* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
+#include "qemu/units.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "cpu.h"
static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
- CPUState *cs = CPU(arm_env_get_cpu(env));
+ CPUState *cs = env_cpu(env);
if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
/*
return val;
}
-#if !defined(CONFIG_USER_ONLY)
-
-static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
- unsigned int target_el,
- bool same_el, bool ea,
- bool s1ptw, bool is_write,
- int fsc)
-{
- uint32_t syn;
-
- /* ISV is only set for data aborts routed to EL2 and
- * never for stage-1 page table walks faulting on stage 2.
- *
- * Furthermore, ISV is only set for certain kinds of load/stores.
- * If the template syndrome does not have ISV set, we should leave
- * it cleared.
- *
- * See ARMv8 specs, D7-1974:
- * ISS encoding for an exception from a Data Abort, the
- * ISV field.
- */
- if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
- syn = syn_data_abort_no_iss(same_el,
- ea, 0, s1ptw, is_write, fsc);
- } else {
- /* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
- * syndrome created at translation time.
- * Now we create the runtime syndrome with the remaining fields.
- */
- syn = syn_data_abort_with_iss(same_el,
- 0, 0, 0, 0, 0,
- ea, 0, s1ptw, is_write, fsc,
- false);
- /* Merge the runtime syndrome with the template syndrome. */
- syn |= template_syn;
- }
- return syn;
-}
-
-void arm_deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
- int mmu_idx, ARMMMUFaultInfo *fi)
-{
- CPUARMState *env = &cpu->env;
- int target_el;
- bool same_el;
- uint32_t syn, exc, fsr, fsc;
- ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
-
- target_el = exception_target_el(env);
- if (fi->stage2) {
- target_el = 2;
- env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
- }
- same_el = (arm_current_el(env) == target_el);
-
- if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
- arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
- /* LPAE format fault status register : bottom 6 bits are
- * status code in the same form as needed for syndrome
- */
- fsr = arm_fi_to_lfsc(fi);
- fsc = extract32(fsr, 0, 6);
- } else {
- fsr = arm_fi_to_sfsc(fi);
- /* Short format FSR : this fault will never actually be reported
- * to an EL that uses a syndrome register. Use a (currently)
- * reserved FSR code in case the constructed syndrome does leak
- * into the guest somehow.
- */
- fsc = 0x3f;
- }
-
- if (access_type == MMU_INST_FETCH) {
- syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
- exc = EXCP_PREFETCH_ABORT;
- } else {
- syn = merge_syn_data_abort(env->exception.syndrome, target_el,
- same_el, fi->ea, fi->s1ptw,
- access_type == MMU_DATA_STORE,
- fsc);
- if (access_type == MMU_DATA_STORE
- && arm_feature(env, ARM_FEATURE_V6)) {
- fsr |= (1 << 11);
- }
- exc = EXCP_DATA_ABORT;
- }
-
- env->exception.vaddress = addr;
- env->exception.fsr = fsr;
- raise_exception(env, exc, syn, target_el);
-}
-
-/* Raise a data fault alignment exception for the specified virtual address */
-void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
- MMUAccessType access_type,
- int mmu_idx, uintptr_t retaddr)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- ARMMMUFaultInfo fi = {};
-
- /* now we have a real cpu fault */
- cpu_restore_state(cs, retaddr, true);
-
- fi.type = ARMFault_Alignment;
- arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
-}
-
-/* arm_cpu_do_transaction_failed: handle a memory system error response
- * (eg "no device/memory present at address") by raising an external abort
- * exception
- */
-void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
- vaddr addr, unsigned size,
- MMUAccessType access_type,
- int mmu_idx, MemTxAttrs attrs,
- MemTxResult response, uintptr_t retaddr)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- ARMMMUFaultInfo fi = {};
-
- /* now we have a real cpu fault */
- cpu_restore_state(cs, retaddr, true);
-
- fi.ea = arm_extabort_type(response);
- fi.type = ARMFault_SyncExternal;
- arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
-}
-
-#endif /* !defined(CONFIG_USER_ONLY) */
-
void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
{
/*
* raising an exception if the limit is breached.
*/
if (newvalue < v7m_sp_limit(env)) {
- CPUState *cs = CPU(arm_env_get_cpu(env));
+ CPUState *cs = env_cpu(env);
/*
* Stack limit exceptions are a rare case, so rather than syncing
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
{
- CPUState *cs = CPU(arm_env_get_cpu(env));
+ CPUState *cs = env_cpu(env);
int target_el = check_wfx_trap(env, false);
if (cpu_has_work(cs)) {
void HELPER(yield)(CPUARMState *env)
{
- ARMCPU *cpu = arm_env_get_cpu(env);
- CPUState *cs = CPU(cpu);
+ CPUState *cs = env_cpu(env);
/* This is a non-trappable hint instruction that generally indicates
* that the guest is currently busy-looping. Yield control back to the
*/
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
- CPUState *cs = CPU(arm_env_get_cpu(env));
+ CPUState *cs = env_cpu(env);
assert(excp_is_internal(excp));
cs->exception_index = excp;
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
qemu_mutex_lock_iothread();
- arm_call_pre_el_change_hook(arm_env_get_cpu(env));
+ arm_call_pre_el_change_hook(env_archcpu(env));
qemu_mutex_unlock_iothread();
cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
env->regs[15] &= (env->thumb ? ~1 : ~3);
qemu_mutex_lock_iothread();
- arm_call_el_change_hook(arm_env_get_cpu(env));
+ arm_call_el_change_hook(env_archcpu(env));
qemu_mutex_unlock_iothread();
}
void HELPER(pre_hvc)(CPUARMState *env)
{
- ARMCPU *cpu = arm_env_get_cpu(env);
+ ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
/* FIXME: Use actual secure state. */
bool secure = false;
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
- ARMCPU *cpu = arm_env_get_cpu(env);
+ ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
}
}
-/* Return true if the linked breakpoint entry lbn passes its checks */
-static bool linked_bp_matches(ARMCPU *cpu, int lbn)
-{
- CPUARMState *env = &cpu->env;
- uint64_t bcr = env->cp15.dbgbcr[lbn];
- int brps = extract32(cpu->dbgdidr, 24, 4);
- int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
- int bt;
- uint32_t contextidr;
-
- /* Links to unimplemented or non-context aware breakpoints are
- * CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
- * as if linked to an UNKNOWN context-aware breakpoint (in which
- * case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
- * We choose the former.
- */
- if (lbn > brps || lbn < (brps - ctx_cmps)) {
- return false;
- }
-
- bcr = env->cp15.dbgbcr[lbn];
-
- if (extract64(bcr, 0, 1) == 0) {
- /* Linked breakpoint disabled : generate no events */
- return false;
- }
-
- bt = extract64(bcr, 20, 4);
-
- /* We match the whole register even if this is AArch32 using the
- * short descriptor format (in which case it holds both PROCID and ASID),
- * since we don't implement the optional v7 context ID masking.
- */
- contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
-
- switch (bt) {
- case 3: /* linked context ID match */
- if (arm_current_el(env) > 1) {
- /* Context matches never fire in EL2 or (AArch64) EL3 */
- return false;
- }
- return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
- case 5: /* linked address mismatch (reserved in AArch64) */
- case 9: /* linked VMID match (reserved if no EL2) */
- case 11: /* linked context ID and VMID match (reserved if no EL2) */
- default:
- /* Links to Unlinked context breakpoints must generate no
- * events; we choose to do the same for reserved values too.
- */
- return false;
- }
-
- return false;
-}
-
-static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
-{
- CPUARMState *env = &cpu->env;
- uint64_t cr;
- int pac, hmc, ssc, wt, lbn;
- /* Note that for watchpoints the check is against the CPU security
- * state, not the S/NS attribute on the offending data access.
- */
- bool is_secure = arm_is_secure(env);
- int access_el = arm_current_el(env);
-
- if (is_wp) {
- CPUWatchpoint *wp = env->cpu_watchpoint[n];
-
- if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
- return false;
- }
- cr = env->cp15.dbgwcr[n];
- if (wp->hitattrs.user) {
- /* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
- * match watchpoints as if they were accesses done at EL0, even if
- * the CPU is at EL1 or higher.
- */
- access_el = 0;
- }
- } else {
- uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
-
- if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
- return false;
- }
- cr = env->cp15.dbgbcr[n];
- }
- /* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
- * enabled and that the address and access type match; for breakpoints
- * we know the address matched; check the remaining fields, including
- * linked breakpoints. We rely on WCR and BCR having the same layout
- * for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
- * Note that some combinations of {PAC, HMC, SSC} are reserved and
- * must act either like some valid combination or as if the watchpoint
- * were disabled. We choose the former, and use this together with
- * the fact that EL3 must always be Secure and EL2 must always be
- * Non-Secure to simplify the code slightly compared to the full
- * table in the ARM ARM.
- */
- pac = extract64(cr, 1, 2);
- hmc = extract64(cr, 13, 1);
- ssc = extract64(cr, 14, 2);
-
- switch (ssc) {
- case 0:
- break;
- case 1:
- case 3:
- if (is_secure) {
- return false;
- }
- break;
- case 2:
- if (!is_secure) {
- return false;
- }
- break;
- }
-
- switch (access_el) {
- case 3:
- case 2:
- if (!hmc) {
- return false;
- }
- break;
- case 1:
- if (extract32(pac, 0, 1) == 0) {
- return false;
- }
- break;
- case 0:
- if (extract32(pac, 1, 1) == 0) {
- return false;
- }
- break;
- default:
- g_assert_not_reached();
- }
-
- wt = extract64(cr, 20, 1);
- lbn = extract64(cr, 16, 4);
-
- if (wt && !linked_bp_matches(cpu, lbn)) {
- return false;
- }
-
- return true;
-}
-
-static bool check_watchpoints(ARMCPU *cpu)
-{
- CPUARMState *env = &cpu->env;
- int n;
-
- /* If watchpoints are disabled globally or we can't take debug
- * exceptions here then watchpoint firings are ignored.
- */
- if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
- || !arm_generate_debug_exceptions(env)) {
- return false;
- }
-
- for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
- if (bp_wp_matches(cpu, n, true)) {
- return true;
- }
- }
- return false;
-}
-
-static bool check_breakpoints(ARMCPU *cpu)
-{
- CPUARMState *env = &cpu->env;
- int n;
-
- /* If breakpoints are disabled globally or we can't take debug
- * exceptions here then breakpoint firings are ignored.
- */
- if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
- || !arm_generate_debug_exceptions(env)) {
- return false;
- }
-
- for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
- if (bp_wp_matches(cpu, n, false)) {
- return true;
- }
- }
- return false;
-}
-
-void HELPER(check_breakpoints)(CPUARMState *env)
-{
- ARMCPU *cpu = arm_env_get_cpu(env);
-
- if (check_breakpoints(cpu)) {
- HELPER(exception_internal(env, EXCP_DEBUG));
- }
-}
-
-bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
-{
- /* Called by core code when a CPU watchpoint fires; need to check if this
- * is also an architectural watchpoint match.
- */
- ARMCPU *cpu = ARM_CPU(cs);
-
- return check_watchpoints(cpu);
-}
-
-vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
-{
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
-
- /* In BE32 system mode, target memory is stored byteswapped (on a
- * little-endian host system), and by the time we reach here (via an
- * opcode helper) the addresses of subword accesses have been adjusted
- * to account for that, which means that watchpoints will not match.
- * Undo the adjustment here.
- */
- if (arm_sctlr_b(env)) {
- if (len == 1) {
- addr ^= 3;
- } else if (len == 2) {
- addr ^= 2;
- }
- }
-
- return addr;
-}
-
-void arm_debug_excp_handler(CPUState *cs)
-{
- /* Called by core code when a watchpoint or breakpoint fires;
- * need to check which one and raise the appropriate exception.
- */
- ARMCPU *cpu = ARM_CPU(cs);
- CPUARMState *env = &cpu->env;
- CPUWatchpoint *wp_hit = cs->watchpoint_hit;
-
- if (wp_hit) {
- if (wp_hit->flags & BP_CPU) {
- bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
- bool same_el = arm_debug_target_el(env) == arm_current_el(env);
-
- cs->watchpoint_hit = NULL;
-
- env->exception.fsr = arm_debug_exception_fsr(env);
- env->exception.vaddress = wp_hit->hitaddr;
- raise_exception(env, EXCP_DATA_ABORT,
- syn_watchpoint(same_el, 0, wnr),
- arm_debug_target_el(env));
- }
- } else {
- uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
- bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
-
- /* (1) GDB breakpoints should be handled first.
- * (2) Do not raise a CPU exception if no CPU breakpoint has fired,
- * since singlestep is also done by generating a debug internal
- * exception.
- */
- if (cpu_breakpoint_test(cs, pc, BP_GDB)
- || !cpu_breakpoint_test(cs, pc, BP_CPU)) {
- return;
- }
-
- env->exception.fsr = arm_debug_exception_fsr(env);
- /* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
- * values to the guest that it shouldn't be able to see at its
- * exception/security level.
- */
- env->exception.vaddress = 0;
- raise_exception(env, EXCP_PREFETCH_ABORT,
- syn_breakpoint(same_el),
- arm_debug_target_el(env));
- }
-}
-
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
The only way to do that in TCG is a conditional branch, which clobbers
all our temporaries. For now implement these as helper functions. */
return ((uint32_t)x >> shift) | (x << (32 - shift));
}
}
+
+void HELPER(dc_zva)(CPUARMState *env, uint64_t vaddr_in)
+{
+ /*
+ * Implement DC ZVA, which zeroes a fixed-length block of memory.
+ * Note that we do not implement the (architecturally mandated)
+ * alignment fault for attempts to use this on Device memory
+ * (which matches the usual QEMU behaviour of not implementing either
+ * alignment faults or any memory attribute handling).
+ */
+
+ ARMCPU *cpu = env_archcpu(env);
+ uint64_t blocklen = 4 << cpu->dcz_blocksize;
+ uint64_t vaddr = vaddr_in & ~(blocklen - 1);
+
+#ifndef CONFIG_USER_ONLY
+ {
+ /*
+ * Slightly awkwardly, QEMU's TARGET_PAGE_SIZE may be less than
+ * the block size so we might have to do more than one TLB lookup.
+ * We know that in fact for any v8 CPU the page size is at least 4K
+ * and the block size must be 2K or less, but TARGET_PAGE_SIZE is only
+ * 1K as an artefact of legacy v5 subpage support being present in the
+ * same QEMU executable. So in practice the hostaddr[] array has
+ * two entries, given the current setting of TARGET_PAGE_BITS_MIN.
+ */
+ int maxidx = DIV_ROUND_UP(blocklen, TARGET_PAGE_SIZE);
+ void *hostaddr[DIV_ROUND_UP(2 * KiB, 1 << TARGET_PAGE_BITS_MIN)];
+ int try, i;
+ unsigned mmu_idx = cpu_mmu_index(env, false);
+ TCGMemOpIdx oi = make_memop_idx(MO_UB, mmu_idx);
+
+ assert(maxidx <= ARRAY_SIZE(hostaddr));
+
+ for (try = 0; try < 2; try++) {
+
+ for (i = 0; i < maxidx; i++) {
+ hostaddr[i] = tlb_vaddr_to_host(env,
+ vaddr + TARGET_PAGE_SIZE * i,
+ 1, mmu_idx);
+ if (!hostaddr[i]) {
+ break;
+ }
+ }
+ if (i == maxidx) {
+ /*
+ * If it's all in the TLB it's fair game for just writing to;
+ * we know we don't need to update dirty status, etc.
+ */
+ for (i = 0; i < maxidx - 1; i++) {
+ memset(hostaddr[i], 0, TARGET_PAGE_SIZE);
+ }
+ memset(hostaddr[i], 0, blocklen - (i * TARGET_PAGE_SIZE));
+ return;
+ }
+ /*
+ * OK, try a store and see if we can populate the tlb. This
+ * might cause an exception if the memory isn't writable,
+ * in which case we will longjmp out of here. We must for
+ * this purpose use the actual register value passed to us
+ * so that we get the fault address right.
+ */
+ helper_ret_stb_mmu(env, vaddr_in, 0, oi, GETPC());
+ /* Now we can populate the other TLB entries, if any */
+ for (i = 0; i < maxidx; i++) {
+ uint64_t va = vaddr + TARGET_PAGE_SIZE * i;
+ if (va != (vaddr_in & TARGET_PAGE_MASK)) {
+ helper_ret_stb_mmu(env, va, 0, oi, GETPC());
+ }
+ }
+ }
+
+ /*
+ * Slow path (probably attempt to do this to an I/O device or
+ * similar, or clearing of a block of code we have translations
+ * cached for). Just do a series of byte writes as the architecture
+ * demands. It's not worth trying to use a cpu_physical_memory_map(),
+ * memset(), unmap() sequence here because:
+ * + we'd need to account for the blocksize being larger than a page
+ * + the direct-RAM access case is almost always going to be dealt
+ * with in the fastpath code above, so there's no speed benefit
+ * + we would have to deal with the map returning NULL because the
+ * bounce buffer was in use
+ */
+ for (i = 0; i < blocklen; i++) {
+ helper_ret_stb_mmu(env, vaddr + i, 0, oi, GETPC());
+ }
+ }
+#else
+ memset(g2h(vaddr), 0, blocklen);
+#endif
+}