#include "elf.h"
#include "sysemu/device_tree.h"
#include "qemu/config-file.h"
+#include "exec/address-spaces.h"
+/* Kernel boot protocol is specified in the kernel docs
+ * Documentation/arm/Booting and Documentation/arm64/booting.txt
+ * They have different preferred image load offsets from system RAM base.
+ */
#define KERNEL_ARGS_ADDR 0x100
#define KERNEL_LOAD_ADDR 0x00010000
+#define KERNEL64_LOAD_ADDR 0x00080000
+
+typedef enum {
+ FIXUP_NONE = 0, /* do nothing */
+ FIXUP_TERMINATOR, /* end of insns */
+ FIXUP_BOARDID, /* overwrite with board ID number */
+ FIXUP_ARGPTR, /* overwrite with pointer to kernel args */
+ FIXUP_ENTRYPOINT, /* overwrite with kernel entry point */
+ FIXUP_GIC_CPU_IF, /* overwrite with GIC CPU interface address */
+ FIXUP_BOOTREG, /* overwrite with boot register address */
+ FIXUP_DSB, /* overwrite with correct DSB insn for cpu */
+ FIXUP_MAX,
+} FixupType;
+
+typedef struct ARMInsnFixup {
+ uint32_t insn;
+ FixupType fixup;
+} ARMInsnFixup;
+
+static const ARMInsnFixup bootloader_aarch64[] = {
+ { 0x580000c0 }, /* ldr x0, arg ; Load the lower 32-bits of DTB */
+ { 0xaa1f03e1 }, /* mov x1, xzr */
+ { 0xaa1f03e2 }, /* mov x2, xzr */
+ { 0xaa1f03e3 }, /* mov x3, xzr */
+ { 0x58000084 }, /* ldr x4, entry ; Load the lower 32-bits of kernel entry */
+ { 0xd61f0080 }, /* br x4 ; Jump to the kernel entry point */
+ { 0, FIXUP_ARGPTR }, /* arg: .word @DTB Lower 32-bits */
+ { 0 }, /* .word @DTB Higher 32-bits */
+ { 0, FIXUP_ENTRYPOINT }, /* entry: .word @Kernel Entry Lower 32-bits */
+ { 0 }, /* .word @Kernel Entry Higher 32-bits */
+ { 0, FIXUP_TERMINATOR }
+};
/* The worlds second smallest bootloader. Set r0-r2, then jump to kernel. */
-static uint32_t bootloader[] = {
- 0xe3a00000, /* mov r0, #0 */
- 0xe59f1004, /* ldr r1, [pc, #4] */
- 0xe59f2004, /* ldr r2, [pc, #4] */
- 0xe59ff004, /* ldr pc, [pc, #4] */
- 0, /* Board ID */
- 0, /* Address of kernel args. Set by integratorcp_init. */
- 0 /* Kernel entry point. Set by integratorcp_init. */
+static const ARMInsnFixup bootloader[] = {
+ { 0xe3a00000 }, /* mov r0, #0 */
+ { 0xe59f1004 }, /* ldr r1, [pc, #4] */
+ { 0xe59f2004 }, /* ldr r2, [pc, #4] */
+ { 0xe59ff004 }, /* ldr pc, [pc, #4] */
+ { 0, FIXUP_BOARDID },
+ { 0, FIXUP_ARGPTR },
+ { 0, FIXUP_ENTRYPOINT },
+ { 0, FIXUP_TERMINATOR }
};
/* Handling for secondary CPU boot in a multicore system.
#define DSB_INSN 0xf57ff04f
#define CP15_DSB_INSN 0xee070f9a /* mcr cp15, 0, r0, c7, c10, 4 */
-static uint32_t smpboot[] = {
- 0xe59f2028, /* ldr r2, gic_cpu_if */
- 0xe59f0028, /* ldr r0, startaddr */
- 0xe3a01001, /* mov r1, #1 */
- 0xe5821000, /* str r1, [r2] - set GICC_CTLR.Enable */
- 0xe3a010ff, /* mov r1, #0xff */
- 0xe5821004, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
- DSB_INSN, /* dsb */
- 0xe320f003, /* wfi */
- 0xe5901000, /* ldr r1, [r0] */
- 0xe1110001, /* tst r1, r1 */
- 0x0afffffb, /* beq <wfi> */
- 0xe12fff11, /* bx r1 */
- 0, /* gic_cpu_if: base address of GIC CPU interface */
- 0 /* bootreg: Boot register address is held here */
+static const ARMInsnFixup smpboot[] = {
+ { 0xe59f2028 }, /* ldr r2, gic_cpu_if */
+ { 0xe59f0028 }, /* ldr r0, bootreg_addr */
+ { 0xe3a01001 }, /* mov r1, #1 */
+ { 0xe5821000 }, /* str r1, [r2] - set GICC_CTLR.Enable */
+ { 0xe3a010ff }, /* mov r1, #0xff */
+ { 0xe5821004 }, /* str r1, [r2, 4] - set GIC_PMR.Priority to 0xff */
+ { 0, FIXUP_DSB }, /* dsb */
+ { 0xe320f003 }, /* wfi */
+ { 0xe5901000 }, /* ldr r1, [r0] */
+ { 0xe1110001 }, /* tst r1, r1 */
+ { 0x0afffffb }, /* beq <wfi> */
+ { 0xe12fff11 }, /* bx r1 */
+ { 0, FIXUP_GIC_CPU_IF }, /* gic_cpu_if: .word 0x.... */
+ { 0, FIXUP_BOOTREG }, /* bootreg_addr: .word 0x.... */
+ { 0, FIXUP_TERMINATOR }
};
+static void write_bootloader(const char *name, hwaddr addr,
+ const ARMInsnFixup *insns, uint32_t *fixupcontext)
+{
+ /* Fix up the specified bootloader fragment and write it into
+ * guest memory using rom_add_blob_fixed(). fixupcontext is
+ * an array giving the values to write in for the fixup types
+ * which write a value into the code array.
+ */
+ int i, len;
+ uint32_t *code;
+
+ len = 0;
+ while (insns[len].fixup != FIXUP_TERMINATOR) {
+ len++;
+ }
+
+ code = g_new0(uint32_t, len);
+
+ for (i = 0; i < len; i++) {
+ uint32_t insn = insns[i].insn;
+ FixupType fixup = insns[i].fixup;
+
+ switch (fixup) {
+ case FIXUP_NONE:
+ break;
+ case FIXUP_BOARDID:
+ case FIXUP_ARGPTR:
+ case FIXUP_ENTRYPOINT:
+ case FIXUP_GIC_CPU_IF:
+ case FIXUP_BOOTREG:
+ case FIXUP_DSB:
+ insn = fixupcontext[fixup];
+ break;
+ default:
+ abort();
+ }
+ code[i] = tswap32(insn);
+ }
+
+ rom_add_blob_fixed(name, code, len * sizeof(uint32_t), addr);
+
+ g_free(code);
+}
+
static void default_write_secondary(ARMCPU *cpu,
const struct arm_boot_info *info)
{
- int n;
- smpboot[ARRAY_SIZE(smpboot) - 1] = info->smp_bootreg_addr;
- smpboot[ARRAY_SIZE(smpboot) - 2] = info->gic_cpu_if_addr;
- for (n = 0; n < ARRAY_SIZE(smpboot); n++) {
- /* Replace DSB with the pre-v7 DSB if necessary. */
- if (!arm_feature(&cpu->env, ARM_FEATURE_V7) &&
- smpboot[n] == DSB_INSN) {
- smpboot[n] = CP15_DSB_INSN;
- }
- smpboot[n] = tswap32(smpboot[n]);
+ uint32_t fixupcontext[FIXUP_MAX];
+
+ fixupcontext[FIXUP_GIC_CPU_IF] = info->gic_cpu_if_addr;
+ fixupcontext[FIXUP_BOOTREG] = info->smp_bootreg_addr;
+ if (arm_feature(&cpu->env, ARM_FEATURE_V7)) {
+ fixupcontext[FIXUP_DSB] = DSB_INSN;
+ } else {
+ fixupcontext[FIXUP_DSB] = CP15_DSB_INSN;
}
- rom_add_blob_fixed("smpboot", smpboot, sizeof(smpboot),
- info->smp_loader_start);
+
+ write_bootloader("smpboot", info->smp_loader_start,
+ smpboot, fixupcontext);
}
static void default_reset_secondary(ARMCPU *cpu,
{
CPUARMState *env = &cpu->env;
- stl_phys_notdirty(info->smp_bootreg_addr, 0);
+ stl_phys_notdirty(&address_space_memory, info->smp_bootreg_addr, 0);
env->regs[15] = info->smp_loader_start;
}
+static inline bool have_dtb(const struct arm_boot_info *info)
+{
+ return info->dtb_filename || info->get_dtb;
+}
+
#define WRITE_WORD(p, value) do { \
- stl_phys_notdirty(p, value); \
+ stl_phys_notdirty(&address_space_memory, p, value); \
p += 4; \
} while (0)
}
}
-static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo)
+/**
+ * load_dtb() - load a device tree binary image into memory
+ * @addr: the address to load the image at
+ * @binfo: struct describing the boot environment
+ * @addr_limit: upper limit of the available memory area at @addr
+ *
+ * Load a device tree supplied by the machine or by the user with the
+ * '-dtb' command line option, and put it at offset @addr in target
+ * memory.
+ *
+ * If @addr_limit contains a meaningful value (i.e., it is strictly greater
+ * than @addr), the device tree is only loaded if its size does not exceed
+ * the limit.
+ *
+ * Returns: the size of the device tree image on success,
+ * 0 if the image size exceeds the limit,
+ * -1 on errors.
+ *
+ * Note: Must not be called unless have_dtb(binfo) is true.
+ */
+static int load_dtb(hwaddr addr, const struct arm_boot_info *binfo,
+ hwaddr addr_limit)
{
void *fdt = NULL;
int size, rc;
goto fail;
}
g_free(filename);
- } else if (binfo->get_dtb) {
+ } else {
fdt = binfo->get_dtb(binfo, &size);
if (!fdt) {
fprintf(stderr, "Board was unable to create a dtb blob\n");
}
}
- acells = qemu_devtree_getprop_cell(fdt, "/", "#address-cells");
- scells = qemu_devtree_getprop_cell(fdt, "/", "#size-cells");
+ if (addr_limit > addr && size > (addr_limit - addr)) {
+ /* Installing the device tree blob at addr would exceed addr_limit.
+ * Whether this constitutes failure is up to the caller to decide,
+ * so just return 0 as size, i.e., no error.
+ */
+ g_free(fdt);
+ return 0;
+ }
+
+ acells = qemu_fdt_getprop_cell(fdt, "/", "#address-cells");
+ scells = qemu_fdt_getprop_cell(fdt, "/", "#size-cells");
if (acells == 0 || scells == 0) {
fprintf(stderr, "dtb file invalid (#address-cells or #size-cells 0)\n");
goto fail;
goto fail;
}
- rc = qemu_devtree_setprop_sized_cells(fdt, "/memory", "reg",
- acells, binfo->loader_start,
- scells, binfo->ram_size);
+ rc = qemu_fdt_setprop_sized_cells(fdt, "/memory", "reg",
+ acells, binfo->loader_start,
+ scells, binfo->ram_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /memory/reg\n");
goto fail;
}
if (binfo->kernel_cmdline && *binfo->kernel_cmdline) {
- rc = qemu_devtree_setprop_string(fdt, "/chosen", "bootargs",
- binfo->kernel_cmdline);
+ rc = qemu_fdt_setprop_string(fdt, "/chosen", "bootargs",
+ binfo->kernel_cmdline);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/bootargs\n");
goto fail;
}
if (binfo->initrd_size) {
- rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-start",
- binfo->initrd_start);
+ rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-start",
+ binfo->initrd_start);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-start\n");
goto fail;
}
- rc = qemu_devtree_setprop_cell(fdt, "/chosen", "linux,initrd-end",
- binfo->initrd_start + binfo->initrd_size);
+ rc = qemu_fdt_setprop_cell(fdt, "/chosen", "linux,initrd-end",
+ binfo->initrd_start + binfo->initrd_size);
if (rc < 0) {
fprintf(stderr, "couldn't set /chosen/linux,initrd-end\n");
goto fail;
binfo->modify_dtb(binfo, fdt);
}
- qemu_devtree_dumpdtb(fdt, size);
+ qemu_fdt_dumpdtb(fdt, size);
- cpu_physical_memory_write(addr, fdt, size);
+ /* Put the DTB into the memory map as a ROM image: this will ensure
+ * the DTB is copied again upon reset, even if addr points into RAM.
+ */
+ rom_add_blob_fixed("dtb", fdt, size, addr);
g_free(fdt);
- return 0;
+ return size;
fail:
g_free(fdt);
if (info) {
if (!info->is_linux) {
/* Jump to the entry point. */
- env->regs[15] = info->entry & 0xfffffffe;
- env->thumb = info->entry & 1;
+ if (env->aarch64) {
+ env->pc = info->entry;
+ } else {
+ env->regs[15] = info->entry & 0xfffffffe;
+ env->thumb = info->entry & 1;
+ }
} else {
+ /* If we are booting Linux then we need to check whether we are
+ * booting into secure or non-secure state and adjust the state
+ * accordingly. Out of reset, ARM is defined to be in secure state
+ * (SCR.NS = 0), we change that here if non-secure boot has been
+ * requested.
+ */
+ if (arm_feature(env, ARM_FEATURE_EL3)) {
+ /* AArch64 is defined to come out of reset into EL3 if enabled.
+ * If we are booting Linux then we need to adjust our EL as
+ * Linux expects us to be in EL2 or EL1. AArch32 resets into
+ * SVC, which Linux expects, so no privilege/exception level to
+ * adjust.
+ */
+ if (env->aarch64) {
+ if (arm_feature(env, ARM_FEATURE_EL2)) {
+ env->pstate = PSTATE_MODE_EL2h;
+ } else {
+ env->pstate = PSTATE_MODE_EL1h;
+ }
+ }
+
+ /* Set to non-secure if not a secure boot */
+ if (!info->secure_boot) {
+ /* Linux expects non-secure state */
+ env->cp15.scr_el3 |= SCR_NS;
+ }
+ }
+
if (CPU(cpu) == first_cpu) {
- env->regs[15] = info->loader_start;
- if (!info->dtb_filename) {
+ if (env->aarch64) {
+ env->pc = info->loader_start;
+ } else {
+ env->regs[15] = info->loader_start;
+ }
+
+ if (!have_dtb(info)) {
if (old_param) {
set_kernel_args_old(info);
} else {
}
}
+/**
+ * load_image_to_fw_cfg() - Load an image file into an fw_cfg entry identified
+ * by key.
+ * @fw_cfg: The firmware config instance to store the data in.
+ * @size_key: The firmware config key to store the size of the loaded
+ * data under, with fw_cfg_add_i32().
+ * @data_key: The firmware config key to store the loaded data under,
+ * with fw_cfg_add_bytes().
+ * @image_name: The name of the image file to load. If it is NULL, the
+ * function returns without doing anything.
+ * @try_decompress: Whether the image should be decompressed (gunzipped) before
+ * adding it to fw_cfg. If decompression fails, the image is
+ * loaded as-is.
+ *
+ * In case of failure, the function prints an error message to stderr and the
+ * process exits with status 1.
+ */
+static void load_image_to_fw_cfg(FWCfgState *fw_cfg, uint16_t size_key,
+ uint16_t data_key, const char *image_name,
+ bool try_decompress)
+{
+ size_t size = -1;
+ uint8_t *data;
+
+ if (image_name == NULL) {
+ return;
+ }
+
+ if (try_decompress) {
+ size = load_image_gzipped_buffer(image_name,
+ LOAD_IMAGE_MAX_GUNZIP_BYTES, &data);
+ }
+
+ if (size == (size_t)-1) {
+ gchar *contents;
+ gsize length;
+
+ if (!g_file_get_contents(image_name, &contents, &length, NULL)) {
+ fprintf(stderr, "failed to load \"%s\"\n", image_name);
+ exit(1);
+ }
+ size = length;
+ data = (uint8_t *)contents;
+ }
+
+ fw_cfg_add_i32(fw_cfg, size_key, size);
+ fw_cfg_add_bytes(fw_cfg, data_key, data, size);
+}
+
void arm_load_kernel(ARMCPU *cpu, struct arm_boot_info *info)
{
- CPUState *cs = CPU(cpu);
+ CPUState *cs;
int kernel_size;
int initrd_size;
- int n;
int is_linux = 0;
- uint64_t elf_entry;
- hwaddr entry;
+ uint64_t elf_entry, elf_low_addr, elf_high_addr;
+ int elf_machine;
+ hwaddr entry, kernel_load_offset;
int big_endian;
+ static const ARMInsnFixup *primary_loader;
+
+ /* CPU objects (unlike devices) are not automatically reset on system
+ * reset, so we must always register a handler to do so. If we're
+ * actually loading a kernel, the handler is also responsible for
+ * arranging that we start it correctly.
+ */
+ for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+ qemu_register_reset(do_cpu_reset, ARM_CPU(cs));
+ }
/* Load the kernel. */
- if (!info->kernel_filename) {
- /* If no kernel specified, do nothing; we will start from address 0
- * (typically a boot ROM image) in the same way as hardware.
+ if (!info->kernel_filename || info->firmware_loaded) {
+
+ if (have_dtb(info)) {
+ /* If we have a device tree blob, but no kernel to supply it to (or
+ * the kernel is supposed to be loaded by the bootloader), copy the
+ * DTB to the base of RAM for the bootloader to pick up.
+ */
+ if (load_dtb(info->loader_start, info, 0) < 0) {
+ exit(1);
+ }
+ }
+
+ if (info->kernel_filename) {
+ FWCfgState *fw_cfg;
+ bool try_decompressing_kernel;
+
+ fw_cfg = fw_cfg_find();
+ try_decompressing_kernel = arm_feature(&cpu->env,
+ ARM_FEATURE_AARCH64);
+
+ /* Expose the kernel, the command line, and the initrd in fw_cfg.
+ * We don't process them here at all, it's all left to the
+ * firmware.
+ */
+ load_image_to_fw_cfg(fw_cfg,
+ FW_CFG_KERNEL_SIZE, FW_CFG_KERNEL_DATA,
+ info->kernel_filename,
+ try_decompressing_kernel);
+ load_image_to_fw_cfg(fw_cfg,
+ FW_CFG_INITRD_SIZE, FW_CFG_INITRD_DATA,
+ info->initrd_filename, false);
+
+ if (info->kernel_cmdline) {
+ fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
+ strlen(info->kernel_cmdline) + 1);
+ fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA,
+ info->kernel_cmdline);
+ }
+ }
+
+ /* We will start from address 0 (typically a boot ROM image) in the
+ * same way as hardware.
*/
return;
}
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64)) {
+ primary_loader = bootloader_aarch64;
+ kernel_load_offset = KERNEL64_LOAD_ADDR;
+ elf_machine = EM_AARCH64;
+ } else {
+ primary_loader = bootloader;
+ kernel_load_offset = KERNEL_LOAD_ADDR;
+ elf_machine = EM_ARM;
+ }
+
info->dtb_filename = qemu_opt_get(qemu_get_machine_opts(), "dtb");
if (!info->secondary_cpu_reset_hook) {
/* Assume that raw images are linux kernels, and ELF images are not. */
kernel_size = load_elf(info->kernel_filename, NULL, NULL, &elf_entry,
- NULL, NULL, big_endian, ELF_MACHINE, 1);
+ &elf_low_addr, &elf_high_addr, big_endian,
+ elf_machine, 1);
+ if (kernel_size > 0 && have_dtb(info)) {
+ /* If there is still some room left at the base of RAM, try and put
+ * the DTB there like we do for images loaded with -bios or -pflash.
+ */
+ if (elf_low_addr > info->loader_start
+ || elf_high_addr < info->loader_start) {
+ /* Pass elf_low_addr as address limit to load_dtb if it may be
+ * pointing into RAM, otherwise pass '0' (no limit)
+ */
+ if (elf_low_addr < info->loader_start) {
+ elf_low_addr = 0;
+ }
+ if (load_dtb(info->loader_start, info, elf_low_addr) < 0) {
+ exit(1);
+ }
+ }
+ }
entry = elf_entry;
if (kernel_size < 0) {
kernel_size = load_uimage(info->kernel_filename, &entry, NULL,
- &is_linux);
+ &is_linux, NULL, NULL);
+ }
+ /* On aarch64, it's the bootloader's job to uncompress the kernel. */
+ if (arm_feature(&cpu->env, ARM_FEATURE_AARCH64) && kernel_size < 0) {
+ entry = info->loader_start + kernel_load_offset;
+ kernel_size = load_image_gzipped(info->kernel_filename, entry,
+ info->ram_size - kernel_load_offset);
+ is_linux = 1;
}
if (kernel_size < 0) {
- entry = info->loader_start + KERNEL_LOAD_ADDR;
+ entry = info->loader_start + kernel_load_offset;
kernel_size = load_image_targphys(info->kernel_filename, entry,
- info->ram_size - KERNEL_LOAD_ADDR);
+ info->ram_size - kernel_load_offset);
is_linux = 1;
}
if (kernel_size < 0) {
}
info->entry = entry;
if (is_linux) {
+ uint32_t fixupcontext[FIXUP_MAX];
+
if (info->initrd_filename) {
initrd_size = load_ramdisk(info->initrd_filename,
info->initrd_start,
}
info->initrd_size = initrd_size;
- bootloader[4] = info->board_id;
+ fixupcontext[FIXUP_BOARDID] = info->board_id;
/* for device tree boot, we pass the DTB directly in r2. Otherwise
* we point to the kernel args.
*/
- if (info->dtb_filename || info->get_dtb) {
+ if (have_dtb(info)) {
/* Place the DTB after the initrd in memory. Note that some
* kernels will trash anything in the 4K page the initrd
* ends in, so make sure the DTB isn't caught up in that.
*/
hwaddr dtb_start = QEMU_ALIGN_UP(info->initrd_start + initrd_size,
4096);
- if (load_dtb(dtb_start, info)) {
+ if (load_dtb(dtb_start, info, 0) < 0) {
exit(1);
}
- bootloader[5] = dtb_start;
+ fixupcontext[FIXUP_ARGPTR] = dtb_start;
} else {
- bootloader[5] = info->loader_start + KERNEL_ARGS_ADDR;
+ fixupcontext[FIXUP_ARGPTR] = info->loader_start + KERNEL_ARGS_ADDR;
if (info->ram_size >= (1ULL << 32)) {
fprintf(stderr, "qemu: RAM size must be less than 4GB to boot"
" Linux kernel using ATAGS (try passing a device tree"
exit(1);
}
}
- bootloader[6] = entry;
- for (n = 0; n < sizeof(bootloader) / 4; n++) {
- bootloader[n] = tswap32(bootloader[n]);
- }
- rom_add_blob_fixed("bootloader", bootloader, sizeof(bootloader),
- info->loader_start);
+ fixupcontext[FIXUP_ENTRYPOINT] = entry;
+
+ write_bootloader("bootloader", info->loader_start,
+ primary_loader, fixupcontext);
+
if (info->nb_cpus > 1) {
info->write_secondary_boot(cpu, info);
}
}
info->is_linux = is_linux;
- for (; cs; cs = CPU_NEXT(cs)) {
- cpu = ARM_CPU(cs);
- cpu->env.boot_info = info;
- qemu_register_reset(do_cpu_reset, cpu);
+ for (cs = CPU(cpu); cs; cs = CPU_NEXT(cs)) {
+ ARM_CPU(cs)->env.boot_info = info;
}
}