.2.15 (default address given by the
+built-in DHCP server).
+
+For example, to redirect host X11 connection from screen 1 to guest
+screen 0, use the following:
+
+@example
+# on the host
+qemu -redir tcp:6001::6000 [...]
+# this host xterm should open in the guest X11 server
+xterm -display :1
+@end example
+
+To redirect telnet connections from host port 5555 to telnet port on
+the guest, use the following:
+
+@example
+# on the host
+qemu -redir tcp:5555::23 [...]
+telnet localhost 5555
+@end example
+
+Then when you use on the host @code{telnet localhost 5555}, you
+connect to the guest telnet server.
+
+@end table
+
+Linux boot specific: When using these options, you can use a given
+Linux kernel without installing it in the disk image. It can be useful
+for easier testing of various kernels.
+
+@table @option
+
+@item -kernel @var{bzImage}
+Use @var{bzImage} as kernel image.
+
+@item -append @var{cmdline}
+Use @var{cmdline} as kernel command line
+
+@item -initrd @var{file}
+Use @var{file} as initial ram disk.
+
+@end table
+
+Debug/Expert options:
+@table @option
+
+@item -serial @var{dev}
+Redirect the virtual serial port to host character device
+@var{dev}. The default device is @code{vc} in graphical mode and
+@code{stdio} in non graphical mode.
+
+This option can be used several times to simulate up to 4 serials
+ports.
+
+Use @code{-serial none} to disable all serial ports.
+
+Available character devices are:
+@table @code
+@item vc[:WxH]
+Virtual console. Optionally, a width and height can be given in pixel with
+@example
+vc:800x600
+@end example
+It is also possible to specify width or height in characters:
+@example
+vc:80Cx24C
+@end example
+@item pty
+[Linux only] Pseudo TTY (a new PTY is automatically allocated)
+@item none
+No device is allocated.
+@item null
+void device
+@item /dev/XXX
+[Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
+parameters are set according to the emulated ones.
+@item /dev/parport@var{N}
+[Linux only, parallel port only] Use host parallel port
+@var{N}. Currently SPP and EPP parallel port features can be used.
+@item file:@var{filename}
+Write output to @var{filename}. No character can be read.
+@item stdio
+[Unix only] standard input/output
+@item pipe:@var{filename}
+name pipe @var{filename}
+@item COM@var{n}
+[Windows only] Use host serial port @var{n}
+@item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
+This implements UDP Net Console.
+When @var{remote_host} or @var{src_ip} are not specified
+they default to @code{0.0.0.0}.
+When not using a specified @var{src_port} a random port is automatically chosen.
+
+If you just want a simple readonly console you can use @code{netcat} or
+@code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
+@code{nc -u -l -p 4555}. Any time qemu writes something to that port it
+will appear in the netconsole session.
+
+If you plan to send characters back via netconsole or you want to stop
+and start qemu a lot of times, you should have qemu use the same
+source port each time by using something like @code{-serial
+udp::4555@@:4556} to qemu. Another approach is to use a patched
+version of netcat which can listen to a TCP port and send and receive
+characters via udp.  If you have a patched version of netcat which
+activates telnet remote echo and single char transfer, then you can
+use the following options to step up a netcat redirector to allow
+telnet on port 5555 to access the qemu port.
+@table @code
+@item Qemu Options:
+-serial udp::4555@@:4556
+@item netcat options:
+-u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
+@item telnet options:
+localhost 5555
+@end table
+
+
+@item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
+The TCP Net Console has two modes of operation.  It can send the serial
+I/O to a location or wait for a connection from a location.  By default
+the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
+the @var{server} option QEMU will wait for a client socket application
+to connect to the port before continuing, unless the @code{nowait}
+option was specified.  The @code{nodelay} option disables the Nagle buffering
+algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
+one TCP connection at a time is accepted. You can use @code{telnet} to
+connect to the corresponding character device.
+@table @code
+@item Example to send tcp console to 192.168.0.2 port 4444
+-serial tcp:192.168.0.2:4444
+@item Example to listen and wait on port 4444 for connection
+-serial tcp::4444,server
+@item Example to not wait and listen on ip 192.168.0.100 port 4444
+-serial tcp:192.168.0.100:4444,server,nowait
+@end table
+
+@item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
+The telnet protocol is used instead of raw tcp sockets.  The options
+work the same as if you had specified @code{-serial tcp}.  The
+difference is that the port acts like a telnet server or client using
+telnet option negotiation.  This will also allow you to send the
+MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
+sequence.  Typically in unix telnet you do it with Control-] and then
+type "send break" followed by pressing the enter key.
+
+@item unix:@var{path}[,server][,nowait]
+A unix domain socket is used instead of a tcp socket.  The option works the
+same as if you had specified @code{-serial tcp} except the unix domain socket
+@var{path} is used for connections.
+
+@item mon:@var{dev_string}
+This is a special option to allow the monitor to be multiplexed onto
+another serial port.  The monitor is accessed with key sequence of
+@key{Control-a} and then pressing @key{c}. See monitor access
+@ref{pcsys_keys} in the -nographic section for more keys.
+@var{dev_string} should be any one of the serial devices specified
+above.  An example to multiplex the monitor onto a telnet server
+listening on port 4444 would be:
+@table @code
+@item -serial mon:telnet::4444,server,nowait
+@end table
+
+@item braille
+Braille device.  This will use BrlAPI to display the braille output on a real
+or fake device.
+
+@end table
+
+@item -parallel @var{dev}
+Redirect the virtual parallel port to host device @var{dev} (same
+devices as the serial port). On Linux hosts, @file{/dev/parportN} can
+be used to use hardware devices connected on the corresponding host
+parallel port.
+
+This option can be used several times to simulate up to 3 parallel
+ports.
+
+Use @code{-parallel none} to disable all parallel ports.
+
+@item -monitor @var{dev}
+Redirect the monitor to host device @var{dev} (same devices as the
+serial port).
+The default device is @code{vc} in graphical mode and @code{stdio} in
+non graphical mode.
+
+@item -echr numeric_ascii_value
+Change the escape character used for switching to the monitor when using
+monitor and serial sharing.  The default is @code{0x01} when using the
+@code{-nographic} option.  @code{0x01} is equal to pressing
+@code{Control-a}.  You can select a different character from the ascii
+control keys where 1 through 26 map to Control-a through Control-z.  For
+instance you could use the either of the following to change the escape
+character to Control-t.
+@table @code
+@item -echr 0x14
+@item -echr 20
+@end table
+
+@item -s
+Wait gdb connection to port 1234 (@pxref{gdb_usage}).
+@item -p @var{port}
+Change gdb connection port.  @var{port} can be either a decimal number
+to specify a TCP port, or a host device (same devices as the serial port).
+@item -S
+Do not start CPU at startup (you must type 'c' in the monitor).
+@item -d
+Output log in /tmp/qemu.log
+@item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
+Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
+@var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
+translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
+all those parameters. This option is useful for old MS-DOS disk
+images.
+
+@item -L path
+Set the directory for the BIOS, VGA BIOS and keymaps.
+
+@item -std-vga
+Simulate a standard VGA card with Bochs VBE extensions (default is
+Cirrus Logic GD5446 PCI VGA). If your guest OS supports the VESA 2.0
+VBE extensions (e.g. Windows XP) and if you want to use high
+resolution modes (>= 1280x1024x16) then you should use this option.
+
+@item -no-acpi
+Disable ACPI (Advanced Configuration and Power Interface) support. Use
+it if your guest OS complains about ACPI problems (PC target machine
+only).
+
+@item -no-reboot
+Exit instead of rebooting.
+
+@item -no-shutdown
+Don't exit QEMU on guest shutdown, but instead only stop the emulation.
+This allows for instance switching to monitor to commit changes to the
+disk image.
+
+@item -loadvm file
+Start right away with a saved state (@code{loadvm} in monitor)
+
+@item -semihosting
+Enable semihosting syscall emulation (ARM and M68K target machines only).
+
+On ARM this implements the "Angel" interface.
+On M68K this implements the "ColdFire GDB" interface used by libgloss.
+
+Note that this allows guest direct access to the host filesystem,
+so should only be used with trusted guest OS.
+@end table
+
+@c man end
+
+@node pcsys_keys
+@section Keys
+
+@c man begin OPTIONS
+
+During the graphical emulation, you can use the following keys:
+@table @key
+@item Ctrl-Alt-f
+Toggle full screen
+
+@item Ctrl-Alt-n
+Switch to virtual console 'n'. Standard console mappings are:
+@table @emph
+@item 1
+Target system display
+@item 2
+Monitor
+@item 3
+Serial port
+@end table
+
+@item Ctrl-Alt
+Toggle mouse and keyboard grab.
+@end table
+
+In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
+@key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
+
+During emulation, if you are using the @option{-nographic} option, use
+@key{Ctrl-a h} to get terminal commands:
+
+@table @key
+@item Ctrl-a h
+Print this help
+@item Ctrl-a x
+Exit emulator
+@item Ctrl-a s
+Save disk data back to file (if -snapshot)
+@item Ctrl-a t
+toggle console timestamps
+@item Ctrl-a b
+Send break (magic sysrq in Linux)
+@item Ctrl-a c
+Switch between console and monitor
+@item Ctrl-a Ctrl-a
+Send Ctrl-a
+@end table
+@c man end
+
+@ignore
+
+@c man begin SEEALSO
+The HTML documentation of QEMU for more precise information and Linux
+user mode emulator invocation.
+@c man end
+
+@c man begin AUTHOR
+Fabrice Bellard
+@c man end
+
+@end ignore
+
+@node pcsys_monitor
+@section QEMU Monitor
+
+The QEMU monitor is used to give complex commands to the QEMU
+emulator. You can use it to:
+
+@itemize @minus
+
+@item
+Remove or insert removable media images
+(such as CD-ROM or floppies).
+
+@item
+Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
+from a disk file.
+
+@item Inspect the VM state without an external debugger.
+
+@end itemize
+
+@subsection Commands
+
+The following commands are available:
+
+@table @option
+
+@item help or ? [@var{cmd}]
+Show the help for all commands or just for command @var{cmd}.
+
+@item commit
+Commit changes to the disk images (if -snapshot is used).
+
+@item info @var{subcommand}
+Show various information about the system state.
+
+@table @option
+@item info network
+show the various VLANs and the associated devices
+@item info block
+show the block devices
+@item info registers
+show the cpu registers
+@item info history
+show the command line history
+@item info pci
+show emulated PCI device
+@item info usb
+show USB devices plugged on the virtual USB hub
+@item info usbhost
+show all USB host devices
+@item info capture
+show information about active capturing
+@item info snapshots
+show list of VM snapshots
+@item info mice
+show which guest mouse is receiving events
+@end table
+
+@item q or quit
+Quit the emulator.
+
+@item eject [-f] @var{device}
+Eject a removable medium (use -f to force it).
+
+@item change @var{device} @var{setting}
+
+Change the configuration of a device.
+
+@table @option
+@item change @var{diskdevice} @var{filename}
+Change the medium for a removable disk device to point to @var{filename}. eg
+
+@example
+(qemu) change ide1-cd0 /path/to/some.iso
+@end example
+
+@item change vnc @var{display},@var{options}
+Change the configuration of the VNC server. The valid syntax for @var{display}
+and @var{options} are described at @ref{sec_invocation}. eg
+
+@example
+(qemu) change vnc localhost:1
+@end example
+
+@item change vnc password
+
+Change the password associated with the VNC server. The monitor will prompt for
+the new password to be entered. VNC passwords are only significant upto 8 letters.
+eg.
+
+@example
+(qemu) change vnc password
+Password: ********
+@end example
+
+@end table
+
+@item screendump @var{filename}
+Save screen into PPM image @var{filename}.
+
+@item mouse_move @var{dx} @var{dy} [@var{dz}]
+Move the active mouse to the specified coordinates @var{dx} @var{dy}
+with optional scroll axis @var{dz}.
+
+@item mouse_button @var{val}
+Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
+
+@item mouse_set @var{index}
+Set which mouse device receives events at given @var{index}, index
+can be obtained with
+@example
+info mice
+@end example
+
+@item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
+Capture audio into @var{filename}. Using sample rate @var{frequency}
+bits per sample @var{bits} and number of channels @var{channels}.
+
+Defaults:
+@itemize @minus
+@item Sample rate = 44100 Hz - CD quality
+@item Bits = 16
+@item Number of channels = 2 - Stereo
+@end itemize
+
+@item stopcapture @var{index}
+Stop capture with a given @var{index}, index can be obtained with
+@example
+info capture
+@end example
+
+@item log @var{item1}[,...]
+Activate logging of the specified items to @file{/tmp/qemu.log}.
+
+@item savevm [@var{tag}|@var{id}]
+Create a snapshot of the whole virtual machine. If @var{tag} is
+provided, it is used as human readable identifier. If there is already
+a snapshot with the same tag or ID, it is replaced. More info at
+@ref{vm_snapshots}.
+
+@item loadvm @var{tag}|@var{id}
+Set the whole virtual machine to the snapshot identified by the tag
+@var{tag} or the unique snapshot ID @var{id}.
+
+@item delvm @var{tag}|@var{id}
+Delete the snapshot identified by @var{tag} or @var{id}.
+
+@item stop
+Stop emulation.
+
+@item c or cont
+Resume emulation.
+
+@item gdbserver [@var{port}]
+Start gdbserver session (default @var{port}=1234)
+
+@item x/fmt @var{addr}
+Virtual memory dump starting at @var{addr}.
+
+@item xp /@var{fmt} @var{addr}
+Physical memory dump starting at @var{addr}.
+
+@var{fmt} is a format which tells the command how to format the
+data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
+
+@table @var
+@item count
+is the number of items to be dumped.
+
+@item format
+can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
+c (char) or i (asm instruction).
+
+@item size
+can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
+@code{h} or @code{w} can be specified with the @code{i} format to
+respectively select 16 or 32 bit code instruction size.
+
+@end table
+
+Examples:
+@itemize
+@item
+Dump 10 instructions at the current instruction pointer:
+@example
+(qemu) x/10i $eip
+0x90107063:  ret
+0x90107064:  sti
+0x90107065:  lea    0x0(%esi,1),%esi
+0x90107069:  lea    0x0(%edi,1),%edi
+0x90107070:  ret
+0x90107071:  jmp    0x90107080
+0x90107073:  nop
+0x90107074:  nop
+0x90107075:  nop
+0x90107076:  nop
+@end example
+
+@item
+Dump 80 16 bit values at the start of the video memory.
+@smallexample
+(qemu) xp/80hx 0xb8000
+0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
+0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
+0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
+0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
+0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
+0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
+0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
+0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
+0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
+0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
+@end smallexample
+@end itemize
+
+@item p or print/@var{fmt} @var{expr}
+
+Print expression value. Only the @var{format} part of @var{fmt} is
+used.
+
+@item sendkey @var{keys}
+
+Send @var{keys} to the emulator. Use @code{-} to press several keys
+simultaneously. Example:
+@example
+sendkey ctrl-alt-f1
+@end example
+
+This command is useful to send keys that your graphical user interface
+intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
+
+@item system_reset
+
+Reset the system.
+
+@item usb_add @var{devname}
+
+Add the USB device @var{devname}.  For details of available devices see
+@ref{usb_devices}
+
+@item usb_del @var{devname}
+
+Remove the USB device @var{devname} from the QEMU virtual USB
+hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
+command @code{info usb} to see the devices you can remove.
+
+@end table
+
+@subsection Integer expressions
+
+The monitor understands integers expressions for every integer
+argument. You can use register names to get the value of specifics
+CPU registers by prefixing them with @emph{$}.
+
+@node disk_images
+@section Disk Images
+
+Since version 0.6.1, QEMU supports many disk image formats, including
+growable disk images (their size increase as non empty sectors are
+written), compressed and encrypted disk images. Version 0.8.3 added
+the new qcow2 disk image format which is essential to support VM
+snapshots.
+
+@menu
+* disk_images_quickstart::    Quick start for disk image creation
+* disk_images_snapshot_mode:: Snapshot mode
+* vm_snapshots::              VM snapshots
+* qemu_img_invocation::       qemu-img Invocation
+* host_drives::               Using host drives
+* disk_images_fat_images::    Virtual FAT disk images
+@end menu
+
+@node disk_images_quickstart
+@subsection Quick start for disk image creation
+
+You can create a disk image with the command:
+@example
+qemu-img create myimage.img mysize
+@end example
+where @var{myimage.img} is the disk image filename and @var{mysize} is its
+size in kilobytes. You can add an @code{M} suffix to give the size in
+megabytes and a @code{G} suffix for gigabytes.
+
+See @ref{qemu_img_invocation} for more information.
+
+@node disk_images_snapshot_mode
+@subsection Snapshot mode
+
+If you use the option @option{-snapshot}, all disk images are
+considered as read only. When sectors in written, they are written in
+a temporary file created in @file{/tmp}. You can however force the
+write back to the raw disk images by using the @code{commit} monitor
+command (or @key{C-a s} in the serial console).
+
+@node vm_snapshots
+@subsection VM snapshots
+
+VM snapshots are snapshots of the complete virtual machine including
+CPU state, RAM, device state and the content of all the writable
+disks. In order to use VM snapshots, you must have at least one non
+removable and writable block device using the @code{qcow2} disk image
+format. Normally this device is the first virtual hard drive.
+
+Use the monitor command @code{savevm} to create a new VM snapshot or
+replace an existing one. A human readable name can be assigned to each
+snapshot in addition to its numerical ID.
+
+Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
+a VM snapshot. @code{info snapshots} lists the available snapshots
+with their associated information:
+
+@example
+(qemu) info snapshots
+Snapshot devices: hda
+Snapshot list (from hda):
+ID        TAG                 VM SIZE                DATE       VM CLOCK
+1         start                   41M 2006-08-06 12:38:02   00:00:14.954
+2                                 40M 2006-08-06 12:43:29   00:00:18.633
+3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
+@end example
+
+A VM snapshot is made of a VM state info (its size is shown in
+@code{info snapshots}) and a snapshot of every writable disk image.
+The VM state info is stored in the first @code{qcow2} non removable
+and writable block device. The disk image snapshots are stored in
+every disk image. The size of a snapshot in a disk image is difficult
+to evaluate and is not shown by @code{info snapshots} because the
+associated disk sectors are shared among all the snapshots to save
+disk space (otherwise each snapshot would need a full copy of all the
+disk images).
+
+When using the (unrelated) @code{-snapshot} option
+(@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
+but they are deleted as soon as you exit QEMU.
+
+VM snapshots currently have the following known limitations:
+@itemize
+@item
+They cannot cope with removable devices if they are removed or
+inserted after a snapshot is done.
+@item
+A few device drivers still have incomplete snapshot support so their
+state is not saved or restored properly (in particular USB).
+@end itemize
+
+@node qemu_img_invocation
+@subsection @code{qemu-img} Invocation
+
+@include qemu-img.texi
+
+@node host_drives
+@subsection Using host drives
+
+In addition to disk image files, QEMU can directly access host
+devices. We describe here the usage for QEMU version >= 0.8.3.
+
+@subsubsection Linux
+
+On Linux, you can directly use the host device filename instead of a
+disk image filename provided you have enough privileges to access
+it. For example, use @file{/dev/cdrom} to access to the CDROM or
+@file{/dev/fd0} for the floppy.
+
+@table @code
+@item CD
+You can specify a CDROM device even if no CDROM is loaded. QEMU has
+specific code to detect CDROM insertion or removal. CDROM ejection by
+the guest OS is supported. Currently only data CDs are supported.
+@item Floppy
+You can specify a floppy device even if no floppy is loaded. Floppy
+removal is currently not detected accurately (if you change floppy
+without doing floppy access while the floppy is not loaded, the guest
+OS will think that the same floppy is loaded).
+@item Hard disks
+Hard disks can be used. Normally you must specify the whole disk
+(@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
+see it as a partitioned disk. WARNING: unless you know what you do, it
+is better to only make READ-ONLY accesses to the hard disk otherwise
+you may corrupt your host data (use the @option{-snapshot} command
+line option or modify the device permissions accordingly).
+@end table
+
+@subsubsection Windows
+
+@table @code
+@item CD
+The preferred syntax is the drive letter (e.g. @file{d:}). The
+alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
+supported as an alias to the first CDROM drive.
+
+Currently there is no specific code to handle removable media, so it
+is better to use the @code{change} or @code{eject} monitor commands to
+change or eject media.
+@item Hard disks
+Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
+where @var{N} is the drive number (0 is the first hard disk).
+
+WARNING: unless you know what you do, it is better to only make
+READ-ONLY accesses to the hard disk otherwise you may corrupt your
+host data (use the @option{-snapshot} command line so that the
+modifications are written in a temporary file).
+@end table
+
+
+@subsubsection Mac OS X
+
+@file{/dev/cdrom} is an alias to the first CDROM.
+
+Currently there is no specific code to handle removable media, so it
+is better to use the @code{change} or @code{eject} monitor commands to
+change or eject media.
+
+@node disk_images_fat_images
+@subsection Virtual FAT disk images
+
+QEMU can automatically create a virtual FAT disk image from a
+directory tree. In order to use it, just type:
+
+@example
+qemu linux.img -hdb fat:/my_directory
+@end example
+
+Then you access access to all the files in the @file{/my_directory}
+directory without having to copy them in a disk image or to export
+them via SAMBA or NFS. The default access is @emph{read-only}.
+
+Floppies can be emulated with the @code{:floppy:} option:
+
+@example
+qemu linux.img -fda fat:floppy:/my_directory
+@end example
+
+A read/write support is available for testing (beta stage) with the
+@code{:rw:} option:
+
+@example
+qemu linux.img -fda fat:floppy:rw:/my_directory
+@end example
+
+What you should @emph{never} do:
+@itemize
+@item use non-ASCII filenames ;
+@item use "-snapshot" together with ":rw:" ;
+@item expect it to work when loadvm'ing ;
+@item write to the FAT directory on the host system while accessing it with the guest system.
+@end itemize
+
+@node pcsys_network
+@section Network emulation
+
+QEMU can simulate several network cards (PCI or ISA cards on the PC
+target) and can connect them to an arbitrary number of Virtual Local
+Area Networks (VLANs). Host TAP devices can be connected to any QEMU
+VLAN. VLAN can be connected between separate instances of QEMU to
+simulate large networks. For simpler usage, a non privileged user mode
+network stack can replace the TAP device to have a basic network
+connection.
+
+@subsection VLANs
+
+QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
+connection between several network devices. These devices can be for
+example QEMU virtual Ethernet cards or virtual Host ethernet devices
+(TAP devices).
+
+@subsection Using TAP network interfaces
+
+This is the standard way to connect QEMU to a real network. QEMU adds
+a virtual network device on your host (called @code{tapN}), and you
+can then configure it as if it was a real ethernet card.
+
+@subsubsection Linux host
+
+As an example, you can download the @file{linux-test-xxx.tar.gz}
+archive and copy the script @file{qemu-ifup} in @file{/etc} and
+configure properly @code{sudo} so that the command @code{ifconfig}
+contained in @file{qemu-ifup} can be executed as root. You must verify
+that your host kernel supports the TAP network interfaces: the
+device @file{/dev/net/tun} must be present.
+
+See @ref{sec_invocation} to have examples of command lines using the
+TAP network interfaces.
+
+@subsubsection Windows host
+
+There is a virtual ethernet driver for Windows 2000/XP systems, called
+TAP-Win32. But it is not included in standard QEMU for Windows,
+so you will need to get it separately. It is part of OpenVPN package,
+so download OpenVPN from : @url{http://openvpn.net/}.
+
+@subsection Using the user mode network stack
+
+By using the option @option{-net user} (default configuration if no
+@option{-net} option is specified), QEMU uses a completely user mode
+network stack (you don't need root privilege to use the virtual
+network). The virtual network configuration is the following:
+
+@example
+
+         QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
+                           |          (10.0.2.2)
+                           |
+                           ---->  DNS server (10.0.2.3)
+                           |
+                           ---->  SMB server (10.0.2.4)
+@end example
+
+The QEMU VM behaves as if it was behind a firewall which blocks all
+incoming connections. You can use a DHCP client to automatically
+configure the network in the QEMU VM. The DHCP server assign addresses
+to the hosts starting from 10.0.2.15.
+
+In order to check that the user mode network is working, you can ping
+the address 10.0.2.2 and verify that you got an address in the range
+10.0.2.x from the QEMU virtual DHCP server.
+
+Note that @code{ping} is not supported reliably to the internet as it
+would require root privileges. It means you can only ping the local
+router (10.0.2.2).
+
+When using the built-in TFTP server, the router is also the TFTP
+server.
+
+When using the @option{-redir} option, TCP or UDP connections can be
+redirected from the host to the guest. It allows for example to
+redirect X11, telnet or SSH connections.
+
+@subsection Connecting VLANs between QEMU instances
+
+Using the @option{-net socket} option, it is possible to make VLANs
+that span several QEMU instances. See @ref{sec_invocation} to have a
+basic example.
+
+@node direct_linux_boot
+@section Direct Linux Boot
+
+This section explains how to launch a Linux kernel inside QEMU without
+having to make a full bootable image. It is very useful for fast Linux
+kernel testing.
+
+The syntax is:
+@example
+qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
+@end example
+
+Use @option{-kernel} to provide the Linux kernel image and
+@option{-append} to give the kernel command line arguments. The
+@option{-initrd} option can be used to provide an INITRD image.
+
+When using the direct Linux boot, a disk image for the first hard disk
+@file{hda} is required because its boot sector is used to launch the
+Linux kernel.
+
+If you do not need graphical output, you can disable it and redirect
+the virtual serial port and the QEMU monitor to the console with the
+@option{-nographic} option. The typical command line is:
+@example
+qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
+     -append "root=/dev/hda console=ttyS0" -nographic
+@end example
+
+Use @key{Ctrl-a c} to switch between the serial console and the
+monitor (@pxref{pcsys_keys}).
+
+@node pcsys_usb
+@section USB emulation
+
+QEMU emulates a PCI UHCI USB controller. You can virtually plug
+virtual USB devices or real host USB devices (experimental, works only
+on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
+as necessary to connect multiple USB devices.
+
+@menu
+* usb_devices::
+* host_usb_devices::
+@end menu
+@node usb_devices
+@subsection Connecting USB devices
+
+USB devices can be connected with the @option{-usbdevice} commandline option
+or the @code{usb_add} monitor command.  Available devices are:
+
+@table @code
+@item mouse
+Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
+@item tablet
+Pointer device that uses absolute coordinates (like a touchscreen).
+This means qemu is able to report the mouse position without having
+to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
+@item disk:@var{file}
+Mass storage device based on @var{file} (@pxref{disk_images})
+@item host:@var{bus.addr}
+Pass through the host device identified by @var{bus.addr}
+(Linux only)
+@item host:@var{vendor_id:product_id}
+Pass through the host device identified by @var{vendor_id:product_id}
+(Linux only)
+@item wacom-tablet
+Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
+above but it can be used with the tslib library because in addition to touch
+coordinates it reports touch pressure.
+@item keyboard
+Standard USB keyboard.  Will override the PS/2 keyboard (if present).
+@item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
+Serial converter. This emulates an FTDI FT232BM chip connected to host character
+device @var{dev}. The available character devices are the same as for the
+@code{-serial} option. The @code{vendorid} and @code{productid} options can be
+used to override the default 0403:6001. For instance, 
+@example
+usb_add serial:productid=FA00:tcp:192.168.0.2:4444
+@end example
+will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
+serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
+@item braille
+Braille device.  This will use BrlAPI to display the braille output on a real
+or fake device.
+@end table
+
+@node host_usb_devices
+@subsection Using host USB devices on a Linux host
+
+WARNING: this is an experimental feature. QEMU will slow down when
+using it. USB devices requiring real time streaming (i.e. USB Video
+Cameras) are not supported yet.
+
+@enumerate
+@item If you use an early Linux 2.4 kernel, verify that no Linux driver
+is actually using the USB device. A simple way to do that is simply to
+disable the corresponding kernel module by renaming it from @file{mydriver.o}
+to @file{mydriver.o.disabled}.
+
+@item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
+@example
+ls /proc/bus/usb
+001  devices  drivers
+@end example
+
+@item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
+@example
+chown -R myuid /proc/bus/usb
+@end example
+
+@item Launch QEMU and do in the monitor:
+@example
+info usbhost
+  Device 1.2, speed 480 Mb/s
+    Class 00: USB device 1234:5678, USB DISK
+@end example
+You should see the list of the devices you can use (Never try to use
+hubs, it won't work).
+
+@item Add the device in QEMU by using:
+@example
+usb_add host:1234:5678
+@end example
+
+Normally the guest OS should report that a new USB device is
+plugged. You can use the option @option{-usbdevice} to do the same.
+
+@item Now you can try to use the host USB device in QEMU.
+
+@end enumerate
+
+When relaunching QEMU, you may have to unplug and plug again the USB
+device to make it work again (this is a bug).
+
+@node vnc_security
+@section VNC security
+
+The VNC server capability provides access to the graphical console
+of the guest VM across the network. This has a number of security
+considerations depending on the deployment scenarios.
+
+@menu
+* vnc_sec_none::
+* vnc_sec_password::
+* vnc_sec_certificate::
+* vnc_sec_certificate_verify::
+* vnc_sec_certificate_pw::
+* vnc_generate_cert::
+@end menu
+@node vnc_sec_none
+@subsection Without passwords
+
+The simplest VNC server setup does not include any form of authentication.
+For this setup it is recommended to restrict it to listen on a UNIX domain
+socket only. For example
+
+@example
+qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
+@end example
+
+This ensures that only users on local box with read/write access to that
+path can access the VNC server. To securely access the VNC server from a
+remote machine, a combination of netcat+ssh can be used to provide a secure
+tunnel.
+
+@node vnc_sec_password
+@subsection With passwords
+
+The VNC protocol has limited support for password based authentication. Since
+the protocol limits passwords to 8 characters it should not be considered
+to provide high security. The password can be fairly easily brute-forced by
+a client making repeat connections. For this reason, a VNC server using password
+authentication should be restricted to only listen on the loopback interface
+or UNIX domain sockets. Password ayuthentication is requested with the @code{password}
+option, and then once QEMU is running the password is set with the monitor. Until
+the monitor is used to set the password all clients will be rejected.
+
+@example
+qemu [...OPTIONS...] -vnc :1,password -monitor stdio
+(qemu) change vnc password
+Password: ********
+(qemu)
+@end example
+
+@node vnc_sec_certificate
+@subsection With x509 certificates
 
-@section Direct Linux Boot and Network emulation
+The QEMU VNC server also implements the VeNCrypt extension allowing use of
+TLS for encryption of the session, and x509 certificates for authentication.
+The use of x509 certificates is strongly recommended, because TLS on its
+own is susceptible to man-in-the-middle attacks. Basic x509 certificate
+support provides a secure session, but no authentication. This allows any
+client to connect, and provides an encrypted session.
 
-This section explains how to launch a Linux kernel inside QEMU without
-having to make a full bootable image. It is very useful for fast Linux
-kernel testing. The QEMU network configuration is also explained.
+@example
+qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
+@end example
 
-@enumerate
-@item
-Download the archive @file{linux-test-xxx.tar.gz} containing a Linux
-kernel and a disk image. 
+In the above example @code{/etc/pki/qemu} should contain at least three files,
+@code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
+users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
+NB the @code{server-key.pem} file should be protected with file mode 0600 to
+only be readable by the user owning it.
+
+@node vnc_sec_certificate_verify
+@subsection With x509 certificates and client verification
+
+Certificates can also provide a means to authenticate the client connecting.
+The server will request that the client provide a certificate, which it will
+then validate against the CA certificate. This is a good choice if deploying
+in an environment with a private internal certificate authority.
+
+@example
+qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
+@end example
+
+
+@node vnc_sec_certificate_pw
+@subsection With x509 certificates, client verification and passwords
+
+Finally, the previous method can be combined with VNC password authentication
+to provide two layers of authentication for clients.
+
+@example
+qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
+(qemu) change vnc password
+Password: ********
+(qemu)
+@end example
+
+@node vnc_generate_cert
+@subsection Generating certificates for VNC
+
+The GNU TLS packages provides a command called @code{certtool} which can
+be used to generate certificates and keys in PEM format. At a minimum it
+is neccessary to setup a certificate authority, and issue certificates to
+each server. If using certificates for authentication, then each client
+will also need to be issued a certificate. The recommendation is for the
+server to keep its certificates in either @code{/etc/pki/qemu} or for
+unprivileged users in @code{$HOME/.pki/qemu}.
+
+@menu
+* vnc_generate_ca::
+* vnc_generate_server::
+* vnc_generate_client::
+@end menu
+@node vnc_generate_ca
+@subsubsection Setup the Certificate Authority
+
+This step only needs to be performed once per organization / organizational
+unit. First the CA needs a private key. This key must be kept VERY secret
+and secure. If this key is compromised the entire trust chain of the certificates
+issued with it is lost.
+
+@example
+# certtool --generate-privkey > ca-key.pem
+@end example
+
+A CA needs to have a public certificate. For simplicity it can be a self-signed
+certificate, or one issue by a commercial certificate issuing authority. To
+generate a self-signed certificate requires one core piece of information, the
+name of the organization.
+
+@example
+# cat > ca.info <<EOF
+cn = Name of your organization
+ca
+cert_signing_key
+EOF
+# certtool --generate-self-signed \
+           --load-privkey ca-key.pem
+           --template ca.info \
+           --outfile ca-cert.pem
+@end example
+
+The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
+TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
+
+@node vnc_generate_server
+@subsubsection Issuing server certificates
+
+Each server (or host) needs to be issued with a key and certificate. When connecting
+the certificate is sent to the client which validates it against the CA certificate.
+The core piece of information for a server certificate is the hostname. This should
+be the fully qualified hostname that the client will connect with, since the client
+will typically also verify the hostname in the certificate. On the host holding the
+secure CA private key:
+
+@example
+# cat > server.info <<EOF
+organization = Name  of your organization
+cn = server.foo.example.com
+tls_www_server
+encryption_key
+signing_key
+EOF
+# certtool --generate-privkey > server-key.pem
+# certtool --generate-certificate \
+           --load-ca-certificate ca-cert.pem \
+           --load-ca-privkey ca-key.pem \
+           --load-privkey server server-key.pem \
+           --template server.info \
+           --outfile server-cert.pem
+@end example
+
+The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
+to the server for which they were generated. The @code{server-key.pem} is security
+sensitive and should be kept protected with file mode 0600 to prevent disclosure.
 
-@item Optional: If you want network support (for example to launch X11 examples), you
-must copy the script @file{qemu-ifup} in @file{/etc} and configure
-properly @code{sudo} so that the command @code{ifconfig} contained in
-@file{qemu-ifup} can be executed as root. You must verify that your host
-kernel supports the TUN/TAP network interfaces: the device
-@file{/dev/net/tun} must be present.
+@node vnc_generate_client
+@subsubsection Issuing client certificates
 
-When network is enabled, there is a virtual network connection between
-the host kernel and the emulated kernel. The emulated kernel is seen
-from the host kernel at IP address 172.20.0.2 and the host kernel is
-seen from the emulated kernel at IP address 172.20.0.1.
+If the QEMU VNC server is to use the @code{x509verify} option to validate client
+certificates as its authentication mechanism, each client also needs to be issued
+a certificate. The client certificate contains enough metadata to uniquely identify
+the client, typically organization, state, city, building, etc. On the host holding
+the secure CA private key:
 
-@item Launch @code{qemu.sh}. You should have the following output:
+@example
+# cat > client.info <<EOF
+country = GB
+state = London
+locality = London
+organiazation = Name of your organization
+cn = client.foo.example.com
+tls_www_client
+encryption_key
+signing_key
+EOF
+# certtool --generate-privkey > client-key.pem
+# certtool --generate-certificate \
+           --load-ca-certificate ca-cert.pem \
+           --load-ca-privkey ca-key.pem \
+           --load-privkey client-key.pem \
+           --template client.info \
+           --outfile client-cert.pem
+@end example
+
+The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
+copied to the client for which they were generated.
+
+@node gdb_usage
+@section GDB usage
+
+QEMU has a primitive support to work with gdb, so that you can do
+'Ctrl-C' while the virtual machine is running and inspect its state.
 
+In order to use gdb, launch qemu with the '-s' option. It will wait for a
+gdb connection:
 @example
-> ./qemu.sh 
+> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
+       -append "root=/dev/hda"
 Connected to host network interface: tun0
-Linux version 2.4.21 ([email protected]) (gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
-BIOS-provided physical RAM map:
- BIOS-e801: 0000000000000000 - 000000000009f000 (usable)
- BIOS-e801: 0000000000100000 - 0000000002000000 (usable)
-32MB LOWMEM available.
-On node 0 totalpages: 8192
-zone(0): 4096 pages.
-zone(1): 4096 pages.
-zone(2): 0 pages.
-Kernel command line: root=/dev/hda sb=0x220,5,1,5 ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe console=ttyS0
-ide_setup: ide2=noprobe
-ide_setup: ide3=noprobe
-ide_setup: ide4=noprobe
-ide_setup: ide5=noprobe
-Initializing CPU#0
-Detected 2399.621 MHz processor.
-Console: colour EGA 80x25
-Calibrating delay loop... 4744.80 BogoMIPS
-Memory: 28872k/32768k available (1210k kernel code, 3508k reserved, 266k data, 64k init, 0k highmem)
-Dentry cache hash table entries: 4096 (order: 3, 32768 bytes)
-Inode cache hash table entries: 2048 (order: 2, 16384 bytes)
-Mount cache hash table entries: 512 (order: 0, 4096 bytes)
-Buffer-cache hash table entries: 1024 (order: 0, 4096 bytes)
-Page-cache hash table entries: 8192 (order: 3, 32768 bytes)
-CPU: Intel Pentium Pro stepping 03
-Checking 'hlt' instruction... OK.
-POSIX conformance testing by UNIFIX
-Linux NET4.0 for Linux 2.4
-Based upon Swansea University Computer Society NET3.039
-Initializing RT netlink socket
-apm: BIOS not found.
-Starting kswapd
-Journalled Block Device driver loaded
-Detected PS/2 Mouse Port.
-pty: 256 Unix98 ptys configured
-Serial driver version 5.05c (2001-07-08) with no serial options enabled
-ttyS00 at 0x03f8 (irq = 4) is a 16450
-ne.c:v1.10 9/23/94 Donald Becker ([email protected])
-Last modified Nov 1, 2000 by Paul Gortmaker
-NE*000 ethercard probe at 0x300: 52 54 00 12 34 56
-eth0: NE2000 found at 0x300, using IRQ 9.
-RAMDISK driver initialized: 16 RAM disks of 4096K size 1024 blocksize
-Uniform Multi-Platform E-IDE driver Revision: 7.00beta4-2.4
-ide: Assuming 50MHz system bus speed for PIO modes; override with idebus=xx
-hda: QEMU HARDDISK, ATA DISK drive
-ide0 at 0x1f0-0x1f7,0x3f6 on irq 14
-hda: attached ide-disk driver.
-hda: 20480 sectors (10 MB) w/256KiB Cache, CHS=20/16/63
-Partition check:
- hda:
-Soundblaster audio driver Copyright (C) by Hannu Savolainen 1993-1996
-NET4: Linux TCP/IP 1.0 for NET4.0
-IP Protocols: ICMP, UDP, TCP, IGMP
-IP: routing cache hash table of 512 buckets, 4Kbytes
-TCP: Hash tables configured (established 2048 bind 4096)
-NET4: Unix domain sockets 1.0/SMP for Linux NET4.0.
-EXT2-fs warning: mounting unchecked fs, running e2fsck is recommended
-VFS: Mounted root (ext2 filesystem).
-Freeing unused kernel memory: 64k freed
-Linux version 2.4.21 ([email protected]) (gcc version 3.2.2 20030222 (Red Hat Linux 3.2.2-5)) #5 Tue Nov 11 18:18:53 CET 2003
-QEMU Linux test distribution (based on Redhat 9)
-Type 'exit' to halt the system
-sh-2.05b# 
-@end example
-
-@item
-Then you can play with the kernel inside the virtual serial console. You
-can launch @code{ls} for example. Type @key{Ctrl-a h} to have an help
-about the keys you can type inside the virtual serial console. In
-particular, use @key{Ctrl-a x} to exit QEMU and use @key{Ctrl-a b} as
-the Magic SysRq key.
-
-@item 
-If the network is enabled, launch the script @file{/etc/linuxrc} in the
-emulator (don't forget the leading dot):
-@example
-. /etc/linuxrc
-@end example
-
-Then enable X11 connections on your PC from the emulated Linux: 
-@example
-xhost +172.20.0.2
-@end example
-
-You can now launch @file{xterm} or @file{xlogo} and verify that you have
-a real Virtual Linux system !
+Waiting gdb connection on port 1234
+@end example
 
-@end enumerate
+Then launch gdb on the 'vmlinux' executable:
+@example
+> gdb vmlinux
+@end example
+
+In gdb, connect to QEMU:
+@example
+(gdb) target remote localhost:1234
+@end example
+
+Then you can use gdb normally. For example, type 'c' to launch the kernel:
+@example
+(gdb) c
+@end example
+
+Here are some useful tips in order to use gdb on system code:
 
-NOTES:
 @enumerate
-@item 
-A 2.5.74 kernel is also included in the archive. Just
-replace the bzImage in qemu.sh to try it.
+@item
+Use @code{info reg} to display all the CPU registers.
+@item
+Use @code{x/10i $eip} to display the code at the PC position.
+@item
+Use @code{set architecture i8086} to dump 16 bit code. Then use
+@code{x/10i $cs*16+$eip} to dump the code at the PC position.
+@end enumerate
+
+@node pcsys_os_specific
+@section Target OS specific information
+
+@subsection Linux
+
+To have access to SVGA graphic modes under X11, use the @code{vesa} or
+the @code{cirrus} X11 driver. For optimal performances, use 16 bit
+color depth in the guest and the host OS.
+
+When using a 2.6 guest Linux kernel, you should add the option
+@code{clock=pit} on the kernel command line because the 2.6 Linux
+kernels make very strict real time clock checks by default that QEMU
+cannot simulate exactly.
+
+When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
+not activated because QEMU is slower with this patch. The QEMU
+Accelerator Module is also much slower in this case. Earlier Fedora
+Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
+patch by default. Newer kernels don't have it.
+
+@subsection Windows
+
+If you have a slow host, using Windows 95 is better as it gives the
+best speed. Windows 2000 is also a good choice.
+
+@subsubsection SVGA graphic modes support
+
+QEMU emulates a Cirrus Logic GD5446 Video
+card. All Windows versions starting from Windows 95 should recognize
+and use this graphic card. For optimal performances, use 16 bit color
+depth in the guest and the host OS.
+
+If you are using Windows XP as guest OS and if you want to use high
+resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
+1280x1024x16), then you should use the VESA VBE virtual graphic card
+(option @option{-std-vga}).
+
+@subsubsection CPU usage reduction
+
+Windows 9x does not correctly use the CPU HLT
+instruction. The result is that it takes host CPU cycles even when
+idle. You can install the utility from
+@url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
+problem. Note that no such tool is needed for NT, 2000 or XP.
+
+@subsubsection Windows 2000 disk full problem
+
+Windows 2000 has a bug which gives a disk full problem during its
+installation. When installing it, use the @option{-win2k-hack} QEMU
+option to enable a specific workaround. After Windows 2000 is
+installed, you no longer need this option (this option slows down the
+IDE transfers).
+
+@subsubsection Windows 2000 shutdown
+
+Windows 2000 cannot automatically shutdown in QEMU although Windows 98
+can. It comes from the fact that Windows 2000 does not automatically
+use the APM driver provided by the BIOS.
+
+In order to correct that, do the following (thanks to Struan
+Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
+Add/Troubleshoot a device => Add a new device & Next => No, select the
+hardware from a list & Next => NT Apm/Legacy Support & Next => Next
+(again) a few times. Now the driver is installed and Windows 2000 now
+correctly instructs QEMU to shutdown at the appropriate moment.
+
+@subsubsection Share a directory between Unix and Windows
+
+See @ref{sec_invocation} about the help of the option @option{-smb}.
+
+@subsubsection Windows XP security problem
+
+Some releases of Windows XP install correctly but give a security
+error when booting:
+@example
+A problem is preventing Windows from accurately checking the
+license for this computer. Error code: 0x800703e6.
+@end example
+
+The workaround is to install a service pack for XP after a boot in safe
+mode. Then reboot, and the problem should go away. Since there is no
+network while in safe mode, its recommended to download the full
+installation of SP1 or SP2 and transfer that via an ISO or using the
+vvfat block device ("-hdb fat:directory_which_holds_the_SP").
+
+@subsection MS-DOS and FreeDOS
+
+@subsubsection CPU usage reduction
+
+DOS does not correctly use the CPU HLT instruction. The result is that
+it takes host CPU cycles even when idle. You can install the utility
+from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
+problem.
+
+@node QEMU System emulator for non PC targets
+@chapter QEMU System emulator for non PC targets
+
+QEMU is a generic emulator and it emulates many non PC
+machines. Most of the options are similar to the PC emulator. The
+differences are mentioned in the following sections.
+
+@menu
+* QEMU PowerPC System emulator::
+* Sparc32 System emulator::
+* Sparc64 System emulator::
+* MIPS System emulator::
+* ARM System emulator::
+* ColdFire System emulator::
+@end menu
+
+@node QEMU PowerPC System emulator
+@section QEMU PowerPC System emulator
+
+Use the executable @file{qemu-system-ppc} to simulate a complete PREP
+or PowerMac PowerPC system.
+
+QEMU emulates the following PowerMac peripherals:
+
+@itemize @minus
+@item
+UniNorth PCI Bridge
+@item
+PCI VGA compatible card with VESA Bochs Extensions
+@item
+2 PMAC IDE interfaces with hard disk and CD-ROM support
+@item
+NE2000 PCI adapters
+@item
+Non Volatile RAM
+@item
+VIA-CUDA with ADB keyboard and mouse.
+@end itemize
+
+QEMU emulates the following PREP peripherals:
+
+@itemize @minus
+@item
+PCI Bridge
+@item
+PCI VGA compatible card with VESA Bochs Extensions
+@item
+2 IDE interfaces with hard disk and CD-ROM support
+@item
+Floppy disk
+@item
+NE2000 network adapters
+@item
+Serial port
+@item
+PREP Non Volatile RAM
+@item
+PC compatible keyboard and mouse.
+@end itemize
+
+QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
+@url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
+
+@c man begin OPTIONS
+
+The following options are specific to the PowerPC emulation:
+
+@table @option
+
+@item -g WxH[xDEPTH]
+
+Set the initial VGA graphic mode. The default is 800x600x15.
+
+@end table
+
+@c man end
+
+
+More information is available at
+@url{http://perso.magic.fr/l_indien/qemu-ppc/}.
+
+@node Sparc32 System emulator
+@section Sparc32 System emulator
+
+Use the executable @file{qemu-system-sparc} to simulate a SPARCstation
+5, SPARCstation 10, SPARCstation 20, SPARCserver 600MP (sun4m
+architecture), SPARCstation 2 (sun4c architecture), SPARCserver 1000,
+or SPARCcenter 2000 (sun4d architecture). The emulation is somewhat
+complete.  SMP up to 16 CPUs is supported, but Linux limits the number
+of usable CPUs to 4.
+
+QEMU emulates the following sun4m/sun4d peripherals:
+
+@itemize @minus
+@item
+IOMMU or IO-UNITs
+@item
+TCX Frame buffer
+@item
+Lance (Am7990) Ethernet
+@item
+Non Volatile RAM M48T08
+@item
+Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
+and power/reset logic
+@item
+ESP SCSI controller with hard disk and CD-ROM support
+@item
+Floppy drive (not on SS-600MP)
+@item
+CS4231 sound device (only on SS-5, not working yet)
+@end itemize
+
+The number of peripherals is fixed in the architecture.  Maximum
+memory size depends on the machine type, for SS-5 it is 256MB and for
+others 2047MB.
+
+Since version 0.8.2, QEMU uses OpenBIOS
+@url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
+firmware implementation. The goal is to implement a 100% IEEE
+1275-1994 (referred to as Open Firmware) compliant firmware.
+
+A sample Linux 2.6 series kernel and ram disk image are available on
+the QEMU web site. Please note that currently NetBSD, OpenBSD or
+Solaris kernels don't work.
+
+@c man begin OPTIONS
+
+The following options are specific to the Sparc32 emulation:
+
+@table @option
+
+@item -g WxHx[xDEPTH]
+
+Set the initial TCX graphic mode. The default is 1024x768x8, currently
+the only other possible mode is 1024x768x24.
+
+@item -prom-env string
+
+Set OpenBIOS variables in NVRAM, for example:
+
+@example
+qemu-system-sparc -prom-env 'auto-boot?=false' \
+ -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
+@end example
+
+@item -M [SS-5|SS-10|SS-20|SS-600MP|SS-2|SS-1000|SS-2000]
+
+Set the emulated machine type. Default is SS-5.
+
+@end table
+
+@c man end
+
+@node Sparc64 System emulator
+@section Sparc64 System emulator
+
+Use the executable @file{qemu-system-sparc64} to simulate a Sun4u machine.
+The emulator is not usable for anything yet.
+
+QEMU emulates the following sun4u peripherals:
+
+@itemize @minus
+@item
+UltraSparc IIi APB PCI Bridge
+@item
+PCI VGA compatible card with VESA Bochs Extensions
+@item
+Non Volatile RAM M48T59
+@item
+PC-compatible serial ports
+@end itemize
+
+@node MIPS System emulator
+@section MIPS System emulator
+
+Four executables cover simulation of 32 and 64-bit MIPS systems in
+both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
+@file{qemu-system-mips64} and @file{qemu-system-mips64el}.
+Five different machine types are emulated:
+
+@itemize @minus
+@item
+A generic ISA PC-like machine "mips"
+@item
+The MIPS Malta prototype board "malta"
+@item
+An ACER Pica "pica61". This machine needs the 64-bit emulator.
+@item
+MIPS emulator pseudo board "mipssim"
+@item
+A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
+@end itemize
+
+The generic emulation is supported by Debian 'Etch' and is able to
+install Debian into a virtual disk image. The following devices are
+emulated:
+
+@itemize @minus
+@item
+A range of MIPS CPUs, default is the 24Kf
+@item
+PC style serial port
+@item
+PC style IDE disk
+@item
+NE2000 network card
+@end itemize
+
+The Malta emulation supports the following devices:
+
+@itemize @minus
+@item
+Core board with MIPS 24Kf CPU and Galileo system controller
+@item
+PIIX4 PCI/USB/SMbus controller
+@item
+The Multi-I/O chip's serial device
+@item
+PCnet32 PCI network card
+@item
+Malta FPGA serial device
+@item
+Cirrus VGA graphics card
+@end itemize
+
+The ACER Pica emulation supports:
+
+@itemize @minus
+@item
+MIPS R4000 CPU
+@item
+PC-style IRQ and DMA controllers
+@item
+PC Keyboard
+@item
+IDE controller
+@end itemize
+
+The mipssim pseudo board emulation provides an environment similiar
+to what the proprietary MIPS emulator uses for running Linux.
+It supports:
+
+@itemize @minus
+@item
+A range of MIPS CPUs, default is the 24Kf
+@item
+PC style serial port
+@item
+MIPSnet network emulation
+@end itemize
+
+The MIPS Magnum R4000 emulation supports:
+
+@itemize @minus
+@item
+MIPS R4000 CPU
+@item
+PC-style IRQ controller
+@item
+PC Keyboard
+@item
+SCSI controller
+@item
+G364 framebuffer
+@end itemize
+
+
+@node ARM System emulator
+@section ARM System emulator
+
+Use the executable @file{qemu-system-arm} to simulate a ARM
+machine. The ARM Integrator/CP board is emulated with the following
+devices:
+
+@itemize @minus
+@item
+ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
+@item
+Two PL011 UARTs
+@item
+SMC 91c111 Ethernet adapter
+@item
+PL110 LCD controller
+@item
+PL050 KMI with PS/2 keyboard and mouse.
+@item
+PL181 MultiMedia Card Interface with SD card.
+@end itemize
+
+The ARM Versatile baseboard is emulated with the following devices:
+
+@itemize @minus
+@item
+ARM926E, ARM1136 or Cortex-A8 CPU
+@item
+PL190 Vectored Interrupt Controller
+@item
+Four PL011 UARTs
+@item
+SMC 91c111 Ethernet adapter
+@item
+PL110 LCD controller
+@item
+PL050 KMI with PS/2 keyboard and mouse.
+@item
+PCI host bridge.  Note the emulated PCI bridge only provides access to
+PCI memory space.  It does not provide access to PCI IO space.
+This means some devices (eg. ne2k_pci NIC) are not usable, and others
+(eg. rtl8139 NIC) are only usable when the guest drivers use the memory
+mapped control registers.
+@item
+PCI OHCI USB controller.
+@item
+LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
+@item
+PL181 MultiMedia Card Interface with SD card.
+@end itemize
 
-@item 
-qemu-fast creates a temporary file in @var{$QEMU_TMPDIR} (@file{/tmp} is the
-default) containing all the simulated PC memory. If possible, try to use
-a temporary directory using the tmpfs filesystem to avoid too many
-unnecessary disk accesses.
+The ARM RealView Emulation baseboard is emulated with the following devices:
 
-@item 
-In order to exit cleanly from qemu, you can do a @emph{shutdown} inside
-qemu. qemu will automatically exit when the Linux shutdown is done.
+@itemize @minus
+@item
+ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
+@item
+ARM AMBA Generic/Distributed Interrupt Controller
+@item
+Four PL011 UARTs
+@item
+SMC 91c111 Ethernet adapter
+@item
+PL110 LCD controller
+@item
+PL050 KMI with PS/2 keyboard and mouse
+@item
+PCI host bridge
+@item
+PCI OHCI USB controller
+@item
+LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
+@item
+PL181 MultiMedia Card Interface with SD card.
+@end itemize
 
-@item 
-You can boot slightly faster by disabling the probe of non present IDE
-interfaces. To do so, add the following options on the kernel command
-line:
-@example
-ide1=noprobe ide2=noprobe ide3=noprobe ide4=noprobe ide5=noprobe
-@end example
+The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
+and "Terrier") emulation includes the following peripherals:
 
-@item 
-The example disk image is a modified version of the one made by Kevin
-Lawton for the plex86 Project (@url{www.plex86.org}).
+@itemize @minus
+@item
+Intel PXA270 System-on-chip (ARM V5TE core)
+@item
+NAND Flash memory
+@item
+IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
+@item
+On-chip OHCI USB controller
+@item
+On-chip LCD controller
+@item
+On-chip Real Time Clock
+@item
+TI ADS7846 touchscreen controller on SSP bus
+@item
+Maxim MAX1111 analog-digital converter on I@math{^2}C bus
+@item
+GPIO-connected keyboard controller and LEDs
+@item
+Secure Digital card connected to PXA MMC/SD host
+@item
+Three on-chip UARTs
+@item
+WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
+@end itemize
 
-@end enumerate
+The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
+following elements:
 
-@node linux_compile
-@section Linux Kernel Compilation
+@itemize @minus
+@item
+Texas Instruments OMAP310 System-on-chip (ARM 925T core)
+@item
+ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
+@item
+On-chip LCD controller
+@item
+On-chip Real Time Clock
+@item
+TI TSC2102i touchscreen controller / analog-digital converter / Audio
+CODEC, connected through MicroWire and I@math{^2}S busses
+@item
+GPIO-connected matrix keypad
+@item
+Secure Digital card connected to OMAP MMC/SD host
+@item
+Three on-chip UARTs
+@end itemize
 
-You can use any linux kernel with QEMU. However, if you want to use
-@code{qemu-fast} to get maximum performances, you must use a modified
-guest kernel. If you are using a 2.6 guest kernel, you can use
-directly the patch @file{linux-2.6-qemu-fast.patch} made by Rusty
-Russel available in the QEMU source archive. Otherwise, you can make the
-following changes @emph{by hand} to the Linux kernel:
+The Luminary Micro Stellaris LM3S811EVB emulation includes the following
+devices:
 
-@enumerate
+@itemize @minus
 @item
-The kernel must be mapped at 0x90000000 (the default is
-0xc0000000). You must modify only two lines in the kernel source:
-
-In @file{include/asm/page.h}, replace
-@example
-#define __PAGE_OFFSET           (0xc0000000)
-@end example
-by
-@example
-#define __PAGE_OFFSET           (0x90000000)
-@end example
+Cortex-M3 CPU core.
+@item
+64k Flash and 8k SRAM.
+@item
+Timers, UARTs, ADC and I@math{^2}C interface.
+@item
+OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
+@end itemize
 
-And in @file{arch/i386/vmlinux.lds}, replace
-@example
-  . = 0xc0000000 + 0x100000;
-@end example
-by 
-@example
-  . = 0x90000000 + 0x100000;
-@end example
+The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
+devices:
 
+@itemize @minus
 @item
-If you want to enable SMP (Symmetric Multi-Processing) support, you
-must make the following change in @file{include/asm/fixmap.h}. Replace
-@example
-#define FIXADDR_TOP    (0xffffX000UL)
-@end example
-by 
-@example
-#define FIXADDR_TOP    (0xa7ffX000UL)
-@end example
-(X is 'e' or 'f' depending on the kernel version). Although you can
-use an SMP kernel with QEMU, it only supports one CPU.
-
+Cortex-M3 CPU core.
 @item
-If you are not using a 2.6 kernel as host kernel but if you use a target
-2.6 kernel, you must also ensure that the 'HZ' define is set to 100
-(1000 is the default) as QEMU cannot currently emulate timers at
-frequencies greater than 100 Hz on host Linux systems < 2.6. In
-@file{include/asm/param.h}, replace:
-
-@example
-# define HZ            1000            /* Internal kernel timer frequency */
-@end example
-by
-@example
-# define HZ            100             /* Internal kernel timer frequency */
-@end example
+256k Flash and 64k SRAM.
+@item
+Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
+@item
+OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
+@end itemize
 
-@end enumerate
+A Linux 2.6 test image is available on the QEMU web site. More
+information is available in the QEMU mailing-list archive.
 
-The file config-2.x.x gives the configuration of the example kernels.
+@node ColdFire System emulator
+@section ColdFire System emulator
 
-Just type
-@example
-make bzImage
-@end example
+Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
+The emulator is able to boot a uClinux kernel.
 
-As you would do to make a real kernel. Then you can use with QEMU
-exactly the same kernel as you would boot on your PC (in
-@file{arch/i386/boot/bzImage}).
+The M5208EVB emulation includes the following devices:
 
-@node gdb_usage
-@section GDB usage
+@itemize @minus
+@item
+MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
+@item
+Three Two on-chip UARTs.
+@item
+Fast Ethernet Controller (FEC)
+@end itemize
 
-QEMU has a primitive support to work with gdb, so that you can do
-'Ctrl-C' while the virtual machine is running and inspect its state.
+The AN5206 emulation includes the following devices:
 
-In order to use gdb, launch qemu with the '-s' option. It will wait for a
-gdb connection:
-@example
-> qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
-Connected to host network interface: tun0
-Waiting gdb connection on port 1234
-@end example
+@itemize @minus
+@item
+MCF5206 ColdFire V2 Microprocessor.
+@item
+Two on-chip UARTs.
+@end itemize
 
-Then launch gdb on the 'vmlinux' executable:
-@example
-> gdb vmlinux
-@end example
+@node QEMU User space emulator
+@chapter QEMU User space emulator
 
-In gdb, connect to QEMU:
-@example
-(gdb) target remote localhost:1234
-@end example
+@menu
+* Supported Operating Systems ::
+* Linux User space emulator::
+* Mac OS X/Darwin User space emulator ::
+@end menu
 
-Then you can use gdb normally. For example, type 'c' to launch the kernel:
-@example
-(gdb) c
-@end example
+@node Supported Operating Systems
+@section Supported Operating Systems
 
-Here are some useful tips in order to use gdb on system code:
+The following OS are supported in user space emulation:
 
-@enumerate
-@item
-Use @code{info reg} to display all the CPU registers.
+@itemize @minus
 @item
-Use @code{x/10i $eip} to display the code at the PC position.
+Linux (referred as qemu-linux-user)
 @item
-Use @code{set architecture i8086} to dump 16 bit code. Then use
-@code{x/10i $cs*16+*eip} to dump the code at the PC position.
-@end enumerate
+Mac OS X/Darwin (referred as qemu-darwin-user)
+@end itemize
 
-@chapter QEMU User space emulator invocation
+@node Linux User space emulator
+@section Linux User space emulator
 
-@section Quick Start
+@menu
+* Quick Start::
+* Wine launch::
+* Command line options::
+* Other binaries::
+@end menu
+
+@node Quick Start
+@subsection Quick Start
 
 In order to launch a Linux process, QEMU needs the process executable
-itself and all the target (x86) dynamic libraries used by it. 
+itself and all the target (x86) dynamic libraries used by it.
 
 @itemize
 
 @item On x86, you can just try to launch any process by using the native
 libraries:
 
-@example 
+@example
 qemu-i386 -L / /bin/ls
 @end example
 
 @code{-L /} tells that the x86 dynamic linker must be searched with a
 @file{/} prefix.
 
-@item Since QEMU is also a linux process, you can launch qemu with qemu (NOTE: you can only do that if you compiled QEMU from the sources):
+@item Since QEMU is also a linux process, you can launch qemu with
+qemu (NOTE: you can only do that if you compiled QEMU from the sources):
 
-@example 
+@example
 qemu-i386 -L / qemu-i386 -L / /bin/ls
 @end example
 
@@ -832,7 +2548,7 @@ qemu-i386 -L / qemu-i386 -L / /bin/ls
 @code{LD_LIBRARY_PATH} is not set:
 
 @example
-unset LD_LIBRARY_PATH 
+unset LD_LIBRARY_PATH
 @end example
 
 Then you can launch the precompiled @file{ls} x86 executable:
@@ -847,12 +2563,14 @@ Linux kernel.
 
 @item The x86 version of QEMU is also included. You can try weird things such as:
 @example
-qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 /usr/local/qemu-i386/bin/ls-i386
+qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
+          /usr/local/qemu-i386/bin/ls-i386
 @end example
 
 @end itemize
 
-@section Wine launch
+@node Wine launch
+@subsection Wine launch
 
 @itemize
 
@@ -865,21 +2583,23 @@ qemu-i386 /usr/local/qemu-i386/bin/ls-i386
 @end example
 
 @item Download the binary x86 Wine install
-(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page). 
+(@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
 
 @item Configure Wine on your account. Look at the provided script
-@file{/usr/local/qemu-i386/bin/wine-conf.sh}. Your previous
+@file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
 
 @item Then you can try the example @file{putty.exe}:
 
 @example
-qemu-i386 /usr/local/qemu-i386/wine/bin/wine /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
+qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
+          /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
 @end example
 
 @end itemize
 
-@section Command line options
+@node Command line options
+@subsection Command line options
 
 @example
 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
@@ -888,7 +2608,7 @@ usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
 @table @option
 @item -h
 Print the help
-@item -L path   
+@item -L path
 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
 @item -s size
 Set the x86 stack size in bytes (default=524288)
@@ -903,3 +2623,237 @@ Activate log (logfile=/tmp/qemu.log)
 Act as if the host page size was 'pagesize' bytes
 @end table
 
+Environment variables:
+
+@table @env
+@item QEMU_STRACE
+Print system calls and arguments similar to the 'strace' program
+(NOTE: the actual 'strace' program will not work because the user
+space emulator hasn't implemented ptrace).  At the moment this is
+incomplete.  All system calls that don't have a specific argument
+format are printed with information for six arguments.  Many
+flag-style arguments don't have decoders and will show up as numbers.
+@end table
+
+@node Other binaries
+@subsection Other binaries
+
+@command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
+binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
+configurations), and arm-uclinux bFLT format binaries.
+
+@command{qemu-m68k} is capable of running semihosted binaries using the BDM
+(m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
+coldfire uClinux bFLT format binaries.
+
+The binary format is detected automatically.
+
+@command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
+(Sparc64 CPU, 32 bit ABI).
+
+@command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
+SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
+
+@node Mac OS X/Darwin User space emulator
+@section Mac OS X/Darwin User space emulator
+
+@menu
+* Mac OS X/Darwin Status::
+* Mac OS X/Darwin Quick Start::
+* Mac OS X/Darwin Command line options::
+@end menu
+
+@node Mac OS X/Darwin Status
+@subsection Mac OS X/Darwin Status
+
+@itemize @minus
+@item
+target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
+@item
+target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
+@item
+target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
+@item
+target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
+@end itemize
+
+[1] If you're host commpage can be executed by qemu.
+
+@node Mac OS X/Darwin Quick Start
+@subsection Quick Start
+
+In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
+itself and all the target dynamic libraries used by it. If you don't have the FAT
+libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
+CD or compile them by hand.
+
+@itemize
+
+@item On x86, you can just try to launch any process by using the native
+libraries:
+
+@example
+qemu-i386 /bin/ls
+@end example
+
+or to run the ppc version of the executable:
+
+@example
+qemu-ppc /bin/ls
+@end example
+
+@item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
+are installed:
+
+@example
+qemu-i386 -L /opt/x86_root/ /bin/ls
+@end example
+
+@code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
+@file{/opt/x86_root/usr/bin/dyld}.
+
+@end itemize
+
+@node Mac OS X/Darwin Command line options
+@subsection Command line options
+
+@example
+usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
+@end example
+
+@table @option
+@item -h
+Print the help
+@item -L path
+Set the library root path (default=/)
+@item -s size
+Set the stack size in bytes (default=524288)
+@end table
+
+Debug options:
+
+@table @option
+@item -d
+Activate log (logfile=/tmp/qemu.log)
+@item -p pagesize
+Act as if the host page size was 'pagesize' bytes
+@end table
+
+@node compilation
+@chapter Compilation from the sources
+
+@menu
+* Linux/Unix::
+* Windows::
+* Cross compilation for Windows with Linux::
+* Mac OS X::
+@end menu
+
+@node Linux/Unix
+@section Linux/Unix
+
+@subsection Compilation
+
+First you must decompress the sources:
+@example
+cd /tmp
+tar zxvf qemu-x.y.z.tar.gz
+cd qemu-x.y.z
+@end example
+
+Then you configure QEMU and build it (usually no options are needed):
+@example
+./configure
+make
+@end example
+
+Then type as root user:
+@example
+make install
+@end example
+to install QEMU in @file{/usr/local}.
+
+@subsection GCC version
+
+In order to compile QEMU successfully, it is very important that you
+have the right tools. The most important one is gcc. On most hosts and
+in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
+Linux distribution includes a gcc 4.x compiler, you can usually
+install an older version (it is invoked by @code{gcc32} or
+@code{gcc34}). The QEMU configure script automatically probes for
+these older versions so that usually you don't have to do anything.
+
+@node Windows
+@section Windows
+
+@itemize
+@item Install the current versions of MSYS and MinGW from
+@url{http://www.mingw.org/}. You can find detailed installation
+instructions in the download section and the FAQ.
+
+@item Download
+the MinGW development library of SDL 1.2.x
+(@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
+@url{http://www.libsdl.org}. Unpack it in a temporary place, and
+unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
+directory. Edit the @file{sdl-config} script so that it gives the
+correct SDL directory when invoked.
+
+@item Extract the current version of QEMU.
+
+@item Start the MSYS shell (file @file{msys.bat}).
+
+@item Change to the QEMU directory. Launch @file{./configure} and
+@file{make}.  If you have problems using SDL, verify that
+@file{sdl-config} can be launched from the MSYS command line.
+
+@item You can install QEMU in @file{Program Files/Qemu} by typing
+@file{make install}. Don't forget to copy @file{SDL.dll} in
+@file{Program Files/Qemu}.
+
+@end itemize
+
+@node Cross compilation for Windows with Linux
+@section Cross compilation for Windows with Linux
+
+@itemize
+@item
+Install the MinGW cross compilation tools available at
+@url{http://www.mingw.org/}.
+
+@item
+Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
+unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
+variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
+the QEMU configuration script.
+
+@item
+Configure QEMU for Windows cross compilation:
+@example
+./configure --enable-mingw32
+@end example
+If necessary, you can change the cross-prefix according to the prefix
+chosen for the MinGW tools with --cross-prefix. You can also use
+--prefix to set the Win32 install path.
+
+@item You can install QEMU in the installation directory by typing
+@file{make install}. Don't forget to copy @file{SDL.dll} in the
+installation directory.
+
+@end itemize
+
+Note: Currently, Wine does not seem able to launch
+QEMU for Win32.
+
+@node Mac OS X
+@section Mac OS X
+
+The Mac OS X patches are not fully merged in QEMU, so you should look
+at the QEMU mailing list archive to have all the necessary
+information.
+
+@node Index
+@chapter Index
+@printindex cp
+
+@bye
This page took 0.095099 seconds and 4 git commands to generate.