/*
* virtual page mapping and translated block handling
- *
+ *
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
*/
#include "config.h"
#ifdef _WIN32
+#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#else
#include <sys/types.h>
#include "cpu.h"
#include "exec-all.h"
+#if defined(CONFIG_USER_ONLY)
+#include <qemu.h>
+#endif
//#define DEBUG_TB_INVALIDATE
//#define DEBUG_FLUSH
//#define DEBUG_TLB
+//#define DEBUG_UNASSIGNED
/* make various TB consistency checks */
-//#define DEBUG_TB_CHECK
-//#define DEBUG_TLB_CHECK
+//#define DEBUG_TB_CHECK
+//#define DEBUG_TLB_CHECK
+
+//#define DEBUG_IOPORT
+//#define DEBUG_SUBPAGE
+
+#if !defined(CONFIG_USER_ONLY)
+/* TB consistency checks only implemented for usermode emulation. */
+#undef DEBUG_TB_CHECK
+#endif
/* threshold to flush the translated code buffer */
-#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - CODE_GEN_MAX_SIZE)
+#define CODE_GEN_BUFFER_MAX_SIZE (CODE_GEN_BUFFER_SIZE - code_gen_max_block_size())
#define SMC_BITMAP_USE_THRESHOLD 10
#define MMAP_AREA_START 0x00000000
#define MMAP_AREA_END 0xa8000000
+#if defined(TARGET_SPARC64)
+#define TARGET_PHYS_ADDR_SPACE_BITS 41
+#elif defined(TARGET_SPARC)
+#define TARGET_PHYS_ADDR_SPACE_BITS 36
+#elif defined(TARGET_ALPHA)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#define TARGET_VIRT_ADDR_SPACE_BITS 42
+#elif defined(TARGET_PPC64)
+#define TARGET_PHYS_ADDR_SPACE_BITS 42
+#else
+/* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
+#define TARGET_PHYS_ADDR_SPACE_BITS 32
+#endif
+
TranslationBlock tbs[CODE_GEN_MAX_BLOCKS];
-TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
int nb_tbs;
/* any access to the tbs or the page table must use this lock */
spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
-uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
+uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE] __attribute__((aligned (32)));
uint8_t *code_gen_ptr;
int phys_ram_size;
int phys_ram_fd;
uint8_t *phys_ram_base;
uint8_t *phys_ram_dirty;
+static ram_addr_t phys_ram_alloc_offset = 0;
+
+CPUState *first_cpu;
+/* current CPU in the current thread. It is only valid inside
+ cpu_exec() */
+CPUState *cpu_single_env;
typedef struct PageDesc {
/* list of TBs intersecting this ram page */
typedef struct PhysPageDesc {
/* offset in host memory of the page + io_index in the low 12 bits */
- unsigned long phys_offset;
+ uint32_t phys_offset;
} PhysPageDesc;
-typedef struct VirtPageDesc {
- /* physical address of code page. It is valid only if 'valid_tag'
- matches 'virt_valid_tag' */
- target_ulong phys_addr;
- unsigned int valid_tag;
-#if !defined(CONFIG_SOFTMMU)
- /* original page access rights. It is valid only if 'valid_tag'
- matches 'virt_valid_tag' */
- unsigned int prot;
-#endif
-} VirtPageDesc;
-
#define L2_BITS 10
+#if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
+/* XXX: this is a temporary hack for alpha target.
+ * In the future, this is to be replaced by a multi-level table
+ * to actually be able to handle the complete 64 bits address space.
+ */
+#define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
+#else
#define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
+#endif
#define L1_SIZE (1 << L1_BITS)
#define L2_SIZE (1 << L2_BITS)
static PageDesc *l1_map[L1_SIZE];
PhysPageDesc **l1_phys_map;
-#if !defined(CONFIG_USER_ONLY)
-static VirtPageDesc *l1_virt_map[L1_SIZE];
-static unsigned int virt_valid_tag;
-#endif
-
/* io memory support */
CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
void *io_mem_opaque[IO_MEM_NB_ENTRIES];
static int io_mem_nb;
+#if defined(CONFIG_SOFTMMU)
+static int io_mem_watch;
+#endif
/* log support */
char *logfilename = "/tmp/qemu.log";
FILE *logfile;
int loglevel;
+static int log_append = 0;
/* statistics */
static int tlb_flush_count;
static int tb_flush_count;
static int tb_phys_invalidate_count;
+#define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
+typedef struct subpage_t {
+ target_phys_addr_t base;
+ CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
+ CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
+ void *opaque[TARGET_PAGE_SIZE][2][4];
+} subpage_t;
+
static void page_init(void)
{
/* NOTE: we can always suppose that qemu_host_page_size >=
{
SYSTEM_INFO system_info;
DWORD old_protect;
-
+
GetSystemInfo(&system_info);
qemu_real_host_page_size = system_info.dwPageSize;
-
+
VirtualProtect(code_gen_buffer, sizeof(code_gen_buffer),
PAGE_EXECUTE_READWRITE, &old_protect);
}
start = (unsigned long)code_gen_buffer;
start &= ~(qemu_real_host_page_size - 1);
-
+
end = (unsigned long)code_gen_buffer + sizeof(code_gen_buffer);
end += qemu_real_host_page_size - 1;
end &= ~(qemu_real_host_page_size - 1);
-
- mprotect((void *)start, end - start,
+
+ mprotect((void *)start, end - start,
PROT_READ | PROT_WRITE | PROT_EXEC);
}
#endif
while ((1 << qemu_host_page_bits) < qemu_host_page_size)
qemu_host_page_bits++;
qemu_host_page_mask = ~(qemu_host_page_size - 1);
-#if !defined(CONFIG_USER_ONLY)
- virt_valid_tag = 1;
+ l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
+ memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
+
+#if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
+ {
+ long long startaddr, endaddr;
+ FILE *f;
+ int n;
+
+ f = fopen("/proc/self/maps", "r");
+ if (f) {
+ do {
+ n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
+ if (n == 2) {
+ page_set_flags(TARGET_PAGE_ALIGN(startaddr),
+ TARGET_PAGE_ALIGN(endaddr),
+ PAGE_RESERVED);
+ }
+ } while (!feof(f));
+ fclose(f);
+ }
+ }
#endif
- l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(PhysPageDesc *));
- memset(l1_phys_map, 0, L1_SIZE * sizeof(PhysPageDesc *));
}
static inline PageDesc *page_find_alloc(unsigned int index)
return p + (index & (L2_SIZE - 1));
}
-static inline PhysPageDesc *phys_page_find_alloc(unsigned int index)
+static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
{
- PhysPageDesc **lp, *p;
+ void **lp, **p;
+ PhysPageDesc *pd;
- lp = &l1_phys_map[index >> L2_BITS];
+ p = (void **)l1_phys_map;
+#if TARGET_PHYS_ADDR_SPACE_BITS > 32
+
+#if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
+#error unsupported TARGET_PHYS_ADDR_SPACE_BITS
+#endif
+ lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
p = *lp;
if (!p) {
/* allocate if not found */
- p = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
- memset(p, 0, sizeof(PhysPageDesc) * L2_SIZE);
+ if (!alloc)
+ return NULL;
+ p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
+ memset(p, 0, sizeof(void *) * L1_SIZE);
*lp = p;
}
- return p + (index & (L2_SIZE - 1));
-}
-
-static inline PhysPageDesc *phys_page_find(unsigned int index)
-{
- PhysPageDesc *p;
-
- p = l1_phys_map[index >> L2_BITS];
- if (!p)
- return 0;
- return p + (index & (L2_SIZE - 1));
-}
-
-#if !defined(CONFIG_USER_ONLY)
-static void tlb_protect_code(CPUState *env, target_ulong addr);
-static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr);
-
-static inline VirtPageDesc *virt_page_find_alloc(unsigned int index)
-{
- VirtPageDesc **lp, *p;
-
- /* XXX: should not truncate for 64 bit addresses */
-#if TARGET_LONG_BITS > 32
- index &= (L1_SIZE - 1);
#endif
- lp = &l1_virt_map[index >> L2_BITS];
- p = *lp;
- if (!p) {
+ lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
+ pd = *lp;
+ if (!pd) {
+ int i;
/* allocate if not found */
- p = qemu_malloc(sizeof(VirtPageDesc) * L2_SIZE);
- memset(p, 0, sizeof(VirtPageDesc) * L2_SIZE);
- *lp = p;
+ if (!alloc)
+ return NULL;
+ pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
+ *lp = pd;
+ for (i = 0; i < L2_SIZE; i++)
+ pd[i].phys_offset = IO_MEM_UNASSIGNED;
}
- return p + (index & (L2_SIZE - 1));
+ return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
}
-static inline VirtPageDesc *virt_page_find(unsigned int index)
+static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
{
- VirtPageDesc *p;
-
- p = l1_virt_map[index >> L2_BITS];
- if (!p)
- return 0;
- return p + (index & (L2_SIZE - 1));
+ return phys_page_find_alloc(index, 0);
}
-static void virt_page_flush(void)
-{
- int i, j;
- VirtPageDesc *p;
-
- virt_valid_tag++;
-
- if (virt_valid_tag == 0) {
- virt_valid_tag = 1;
- for(i = 0; i < L1_SIZE; i++) {
- p = l1_virt_map[i];
- if (p) {
- for(j = 0; j < L2_SIZE; j++)
- p[j].valid_tag = 0;
- }
- }
- }
-}
-#else
-static void virt_page_flush(void)
-{
-}
+#if !defined(CONFIG_USER_ONLY)
+static void tlb_protect_code(ram_addr_t ram_addr);
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+ target_ulong vaddr);
#endif
-void cpu_exec_init(void)
+void cpu_exec_init(CPUState *env)
{
+ CPUState **penv;
+ int cpu_index;
+
if (!code_gen_ptr) {
+ cpu_gen_init();
code_gen_ptr = code_gen_buffer;
page_init();
io_mem_init();
}
+ env->next_cpu = NULL;
+ penv = &first_cpu;
+ cpu_index = 0;
+ while (*penv != NULL) {
+ penv = (CPUState **)&(*penv)->next_cpu;
+ cpu_index++;
+ }
+ env->cpu_index = cpu_index;
+ env->nb_watchpoints = 0;
+ *penv = env;
}
static inline void invalidate_page_bitmap(PageDesc *p)
/* flush all the translation blocks */
/* XXX: tb_flush is currently not thread safe */
-void tb_flush(CPUState *env)
+void tb_flush(CPUState *env1)
{
+ CPUState *env;
#if defined(DEBUG_FLUSH)
- printf("qemu: flush code_size=%d nb_tbs=%d avg_tb_size=%d\n",
- code_gen_ptr - code_gen_buffer,
- nb_tbs,
- nb_tbs > 0 ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0);
+ printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
+ (unsigned long)(code_gen_ptr - code_gen_buffer),
+ nb_tbs, nb_tbs > 0 ?
+ ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
#endif
nb_tbs = 0;
- memset (tb_hash, 0, CODE_GEN_HASH_SIZE * sizeof (void *));
- virt_page_flush();
+
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+ }
memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
page_flush_tb();
#ifdef DEBUG_TB_CHECK
-static void tb_invalidate_check(unsigned long address)
+static void tb_invalidate_check(target_ulong address)
{
TranslationBlock *tb;
int i;
address &= TARGET_PAGE_MASK;
- for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
- for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
+ for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
address >= tb->pc + tb->size)) {
printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
- address, tb->pc, tb->size);
+ address, (long)tb->pc, tb->size);
}
}
}
{
TranslationBlock *tb;
int i, flags1, flags2;
-
- for(i = 0;i < CODE_GEN_HASH_SIZE; i++) {
- for(tb = tb_hash[i]; tb != NULL; tb = tb->hash_next) {
+
+ for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
+ for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
flags1 = page_get_flags(tb->pc);
flags2 = page_get_flags(tb->pc + tb->size - 1);
if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
- tb->pc, tb->size, flags1, flags2);
+ (long)tb->pc, tb->size, flags1, flags2);
}
}
}
tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
}
-static inline void tb_invalidate(TranslationBlock *tb)
+static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
{
+ CPUState *env;
+ PageDesc *p;
unsigned int h, n1;
- TranslationBlock *tb1, *tb2, **ptb;
-
+ target_ulong phys_pc;
+ TranslationBlock *tb1, *tb2;
+
+ /* remove the TB from the hash list */
+ phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
+ h = tb_phys_hash_func(phys_pc);
+ tb_remove(&tb_phys_hash[h], tb,
+ offsetof(TranslationBlock, phys_hash_next));
+
+ /* remove the TB from the page list */
+ if (tb->page_addr[0] != page_addr) {
+ p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+ if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
+ p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
+ tb_page_remove(&p->first_tb, tb);
+ invalidate_page_bitmap(p);
+ }
+
tb_invalidated_flag = 1;
/* remove the TB from the hash list */
- h = tb_hash_func(tb->pc);
- ptb = &tb_hash[h];
- for(;;) {
- tb1 = *ptb;
- /* NOTE: the TB is not necessarily linked in the hash. It
- indicates that it is not currently used */
- if (tb1 == NULL)
- return;
- if (tb1 == tb) {
- *ptb = tb1->hash_next;
- break;
- }
- ptb = &tb1->hash_next;
+ h = tb_jmp_cache_hash_func(tb->pc);
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ if (env->tb_jmp_cache[h] == tb)
+ env->tb_jmp_cache[h] = NULL;
}
/* suppress this TB from the two jump lists */
tb1 = tb2;
}
tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
-}
-
-static inline void tb_phys_invalidate(TranslationBlock *tb, unsigned int page_addr)
-{
- PageDesc *p;
- unsigned int h;
- target_ulong phys_pc;
-
- /* remove the TB from the hash list */
- phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
- h = tb_phys_hash_func(phys_pc);
- tb_remove(&tb_phys_hash[h], tb,
- offsetof(TranslationBlock, phys_hash_next));
-
- /* remove the TB from the page list */
- if (tb->page_addr[0] != page_addr) {
- p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
- tb_page_remove(&p->first_tb, tb);
- invalidate_page_bitmap(p);
- }
- if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
- p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
- tb_page_remove(&p->first_tb, tb);
- invalidate_page_bitmap(p);
- }
- tb_invalidate(tb);
tb_phys_invalidate_count++;
}
{
int n, tb_start, tb_end;
TranslationBlock *tb;
-
+
p->code_bitmap = qemu_malloc(TARGET_PAGE_SIZE / 8);
if (!p->code_bitmap)
return;
#ifdef TARGET_HAS_PRECISE_SMC
-static void tb_gen_code(CPUState *env,
+static void tb_gen_code(CPUState *env,
target_ulong pc, target_ulong cs_base, int flags,
int cflags)
{
tb->cs_base = cs_base;
tb->flags = flags;
tb->cflags = cflags;
- cpu_gen_code(env, tb, CODE_GEN_MAX_SIZE, &code_gen_size);
+ cpu_gen_code(env, tb, &code_gen_size);
code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
-
+
/* check next page if needed */
virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
phys_page2 = -1;
tb_link_phys(tb, phys_pc, phys_page2);
}
#endif
-
+
/* invalidate all TBs which intersect with the target physical page
starting in range [start;end[. NOTE: start and end must refer to
the same physical page. 'is_cpu_write_access' should be true if called
from a real cpu write access: the virtual CPU will exit the current
TB if code is modified inside this TB. */
-void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
+void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
int is_cpu_write_access)
{
int n, current_tb_modified, current_tb_not_found, current_flags;
target_ulong current_pc, current_cs_base;
p = page_find(start >> TARGET_PAGE_BITS);
- if (!p)
+ if (!p)
return;
- if (!p->code_bitmap &&
+ if (!p->code_bitmap &&
++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
is_cpu_write_access) {
/* build code bitmap */
that the modification is after the current PC, but it
would require a specialized function to partially
restore the CPU state */
-
+
current_tb_modified = 1;
- cpu_restore_state(current_tb, env,
+ cpu_restore_state(current_tb, env,
env->mem_write_pc, NULL);
#if defined(TARGET_I386)
current_flags = env->hflags;
#endif
}
#endif /* TARGET_HAS_PRECISE_SMC */
- saved_tb = env->current_tb;
- env->current_tb = NULL;
+ /* we need to do that to handle the case where a signal
+ occurs while doing tb_phys_invalidate() */
+ saved_tb = NULL;
+ if (env) {
+ saved_tb = env->current_tb;
+ env->current_tb = NULL;
+ }
tb_phys_invalidate(tb, -1);
- env->current_tb = saved_tb;
- if (env->interrupt_request && env->current_tb)
- cpu_interrupt(env, env->interrupt_request);
+ if (env) {
+ env->current_tb = saved_tb;
+ if (env->interrupt_request && env->current_tb)
+ cpu_interrupt(env, env->interrupt_request);
+ }
}
tb = tb_next;
}
modifying the memory. It will ensure that it cannot modify
itself */
env->current_tb = NULL;
- tb_gen_code(env, current_pc, current_cs_base, current_flags,
+ tb_gen_code(env, current_pc, current_cs_base, current_flags,
CF_SINGLE_INSN);
cpu_resume_from_signal(env, NULL);
}
#if 0
if (1) {
if (loglevel) {
- fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
- cpu_single_env->mem_write_vaddr, len,
- cpu_single_env->eip,
+ fprintf(logfile, "modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
+ cpu_single_env->mem_write_vaddr, len,
+ cpu_single_env->eip,
cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
}
}
#endif
p = page_find(start >> TARGET_PAGE_BITS);
- if (!p)
+ if (!p)
return;
if (p->code_bitmap) {
offset = start & ~TARGET_PAGE_MASK;
}
#if !defined(CONFIG_SOFTMMU)
-static void tb_invalidate_phys_page(target_ulong addr,
+static void tb_invalidate_phys_page(target_ulong addr,
unsigned long pc, void *puc)
{
int n, current_flags, current_tb_modified;
addr &= TARGET_PAGE_MASK;
p = page_find(addr >> TARGET_PAGE_BITS);
- if (!p)
+ if (!p)
return;
tb = p->first_tb;
current_tb_modified = 0;
that the modification is after the current PC, but it
would require a specialized function to partially
restore the CPU state */
-
+
current_tb_modified = 1;
cpu_restore_state(current_tb, env, pc, puc);
#if defined(TARGET_I386)
modifying the memory. It will ensure that it cannot modify
itself */
env->current_tb = NULL;
- tb_gen_code(env, current_pc, current_cs_base, current_flags,
+ tb_gen_code(env, current_pc, current_cs_base, current_flags,
CF_SINGLE_INSN);
cpu_resume_from_signal(env, puc);
}
#endif
/* add the tb in the target page and protect it if necessary */
-static inline void tb_alloc_page(TranslationBlock *tb,
- unsigned int n, unsigned int page_addr)
+static inline void tb_alloc_page(TranslationBlock *tb,
+ unsigned int n, target_ulong page_addr)
{
PageDesc *p;
TranslationBlock *last_first_tb;
tb->page_addr[n] = page_addr;
- p = page_find(page_addr >> TARGET_PAGE_BITS);
+ p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
tb->page_next[n] = p->first_tb;
last_first_tb = p->first_tb;
p->first_tb = (TranslationBlock *)((long)tb | n);
#if defined(CONFIG_USER_ONLY)
if (p->flags & PAGE_WRITE) {
- unsigned long host_start, host_end, addr;
+ target_ulong addr;
+ PageDesc *p2;
int prot;
/* force the host page as non writable (writes will have a
page fault + mprotect overhead) */
- host_start = page_addr & qemu_host_page_mask;
- host_end = host_start + qemu_host_page_size;
+ page_addr &= qemu_host_page_mask;
prot = 0;
- for(addr = host_start; addr < host_end; addr += TARGET_PAGE_SIZE)
- prot |= page_get_flags(addr);
- mprotect((void *)host_start, qemu_host_page_size,
+ for(addr = page_addr; addr < page_addr + qemu_host_page_size;
+ addr += TARGET_PAGE_SIZE) {
+
+ p2 = page_find (addr >> TARGET_PAGE_BITS);
+ if (!p2)
+ continue;
+ prot |= p2->flags;
+ p2->flags &= ~PAGE_WRITE;
+ page_get_flags(addr);
+ }
+ mprotect(g2h(page_addr), qemu_host_page_size,
(prot & PAGE_BITS) & ~PAGE_WRITE);
#ifdef DEBUG_TB_INVALIDATE
- printf("protecting code page: 0x%08lx\n",
- host_start);
+ printf("protecting code page: 0x" TARGET_FMT_lx "\n",
+ page_addr);
#endif
- p->flags &= ~PAGE_WRITE;
}
#else
/* if some code is already present, then the pages are already
protected. So we handle the case where only the first TB is
allocated in a physical page */
if (!last_first_tb) {
- target_ulong virt_addr;
-
- virt_addr = (tb->pc & TARGET_PAGE_MASK) + (n << TARGET_PAGE_BITS);
- tlb_protect_code(cpu_single_env, virt_addr);
+ tlb_protect_code(page_addr);
}
#endif
{
TranslationBlock *tb;
- if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
+ if (nb_tbs >= CODE_GEN_MAX_BLOCKS ||
(code_gen_ptr - code_gen_buffer) >= CODE_GEN_BUFFER_MAX_SIZE)
return NULL;
tb = &tbs[nb_tbs++];
/* add a new TB and link it to the physical page tables. phys_page2 is
(-1) to indicate that only one page contains the TB. */
-void tb_link_phys(TranslationBlock *tb,
+void tb_link_phys(TranslationBlock *tb,
target_ulong phys_pc, target_ulong phys_page2)
{
unsigned int h;
tb_alloc_page(tb, 1, phys_page2);
else
tb->page_addr[1] = -1;
-#ifdef DEBUG_TB_CHECK
- tb_page_check();
-#endif
-}
-
-/* link the tb with the other TBs */
-void tb_link(TranslationBlock *tb)
-{
-#if !defined(CONFIG_USER_ONLY)
- {
- VirtPageDesc *vp;
- target_ulong addr;
-
- /* save the code memory mappings (needed to invalidate the code) */
- addr = tb->pc & TARGET_PAGE_MASK;
- vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
-#ifdef DEBUG_TLB_CHECK
- if (vp->valid_tag == virt_valid_tag &&
- vp->phys_addr != tb->page_addr[0]) {
- printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
- addr, tb->page_addr[0], vp->phys_addr);
- }
-#endif
- vp->phys_addr = tb->page_addr[0];
- if (vp->valid_tag != virt_valid_tag) {
- vp->valid_tag = virt_valid_tag;
-#if !defined(CONFIG_SOFTMMU)
- vp->prot = 0;
-#endif
- }
-
- if (tb->page_addr[1] != -1) {
- addr += TARGET_PAGE_SIZE;
- vp = virt_page_find_alloc(addr >> TARGET_PAGE_BITS);
-#ifdef DEBUG_TLB_CHECK
- if (vp->valid_tag == virt_valid_tag &&
- vp->phys_addr != tb->page_addr[1]) {
- printf("Error tb addr=0x%x phys=0x%x vp->phys_addr=0x%x\n",
- addr, tb->page_addr[1], vp->phys_addr);
- }
-#endif
- vp->phys_addr = tb->page_addr[1];
- if (vp->valid_tag != virt_valid_tag) {
- vp->valid_tag = virt_valid_tag;
-#if !defined(CONFIG_SOFTMMU)
- vp->prot = 0;
-#endif
- }
- }
- }
-#endif
tb->jmp_first = (TranslationBlock *)((long)tb | 2);
tb->jmp_next[0] = NULL;
tb->jmp_next[1] = NULL;
-#ifdef USE_CODE_COPY
- tb->cflags &= ~CF_FP_USED;
- if (tb->cflags & CF_TB_FP_USED)
- tb->cflags |= CF_FP_USED;
-#endif
/* init original jump addresses */
if (tb->tb_next_offset[0] != 0xffff)
tb_reset_jump(tb, 0);
if (tb->tb_next_offset[1] != 0xffff)
tb_reset_jump(tb, 1);
+
+#ifdef DEBUG_TB_CHECK
+ tb_page_check();
+#endif
}
/* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
} else {
m_min = m + 1;
}
- }
+ }
return &tbs[m_max];
}
}
*ptb = tb->jmp_next[n];
tb->jmp_next[n] = NULL;
-
+
/* suppress the jump to next tb in generated code */
tb_reset_jump(tb, n);
tb_reset_jump_recursive2(tb, 1);
}
-#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+#if defined(TARGET_HAS_ICE)
static void breakpoint_invalidate(CPUState *env, target_ulong pc)
{
- target_ulong phys_addr;
+ target_phys_addr_t addr;
+ target_ulong pd;
+ ram_addr_t ram_addr;
+ PhysPageDesc *p;
- phys_addr = cpu_get_phys_page_debug(env, pc);
- tb_invalidate_phys_page_range(phys_addr, phys_addr + 1, 0);
+ addr = cpu_get_phys_page_debug(env, pc);
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+ ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
+ tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
}
#endif
+/* Add a watchpoint. */
+int cpu_watchpoint_insert(CPUState *env, target_ulong addr)
+{
+ int i;
+
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (addr == env->watchpoint[i].vaddr)
+ return 0;
+ }
+ if (env->nb_watchpoints >= MAX_WATCHPOINTS)
+ return -1;
+
+ i = env->nb_watchpoints++;
+ env->watchpoint[i].vaddr = addr;
+ tlb_flush_page(env, addr);
+ /* FIXME: This flush is needed because of the hack to make memory ops
+ terminate the TB. It can be removed once the proper IO trap and
+ re-execute bits are in. */
+ tb_flush(env);
+ return i;
+}
+
+/* Remove a watchpoint. */
+int cpu_watchpoint_remove(CPUState *env, target_ulong addr)
+{
+ int i;
+
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (addr == env->watchpoint[i].vaddr) {
+ env->nb_watchpoints--;
+ env->watchpoint[i] = env->watchpoint[env->nb_watchpoints];
+ tlb_flush_page(env, addr);
+ return 0;
+ }
+ }
+ return -1;
+}
+
/* add a breakpoint. EXCP_DEBUG is returned by the CPU loop if a
breakpoint is reached */
int cpu_breakpoint_insert(CPUState *env, target_ulong pc)
{
-#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+#if defined(TARGET_HAS_ICE)
int i;
-
+
for(i = 0; i < env->nb_breakpoints; i++) {
if (env->breakpoints[i] == pc)
return 0;
if (env->nb_breakpoints >= MAX_BREAKPOINTS)
return -1;
env->breakpoints[env->nb_breakpoints++] = pc;
-
+
breakpoint_invalidate(env, pc);
return 0;
#else
/* remove a breakpoint */
int cpu_breakpoint_remove(CPUState *env, target_ulong pc)
{
-#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+#if defined(TARGET_HAS_ICE)
int i;
for(i = 0; i < env->nb_breakpoints; i++) {
if (env->breakpoints[i] == pc)
}
return -1;
found:
- memmove(&env->breakpoints[i], &env->breakpoints[i + 1],
- (env->nb_breakpoints - (i + 1)) * sizeof(env->breakpoints[0]));
env->nb_breakpoints--;
+ if (i < env->nb_breakpoints)
+ env->breakpoints[i] = env->breakpoints[env->nb_breakpoints];
breakpoint_invalidate(env, pc);
return 0;
CPU loop after each instruction */
void cpu_single_step(CPUState *env, int enabled)
{
-#if defined(TARGET_I386) || defined(TARGET_PPC) || defined(TARGET_SPARC)
+#if defined(TARGET_HAS_ICE)
if (env->singlestep_enabled != enabled) {
env->singlestep_enabled = enabled;
/* must flush all the translated code to avoid inconsistancies */
{
loglevel = log_flags;
if (loglevel && !logfile) {
- logfile = fopen(logfilename, "w");
+ logfile = fopen(logfilename, log_append ? "a" : "w");
if (!logfile) {
perror(logfilename);
_exit(1);
#else
setvbuf(logfile, NULL, _IOLBF, 0);
#endif
+ log_append = 1;
+ }
+ if (!loglevel && logfile) {
+ fclose(logfile);
+ logfile = NULL;
}
}
void cpu_set_log_filename(const char *filename)
{
logfilename = strdup(filename);
+ if (logfile) {
+ fclose(logfile);
+ logfile = NULL;
+ }
+ cpu_set_log(loglevel);
}
/* mask must never be zero, except for A20 change call */
}
CPULogItem cpu_log_items[] = {
- { CPU_LOG_TB_OUT_ASM, "out_asm",
+ { CPU_LOG_TB_OUT_ASM, "out_asm",
"show generated host assembly code for each compiled TB" },
{ CPU_LOG_TB_IN_ASM, "in_asm",
"show target assembly code for each compiled TB" },
- { CPU_LOG_TB_OP, "op",
- "show micro ops for each compiled TB (only usable if 'in_asm' used)" },
+ { CPU_LOG_TB_OP, "op",
+ "show micro ops for each compiled TB" },
#ifdef TARGET_I386
{ CPU_LOG_TB_OP_OPT, "op_opt",
- "show micro ops after optimization for each compiled TB" },
+ "show micro ops before eflags optimization" },
#endif
{ CPU_LOG_INT, "int",
"show interrupts/exceptions in short format" },
{ CPU_LOG_EXEC, "exec",
"show trace before each executed TB (lots of logs)" },
{ CPU_LOG_TB_CPU, "cpu",
- "show CPU state before bloc translation" },
+ "show CPU state before block translation" },
#ifdef TARGET_I386
{ CPU_LOG_PCALL, "pcall",
"show protected mode far calls/returns/exceptions" },
return 0;
return memcmp(s1, s2, n) == 0;
}
-
+
/* takes a comma separated list of log masks. Return 0 if error. */
int cpu_str_to_log_mask(const char *str)
{
void cpu_abort(CPUState *env, const char *fmt, ...)
{
va_list ap;
+ va_list ap2;
va_start(ap, fmt);
+ va_copy(ap2, ap);
fprintf(stderr, "qemu: fatal: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
#ifdef TARGET_I386
+ if(env->intercept & INTERCEPT_SVM_MASK) {
+ /* most probably the virtual machine should not
+ be shut down but rather caught by the VMM */
+ vmexit(SVM_EXIT_SHUTDOWN, 0);
+ }
cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
#else
cpu_dump_state(env, stderr, fprintf, 0);
#endif
+ if (logfile) {
+ fprintf(logfile, "qemu: fatal: ");
+ vfprintf(logfile, fmt, ap2);
+ fprintf(logfile, "\n");
+#ifdef TARGET_I386
+ cpu_dump_state(env, logfile, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
+#else
+ cpu_dump_state(env, logfile, fprintf, 0);
+#endif
+ fflush(logfile);
+ fclose(logfile);
+ }
+ va_end(ap2);
va_end(ap);
abort();
}
+CPUState *cpu_copy(CPUState *env)
+{
+ CPUState *new_env = cpu_init(env->cpu_model_str);
+ /* preserve chaining and index */
+ CPUState *next_cpu = new_env->next_cpu;
+ int cpu_index = new_env->cpu_index;
+ memcpy(new_env, env, sizeof(CPUState));
+ new_env->next_cpu = next_cpu;
+ new_env->cpu_index = cpu_index;
+ return new_env;
+}
+
#if !defined(CONFIG_USER_ONLY)
/* NOTE: if flush_global is true, also flush global entries (not
env->current_tb = NULL;
for(i = 0; i < CPU_TLB_SIZE; i++) {
- env->tlb_read[0][i].address = -1;
- env->tlb_write[0][i].address = -1;
- env->tlb_read[1][i].address = -1;
- env->tlb_write[1][i].address = -1;
+ env->tlb_table[0][i].addr_read = -1;
+ env->tlb_table[0][i].addr_write = -1;
+ env->tlb_table[0][i].addr_code = -1;
+ env->tlb_table[1][i].addr_read = -1;
+ env->tlb_table[1][i].addr_write = -1;
+ env->tlb_table[1][i].addr_code = -1;
+#if (NB_MMU_MODES >= 3)
+ env->tlb_table[2][i].addr_read = -1;
+ env->tlb_table[2][i].addr_write = -1;
+ env->tlb_table[2][i].addr_code = -1;
+#if (NB_MMU_MODES == 4)
+ env->tlb_table[3][i].addr_read = -1;
+ env->tlb_table[3][i].addr_write = -1;
+ env->tlb_table[3][i].addr_code = -1;
+#endif
+#endif
}
- virt_page_flush();
- memset (tb_hash, 0, CODE_GEN_HASH_SIZE * sizeof (void *));
+ memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
#if !defined(CONFIG_SOFTMMU)
munmap((void *)MMAP_AREA_START, MMAP_AREA_END - MMAP_AREA_START);
static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
{
- if (addr == (tlb_entry->address &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)))
- tlb_entry->address = -1;
+ if (addr == (tlb_entry->addr_read &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_write &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
+ addr == (tlb_entry->addr_code &
+ (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
+ tlb_entry->addr_read = -1;
+ tlb_entry->addr_write = -1;
+ tlb_entry->addr_code = -1;
+ }
}
void tlb_flush_page(CPUState *env, target_ulong addr)
{
- int i, n;
- VirtPageDesc *vp;
- PageDesc *p;
+ int i;
TranslationBlock *tb;
#if defined(DEBUG_TLB)
- printf("tlb_flush_page: 0x%08x\n", addr);
+ printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
#endif
/* must reset current TB so that interrupts cannot modify the
links while we are modifying them */
addr &= TARGET_PAGE_MASK;
i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- tlb_flush_entry(&env->tlb_read[0][i], addr);
- tlb_flush_entry(&env->tlb_write[0][i], addr);
- tlb_flush_entry(&env->tlb_read[1][i], addr);
- tlb_flush_entry(&env->tlb_write[1][i], addr);
-
- /* remove from the virtual pc hash table all the TB at this
- virtual address */
-
- vp = virt_page_find(addr >> TARGET_PAGE_BITS);
- if (vp && vp->valid_tag == virt_valid_tag) {
- p = page_find(vp->phys_addr >> TARGET_PAGE_BITS);
- if (p) {
- /* we remove all the links to the TBs in this virtual page */
- tb = p->first_tb;
- while (tb != NULL) {
- n = (long)tb & 3;
- tb = (TranslationBlock *)((long)tb & ~3);
- if ((tb->pc & TARGET_PAGE_MASK) == addr ||
- ((tb->pc + tb->size - 1) & TARGET_PAGE_MASK) == addr) {
- tb_invalidate(tb);
- }
- tb = tb->page_next[n];
- }
- }
- vp->valid_tag = 0;
- }
+ tlb_flush_entry(&env->tlb_table[0][i], addr);
+ tlb_flush_entry(&env->tlb_table[1][i], addr);
+#if (NB_MMU_MODES >= 3)
+ tlb_flush_entry(&env->tlb_table[2][i], addr);
+#if (NB_MMU_MODES == 4)
+ tlb_flush_entry(&env->tlb_table[3][i], addr);
+#endif
+#endif
+
+ /* Discard jump cache entries for any tb which might potentially
+ overlap the flushed page. */
+ i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
+ memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
+
+ i = tb_jmp_cache_hash_page(addr);
+ memset (&env->tb_jmp_cache[i], 0, TB_JMP_PAGE_SIZE * sizeof(tb));
#if !defined(CONFIG_SOFTMMU)
if (addr < MMAP_AREA_END)
#endif
}
-static inline void tlb_protect_code1(CPUTLBEntry *tlb_entry, target_ulong addr)
-{
- if (addr == (tlb_entry->address &
- (TARGET_PAGE_MASK | TLB_INVALID_MASK)) &&
- (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_CODE &&
- (tlb_entry->address & ~TARGET_PAGE_MASK) != IO_MEM_ROM) {
- tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_CODE;
- }
-}
-
/* update the TLBs so that writes to code in the virtual page 'addr'
can be detected */
-static void tlb_protect_code(CPUState *env, target_ulong addr)
-{
- int i;
-
- addr &= TARGET_PAGE_MASK;
- i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- tlb_protect_code1(&env->tlb_write[0][i], addr);
- tlb_protect_code1(&env->tlb_write[1][i], addr);
-#if !defined(CONFIG_SOFTMMU)
- /* NOTE: as we generated the code for this page, it is already at
- least readable */
- if (addr < MMAP_AREA_END)
- mprotect((void *)addr, TARGET_PAGE_SIZE, PROT_READ);
-#endif
-}
-
-static inline void tlb_unprotect_code2(CPUTLBEntry *tlb_entry,
- unsigned long phys_addr)
+static void tlb_protect_code(ram_addr_t ram_addr)
{
- if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_CODE &&
- ((tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend) == phys_addr) {
- tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
- }
+ cpu_physical_memory_reset_dirty(ram_addr,
+ ram_addr + TARGET_PAGE_SIZE,
+ CODE_DIRTY_FLAG);
}
/* update the TLB so that writes in physical page 'phys_addr' are no longer
- tested self modifying code */
-static void tlb_unprotect_code_phys(CPUState *env, unsigned long phys_addr, target_ulong vaddr)
+ tested for self modifying code */
+static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
+ target_ulong vaddr)
{
- int i;
-
- phys_addr &= TARGET_PAGE_MASK;
- phys_addr += (long)phys_ram_base;
- i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- tlb_unprotect_code2(&env->tlb_write[0][i], phys_addr);
- tlb_unprotect_code2(&env->tlb_write[1][i], phys_addr);
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
}
-static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
+static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
unsigned long start, unsigned long length)
{
unsigned long addr;
- if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
- addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
+ if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+ addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
if ((addr - start) < length) {
- tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
+ tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_NOTDIRTY;
}
}
}
-void cpu_physical_memory_reset_dirty(target_ulong start, target_ulong end,
+void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
int dirty_flags)
{
CPUState *env;
length = end - start;
if (length == 0)
return;
+ len = length >> TARGET_PAGE_BITS;
+#ifdef USE_KQEMU
+ /* XXX: should not depend on cpu context */
+ env = first_cpu;
+ if (env->kqemu_enabled) {
+ ram_addr_t addr;
+ addr = start;
+ for(i = 0; i < len; i++) {
+ kqemu_set_notdirty(env, addr);
+ addr += TARGET_PAGE_SIZE;
+ }
+ }
+#endif
mask = ~dirty_flags;
p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
- len = length >> TARGET_PAGE_BITS;
for(i = 0; i < len; i++)
p[i] &= mask;
- env = cpu_single_env;
/* we modify the TLB cache so that the dirty bit will be set again
when accessing the range */
start1 = start + (unsigned long)phys_ram_base;
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_reset_dirty_range(&env->tlb_write[0][i], start1, length);
- for(i = 0; i < CPU_TLB_SIZE; i++)
- tlb_reset_dirty_range(&env->tlb_write[1][i], start1, length);
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
+#if (NB_MMU_MODES >= 3)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
+#if (NB_MMU_MODES == 4)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
+#endif
+#endif
+ }
#if !defined(CONFIG_SOFTMMU)
/* XXX: this is expensive */
p->phys_addr >= start && p->phys_addr < end &&
(p->prot & PROT_WRITE)) {
if (addr < MMAP_AREA_END) {
- mprotect((void *)addr, TARGET_PAGE_SIZE,
+ mprotect((void *)addr, TARGET_PAGE_SIZE,
p->prot & ~PROT_WRITE);
}
}
#endif
}
-static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
- unsigned long start)
+static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
{
- unsigned long addr;
- if ((tlb_entry->address & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
- addr = (tlb_entry->address & TARGET_PAGE_MASK) + tlb_entry->addend;
+ ram_addr_t ram_addr;
+
+ if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
+ ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
+ tlb_entry->addend - (unsigned long)phys_ram_base;
+ if (!cpu_physical_memory_is_dirty(ram_addr)) {
+ tlb_entry->addr_write |= IO_MEM_NOTDIRTY;
+ }
+ }
+}
+
+/* update the TLB according to the current state of the dirty bits */
+void cpu_tlb_update_dirty(CPUState *env)
+{
+ int i;
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[0][i]);
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[1][i]);
+#if (NB_MMU_MODES >= 3)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[2][i]);
+#if (NB_MMU_MODES == 4)
+ for(i = 0; i < CPU_TLB_SIZE; i++)
+ tlb_update_dirty(&env->tlb_table[3][i]);
+#endif
+#endif
+}
+
+static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry,
+ unsigned long start)
+{
+ unsigned long addr;
+ if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_NOTDIRTY) {
+ addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
if (addr == start) {
- tlb_entry->address = (tlb_entry->address & TARGET_PAGE_MASK) | IO_MEM_RAM;
+ tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | IO_MEM_RAM;
}
}
}
/* update the TLB corresponding to virtual page vaddr and phys addr
addr so that it is no longer dirty */
-static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
+static inline void tlb_set_dirty(CPUState *env,
+ unsigned long addr, target_ulong vaddr)
{
- CPUState *env = cpu_single_env;
int i;
- phys_ram_dirty[(addr - (unsigned long)phys_ram_base) >> TARGET_PAGE_BITS] = 0xff;
-
addr &= TARGET_PAGE_MASK;
i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
- tlb_set_dirty1(&env->tlb_write[0][i], addr);
- tlb_set_dirty1(&env->tlb_write[1][i], addr);
+ tlb_set_dirty1(&env->tlb_table[0][i], addr);
+ tlb_set_dirty1(&env->tlb_table[1][i], addr);
+#if (NB_MMU_MODES >= 3)
+ tlb_set_dirty1(&env->tlb_table[2][i], addr);
+#if (NB_MMU_MODES == 4)
+ tlb_set_dirty1(&env->tlb_table[3][i], addr);
+#endif
+#endif
}
/* add a new TLB entry. At most one entry for a given virtual address
is permitted. Return 0 if OK or 2 if the page could not be mapped
(can only happen in non SOFTMMU mode for I/O pages or pages
conflicting with the host address space). */
-int tlb_set_page(CPUState *env, target_ulong vaddr,
- target_phys_addr_t paddr, int prot,
- int is_user, int is_softmmu)
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, int is_softmmu)
{
PhysPageDesc *p;
unsigned long pd;
- TranslationBlock *first_tb;
unsigned int index;
target_ulong address;
- unsigned long addend;
+ target_phys_addr_t addend;
int ret;
+ CPUTLBEntry *te;
+ int i;
p = phys_page_find(paddr >> TARGET_PAGE_BITS);
- first_tb = NULL;
if (!p) {
pd = IO_MEM_UNASSIGNED;
} else {
- PageDesc *p1;
pd = p->phys_offset;
- if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
- /* NOTE: we also allocate the page at this stage */
- p1 = page_find_alloc(pd >> TARGET_PAGE_BITS);
- first_tb = p1->first_tb;
- }
}
#if defined(DEBUG_TLB)
- printf("tlb_set_page: vaddr=0x%08x paddr=0x%08x prot=%x u=%d c=%d smmu=%d pd=0x%08x\n",
- vaddr, paddr, prot, is_user, (first_tb != NULL), is_softmmu, pd);
+ printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
+ vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
#endif
ret = 0;
#if !defined(CONFIG_SOFTMMU)
- if (is_softmmu)
+ if (is_softmmu)
#endif
{
- if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM) {
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
/* IO memory case */
address = vaddr | pd;
addend = paddr;
address = vaddr;
addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
}
-
- index = (vaddr >> 12) & (CPU_TLB_SIZE - 1);
+
+ /* Make accesses to pages with watchpoints go via the
+ watchpoint trap routines. */
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ if (vaddr == (env->watchpoint[i].vaddr & TARGET_PAGE_MASK)) {
+ if (address & ~TARGET_PAGE_MASK) {
+ env->watchpoint[i].addend = 0;
+ address = vaddr | io_mem_watch;
+ } else {
+ env->watchpoint[i].addend = pd - paddr +
+ (unsigned long) phys_ram_base;
+ /* TODO: Figure out how to make read watchpoints coexist
+ with code. */
+ pd = (pd & TARGET_PAGE_MASK) | io_mem_watch | IO_MEM_ROMD;
+ }
+ }
+ }
+
+ index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
addend -= vaddr;
+ te = &env->tlb_table[mmu_idx][index];
+ te->addend = addend;
if (prot & PAGE_READ) {
- env->tlb_read[is_user][index].address = address;
- env->tlb_read[is_user][index].addend = addend;
+ te->addr_read = address;
} else {
- env->tlb_read[is_user][index].address = -1;
- env->tlb_read[is_user][index].addend = -1;
+ te->addr_read = -1;
+ }
+ if (prot & PAGE_EXEC) {
+ te->addr_code = address;
+ } else {
+ te->addr_code = -1;
}
if (prot & PAGE_WRITE) {
- if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM) {
- /* ROM: access is ignored (same as unassigned) */
- env->tlb_write[is_user][index].address = vaddr | IO_MEM_ROM;
- env->tlb_write[is_user][index].addend = addend;
- } else
- /* XXX: the PowerPC code seems not ready to handle
- self modifying code with DCBI */
-#if defined(TARGET_HAS_SMC) || 1
- if (first_tb) {
- /* if code is present, we use a specific memory
- handler. It works only for physical memory access */
- env->tlb_write[is_user][index].address = vaddr | IO_MEM_CODE;
- env->tlb_write[is_user][index].addend = addend;
- } else
-#endif
- if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
+ (pd & IO_MEM_ROMD)) {
+ /* write access calls the I/O callback */
+ te->addr_write = vaddr |
+ (pd & ~(TARGET_PAGE_MASK | IO_MEM_ROMD));
+ } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
!cpu_physical_memory_is_dirty(pd)) {
- env->tlb_write[is_user][index].address = vaddr | IO_MEM_NOTDIRTY;
- env->tlb_write[is_user][index].addend = addend;
+ te->addr_write = vaddr | IO_MEM_NOTDIRTY;
} else {
- env->tlb_write[is_user][index].address = address;
- env->tlb_write[is_user][index].addend = addend;
+ te->addr_write = address;
}
} else {
- env->tlb_write[is_user][index].address = -1;
- env->tlb_write[is_user][index].addend = -1;
+ te->addr_write = -1;
}
}
#if !defined(CONFIG_SOFTMMU)
ret = 2;
} else {
if (prot & PROT_WRITE) {
- if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
+ if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
#if defined(TARGET_HAS_SMC) || 1
first_tb ||
#endif
- ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
+ ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
!cpu_physical_memory_is_dirty(pd))) {
/* ROM: we do as if code was inside */
/* if code is present, we only map as read only and save the
original mapping */
VirtPageDesc *vp;
-
- vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS);
+
+ vp = virt_page_find_alloc(vaddr >> TARGET_PAGE_BITS, 1);
vp->phys_addr = pd;
vp->prot = prot;
vp->valid_tag = virt_valid_tag;
prot &= ~PAGE_WRITE;
}
}
- map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
+ map_addr = mmap((void *)vaddr, TARGET_PAGE_SIZE, prot,
MAP_SHARED | MAP_FIXED, phys_ram_fd, (pd & TARGET_PAGE_MASK));
if (map_addr == MAP_FAILED) {
cpu_abort(env, "mmap failed when mapped physical address 0x%08x to virtual address 0x%08x\n",
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */
-int page_unprotect(unsigned long addr, unsigned long pc, void *puc)
+int page_unprotect(target_ulong addr, unsigned long pc, void *puc)
{
#if !defined(CONFIG_SOFTMMU)
VirtPageDesc *vp;
if (!(vp->prot & PAGE_WRITE))
return 0;
#if defined(DEBUG_TLB)
- printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
+ printf("page_unprotect: addr=0x%08x phys_addr=0x%08x prot=%x\n",
addr, vp->phys_addr, vp->prot);
#endif
if (mprotect((void *)addr, TARGET_PAGE_SIZE, vp->prot) < 0)
{
}
-int tlb_set_page(CPUState *env, target_ulong vaddr,
- target_phys_addr_t paddr, int prot,
- int is_user, int is_softmmu)
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, int is_softmmu)
{
return 0;
}
end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
if (start != -1) {
fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
- start, end, end - start,
+ start, end, end - start,
prot & PAGE_READ ? 'r' : '-',
prot & PAGE_WRITE ? 'w' : '-',
prot & PAGE_EXEC ? 'x' : '-');
}
}
-int page_get_flags(unsigned long address)
+int page_get_flags(target_ulong address)
{
PageDesc *p;
/* modify the flags of a page and invalidate the code if
necessary. The flag PAGE_WRITE_ORG is positionned automatically
depending on PAGE_WRITE */
-void page_set_flags(unsigned long start, unsigned long end, int flags)
+void page_set_flags(target_ulong start, target_ulong end, int flags)
{
PageDesc *p;
- unsigned long addr;
+ target_ulong addr;
start = start & TARGET_PAGE_MASK;
end = TARGET_PAGE_ALIGN(end);
p = page_find_alloc(addr >> TARGET_PAGE_BITS);
/* if the write protection is set, then we invalidate the code
inside */
- if (!(p->flags & PAGE_WRITE) &&
+ if (!(p->flags & PAGE_WRITE) &&
(flags & PAGE_WRITE) &&
p->first_tb) {
tb_invalidate_phys_page(addr, 0, NULL);
spin_unlock(&tb_lock);
}
+int page_check_range(target_ulong start, target_ulong len, int flags)
+{
+ PageDesc *p;
+ target_ulong end;
+ target_ulong addr;
+
+ end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
+ start = start & TARGET_PAGE_MASK;
+
+ if( end < start )
+ /* we've wrapped around */
+ return -1;
+ for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
+ p = page_find(addr >> TARGET_PAGE_BITS);
+ if( !p )
+ return -1;
+ if( !(p->flags & PAGE_VALID) )
+ return -1;
+
+ if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
+ return -1;
+ if (flags & PAGE_WRITE) {
+ if (!(p->flags & PAGE_WRITE_ORG))
+ return -1;
+ /* unprotect the page if it was put read-only because it
+ contains translated code */
+ if (!(p->flags & PAGE_WRITE)) {
+ if (!page_unprotect(addr, 0, NULL))
+ return -1;
+ }
+ return 0;
+ }
+ }
+ return 0;
+}
+
/* called from signal handler: invalidate the code and unprotect the
page. Return TRUE if the fault was succesfully handled. */
-int page_unprotect(unsigned long address, unsigned long pc, void *puc)
+int page_unprotect(target_ulong address, unsigned long pc, void *puc)
{
unsigned int page_index, prot, pindex;
PageDesc *p, *p1;
- unsigned long host_start, host_end, addr;
+ target_ulong host_start, host_end, addr;
host_start = address & qemu_host_page_mask;
page_index = host_start >> TARGET_PAGE_BITS;
if (prot & PAGE_WRITE_ORG) {
pindex = (address - host_start) >> TARGET_PAGE_BITS;
if (!(p1[pindex].flags & PAGE_WRITE)) {
- mprotect((void *)host_start, qemu_host_page_size,
+ mprotect((void *)g2h(host_start), qemu_host_page_size,
(prot & PAGE_BITS) | PAGE_WRITE);
p1[pindex].flags |= PAGE_WRITE;
/* and since the content will be modified, we must invalidate
return 0;
}
-/* call this function when system calls directly modify a memory area */
-void page_unprotect_range(uint8_t *data, unsigned long data_size)
-{
- unsigned long start, end, addr;
-
- start = (unsigned long)data;
- end = start + data_size;
- start &= TARGET_PAGE_MASK;
- end = TARGET_PAGE_ALIGN(end);
- for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
- page_unprotect(addr, 0, NULL);
- }
-}
-
-static inline void tlb_set_dirty(unsigned long addr, target_ulong vaddr)
+static inline void tlb_set_dirty(CPUState *env,
+ unsigned long addr, target_ulong vaddr)
{
}
#endif /* defined(CONFIG_USER_ONLY) */
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ int memory);
+static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
+ int orig_memory);
+#define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
+ need_subpage) \
+ do { \
+ if (addr > start_addr) \
+ start_addr2 = 0; \
+ else { \
+ start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
+ if (start_addr2 > 0) \
+ need_subpage = 1; \
+ } \
+ \
+ if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
+ end_addr2 = TARGET_PAGE_SIZE - 1; \
+ else { \
+ end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
+ if (end_addr2 < TARGET_PAGE_SIZE - 1) \
+ need_subpage = 1; \
+ } \
+ } while (0)
+
/* register physical memory. 'size' must be a multiple of the target
page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
io memory page */
-void cpu_register_physical_memory(target_phys_addr_t start_addr,
+void cpu_register_physical_memory(target_phys_addr_t start_addr,
unsigned long size,
unsigned long phys_offset)
{
- unsigned long addr, end_addr;
+ target_phys_addr_t addr, end_addr;
PhysPageDesc *p;
+ CPUState *env;
+ unsigned long orig_size = size;
+ void *subpage;
size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
- end_addr = start_addr + size;
+ end_addr = start_addr + (target_phys_addr_t)size;
for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
- p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS);
- p->phys_offset = phys_offset;
- if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM)
- phys_offset += TARGET_PAGE_SIZE;
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
+ unsigned long orig_memory = p->phys_offset;
+ target_phys_addr_t start_addr2, end_addr2;
+ int need_subpage = 0;
+
+ CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
+ need_subpage);
+ if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
+ if (!(orig_memory & IO_MEM_SUBPAGE)) {
+ subpage = subpage_init((addr & TARGET_PAGE_MASK),
+ &p->phys_offset, orig_memory);
+ } else {
+ subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
+ >> IO_MEM_SHIFT];
+ }
+ subpage_register(subpage, start_addr2, end_addr2, phys_offset);
+ } else {
+ p->phys_offset = phys_offset;
+ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+ (phys_offset & IO_MEM_ROMD))
+ phys_offset += TARGET_PAGE_SIZE;
+ }
+ } else {
+ p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
+ p->phys_offset = phys_offset;
+ if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
+ (phys_offset & IO_MEM_ROMD))
+ phys_offset += TARGET_PAGE_SIZE;
+ else {
+ target_phys_addr_t start_addr2, end_addr2;
+ int need_subpage = 0;
+
+ CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
+ end_addr2, need_subpage);
+
+ if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
+ subpage = subpage_init((addr & TARGET_PAGE_MASK),
+ &p->phys_offset, IO_MEM_UNASSIGNED);
+ subpage_register(subpage, start_addr2, end_addr2,
+ phys_offset);
+ }
+ }
+ }
+ }
+
+ /* since each CPU stores ram addresses in its TLB cache, we must
+ reset the modified entries */
+ /* XXX: slow ! */
+ for(env = first_cpu; env != NULL; env = env->next_cpu) {
+ tlb_flush(env, 1);
+ }
+}
+
+/* XXX: temporary until new memory mapping API */
+uint32_t cpu_get_physical_page_desc(target_phys_addr_t addr)
+{
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p)
+ return IO_MEM_UNASSIGNED;
+ return p->phys_offset;
+}
+
+/* XXX: better than nothing */
+ram_addr_t qemu_ram_alloc(unsigned int size)
+{
+ ram_addr_t addr;
+ if ((phys_ram_alloc_offset + size) >= phys_ram_size) {
+ fprintf(stderr, "Not enough memory (requested_size = %u, max memory = %d)\n",
+ size, phys_ram_size);
+ abort();
}
+ addr = phys_ram_alloc_offset;
+ phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
+ return addr;
+}
+
+void qemu_ram_free(ram_addr_t addr)
+{
}
static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
+#endif
+#ifdef TARGET_SPARC
+ do_unassigned_access(addr, 0, 0, 0);
+#elif TARGET_CRIS
+ do_unassigned_access(addr, 0, 0, 0);
+#endif
return 0;
}
static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
+#ifdef DEBUG_UNASSIGNED
+ printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
+#endif
+#ifdef TARGET_SPARC
+ do_unassigned_access(addr, 1, 0, 0);
+#elif TARGET_CRIS
+ do_unassigned_access(addr, 1, 0, 0);
+#endif
}
static CPUReadMemoryFunc *unassigned_mem_read[3] = {
unassigned_mem_writeb,
};
-/* self modifying code support in soft mmu mode : writing to a page
- containing code comes to these functions */
-
-static void code_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
{
- unsigned long phys_addr;
-
- phys_addr = addr - (unsigned long)phys_ram_base;
+ unsigned long ram_addr;
+ int dirty_flags;
+ ram_addr = addr - (unsigned long)phys_ram_base;
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
- tb_invalidate_phys_page_fast(phys_addr, 1);
+ tb_invalidate_phys_page_fast(ram_addr, 1);
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
#endif
+ }
stb_p((uint8_t *)(long)addr, val);
- phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 0xff;
+#ifdef USE_KQEMU
+ if (cpu_single_env->kqemu_enabled &&
+ (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+ kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
}
-static void code_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
{
- unsigned long phys_addr;
-
- phys_addr = addr - (unsigned long)phys_ram_base;
+ unsigned long ram_addr;
+ int dirty_flags;
+ ram_addr = addr - (unsigned long)phys_ram_base;
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
- tb_invalidate_phys_page_fast(phys_addr, 2);
+ tb_invalidate_phys_page_fast(ram_addr, 2);
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
#endif
+ }
stw_p((uint8_t *)(long)addr, val);
- phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 0xff;
+#ifdef USE_KQEMU
+ if (cpu_single_env->kqemu_enabled &&
+ (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+ kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
}
-static void code_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
{
- unsigned long phys_addr;
-
- phys_addr = addr - (unsigned long)phys_ram_base;
+ unsigned long ram_addr;
+ int dirty_flags;
+ ram_addr = addr - (unsigned long)phys_ram_base;
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
+ if (!(dirty_flags & CODE_DIRTY_FLAG)) {
#if !defined(CONFIG_USER_ONLY)
- tb_invalidate_phys_page_fast(phys_addr, 4);
+ tb_invalidate_phys_page_fast(ram_addr, 4);
+ dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
#endif
+ }
stl_p((uint8_t *)(long)addr, val);
- phys_ram_dirty[phys_addr >> TARGET_PAGE_BITS] = 0xff;
+#ifdef USE_KQEMU
+ if (cpu_single_env->kqemu_enabled &&
+ (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
+ kqemu_modify_page(cpu_single_env, ram_addr);
+#endif
+ dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
+ phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
+ /* we remove the notdirty callback only if the code has been
+ flushed */
+ if (dirty_flags == 0xff)
+ tlb_set_dirty(cpu_single_env, addr, cpu_single_env->mem_write_vaddr);
}
-static CPUReadMemoryFunc *code_mem_read[3] = {
+static CPUReadMemoryFunc *error_mem_read[3] = {
NULL, /* never used */
NULL, /* never used */
NULL, /* never used */
};
-static CPUWriteMemoryFunc *code_mem_write[3] = {
- code_mem_writeb,
- code_mem_writew,
- code_mem_writel,
+static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
+ notdirty_mem_writeb,
+ notdirty_mem_writew,
+ notdirty_mem_writel,
};
-static void notdirty_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
+#if defined(CONFIG_SOFTMMU)
+/* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
+ so these check for a hit then pass through to the normal out-of-line
+ phys routines. */
+static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
{
- stb_p((uint8_t *)(long)addr, val);
- tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
+ return ldub_phys(addr);
}
-static void notdirty_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
+static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
{
- stw_p((uint8_t *)(long)addr, val);
- tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
+ return lduw_phys(addr);
}
-static void notdirty_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
+static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
{
- stl_p((uint8_t *)(long)addr, val);
- tlb_set_dirty(addr, cpu_single_env->mem_write_vaddr);
+ return ldl_phys(addr);
}
-static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
- notdirty_mem_writeb,
- notdirty_mem_writew,
- notdirty_mem_writel,
+/* Generate a debug exception if a watchpoint has been hit.
+ Returns the real physical address of the access. addr will be a host
+ address in case of a RAM location. */
+static target_ulong check_watchpoint(target_phys_addr_t addr)
+{
+ CPUState *env = cpu_single_env;
+ target_ulong watch;
+ target_ulong retaddr;
+ int i;
+
+ retaddr = addr;
+ for (i = 0; i < env->nb_watchpoints; i++) {
+ watch = env->watchpoint[i].vaddr;
+ if (((env->mem_write_vaddr ^ watch) & TARGET_PAGE_MASK) == 0) {
+ retaddr = addr - env->watchpoint[i].addend;
+ if (((addr ^ watch) & ~TARGET_PAGE_MASK) == 0) {
+ cpu_single_env->watchpoint_hit = i + 1;
+ cpu_interrupt(cpu_single_env, CPU_INTERRUPT_DEBUG);
+ break;
+ }
+ }
+ }
+ return retaddr;
+}
+
+static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ addr = check_watchpoint(addr);
+ stb_phys(addr, val);
+}
+
+static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ addr = check_watchpoint(addr);
+ stw_phys(addr, val);
+}
+
+static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
+ uint32_t val)
+{
+ addr = check_watchpoint(addr);
+ stl_phys(addr, val);
+}
+
+static CPUReadMemoryFunc *watch_mem_read[3] = {
+ watch_mem_readb,
+ watch_mem_readw,
+ watch_mem_readl,
+};
+
+static CPUWriteMemoryFunc *watch_mem_write[3] = {
+ watch_mem_writeb,
+ watch_mem_writew,
+ watch_mem_writel,
};
+#endif
+
+static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
+ unsigned int len)
+{
+ uint32_t ret;
+ unsigned int idx;
+
+ idx = SUBPAGE_IDX(addr - mmio->base);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
+ mmio, len, addr, idx);
+#endif
+ ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len], addr);
+
+ return ret;
+}
+
+static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
+ uint32_t value, unsigned int len)
+{
+ unsigned int idx;
+
+ idx = SUBPAGE_IDX(addr - mmio->base);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
+ mmio, len, addr, idx, value);
+#endif
+ (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len], addr, value);
+}
+
+static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+ return subpage_readlen(opaque, addr, 0);
+}
+
+static void subpage_writeb (void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+ subpage_writelen(opaque, addr, value, 0);
+}
+
+static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+ return subpage_readlen(opaque, addr, 1);
+}
+
+static void subpage_writew (void *opaque, target_phys_addr_t addr,
+ uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+ subpage_writelen(opaque, addr, value, 1);
+}
+
+static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
+#endif
+
+ return subpage_readlen(opaque, addr, 2);
+}
+
+static void subpage_writel (void *opaque,
+ target_phys_addr_t addr, uint32_t value)
+{
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
+#endif
+ subpage_writelen(opaque, addr, value, 2);
+}
+
+static CPUReadMemoryFunc *subpage_read[] = {
+ &subpage_readb,
+ &subpage_readw,
+ &subpage_readl,
+};
+
+static CPUWriteMemoryFunc *subpage_write[] = {
+ &subpage_writeb,
+ &subpage_writew,
+ &subpage_writel,
+};
+
+static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
+ int memory)
+{
+ int idx, eidx;
+ unsigned int i;
+
+ if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
+ return -1;
+ idx = SUBPAGE_IDX(start);
+ eidx = SUBPAGE_IDX(end);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
+ mmio, start, end, idx, eidx, memory);
+#endif
+ memory >>= IO_MEM_SHIFT;
+ for (; idx <= eidx; idx++) {
+ for (i = 0; i < 4; i++) {
+ if (io_mem_read[memory][i]) {
+ mmio->mem_read[idx][i] = &io_mem_read[memory][i];
+ mmio->opaque[idx][0][i] = io_mem_opaque[memory];
+ }
+ if (io_mem_write[memory][i]) {
+ mmio->mem_write[idx][i] = &io_mem_write[memory][i];
+ mmio->opaque[idx][1][i] = io_mem_opaque[memory];
+ }
+ }
+ }
+
+ return 0;
+}
+
+static void *subpage_init (target_phys_addr_t base, uint32_t *phys,
+ int orig_memory)
+{
+ subpage_t *mmio;
+ int subpage_memory;
+
+ mmio = qemu_mallocz(sizeof(subpage_t));
+ if (mmio != NULL) {
+ mmio->base = base;
+ subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
+#if defined(DEBUG_SUBPAGE)
+ printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
+ mmio, base, TARGET_PAGE_SIZE, subpage_memory);
+#endif
+ *phys = subpage_memory | IO_MEM_SUBPAGE;
+ subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory);
+ }
+
+ return mmio;
+}
static void io_mem_init(void)
{
- cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, code_mem_read, unassigned_mem_write, NULL);
+ cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
- cpu_register_io_memory(IO_MEM_CODE >> IO_MEM_SHIFT, code_mem_read, code_mem_write, NULL);
- cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, code_mem_read, notdirty_mem_write, NULL);
+ cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
io_mem_nb = 5;
+#if defined(CONFIG_SOFTMMU)
+ io_mem_watch = cpu_register_io_memory(-1, watch_mem_read,
+ watch_mem_write, NULL);
+#endif
/* alloc dirty bits array */
phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
+ memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
}
/* mem_read and mem_write are arrays of functions containing the
function to access byte (index 0), word (index 1) and dword (index
- 2). All functions must be supplied. If io_index is non zero, the
- corresponding io zone is modified. If it is zero, a new io zone is
- allocated. The return value can be used with
- cpu_register_physical_memory(). (-1) is returned if error. */
+ 2). Functions can be omitted with a NULL function pointer. The
+ registered functions may be modified dynamically later.
+ If io_index is non zero, the corresponding io zone is
+ modified. If it is zero, a new io zone is allocated. The return
+ value can be used with cpu_register_physical_memory(). (-1) is
+ returned if error. */
int cpu_register_io_memory(int io_index,
CPUReadMemoryFunc **mem_read,
CPUWriteMemoryFunc **mem_write,
void *opaque)
{
- int i;
+ int i, subwidth = 0;
if (io_index <= 0) {
- if (io_index >= IO_MEM_NB_ENTRIES)
+ if (io_mem_nb >= IO_MEM_NB_ENTRIES)
return -1;
io_index = io_mem_nb++;
} else {
if (io_index >= IO_MEM_NB_ENTRIES)
return -1;
}
-
+
for(i = 0;i < 3; i++) {
+ if (!mem_read[i] || !mem_write[i])
+ subwidth = IO_MEM_SUBWIDTH;
io_mem_read[io_index][i] = mem_read[i];
io_mem_write[io_index][i] = mem_write[i];
}
io_mem_opaque[io_index] = opaque;
- return io_index << IO_MEM_SHIFT;
+ return (io_index << IO_MEM_SHIFT) | subwidth;
}
CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
/* physical memory access (slow version, mainly for debug) */
#if defined(CONFIG_USER_ONLY)
-void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
{
int l, flags;
target_ulong page;
+ void * p;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
if (is_write) {
if (!(flags & PAGE_WRITE))
return;
- memcpy((uint8_t *)addr, buf, len);
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_WRITE, addr, len, 0)))
+ /* FIXME - should this return an error rather than just fail? */
+ return;
+ memcpy(p, buf, len);
+ unlock_user(p, addr, len);
} else {
if (!(flags & PAGE_READ))
return;
- memcpy(buf, (uint8_t *)addr, len);
+ /* XXX: this code should not depend on lock_user */
+ if (!(p = lock_user(VERIFY_READ, addr, len, 1)))
+ /* FIXME - should this return an error rather than just fail? */
+ return;
+ memcpy(buf, p, len);
+ unlock_user(p, addr, 0);
}
len -= l;
buf += l;
}
}
-/* never used */
-uint32_t ldl_phys(target_phys_addr_t addr)
-{
- return 0;
-}
-
-void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
-{
-}
-
-void stl_phys(target_phys_addr_t addr, uint32_t val)
-{
-}
-
#else
-void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
+void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
int len, int is_write)
{
int l, io_index;
target_phys_addr_t page;
unsigned long pd;
PhysPageDesc *p;
-
+
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
} else {
pd = p->phys_offset;
}
-
+
if (is_write) {
- if ((pd & ~TARGET_PAGE_MASK) != 0) {
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+ /* XXX: could force cpu_single_env to NULL to avoid
+ potential bugs */
if (l >= 4 && ((addr & 3) == 0)) {
- /* 32 bit read access */
+ /* 32 bit write access */
val = ldl_p(buf);
io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
l = 4;
} else if (l >= 2 && ((addr & 1) == 0)) {
- /* 16 bit read access */
+ /* 16 bit write access */
val = lduw_p(buf);
io_mem_write[io_index][1](io_mem_opaque[io_index], addr, val);
l = 2;
} else {
- /* 8 bit access */
+ /* 8 bit write access */
val = ldub_p(buf);
io_mem_write[io_index][0](io_mem_opaque[io_index], addr, val);
l = 1;
/* RAM case */
ptr = phys_ram_base + addr1;
memcpy(ptr, buf, l);
- /* invalidate code */
- tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
- /* set dirty bit */
- phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] = 0xff;
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
+ /* set dirty bit */
+ phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+ (0xff & ~CODE_DIRTY_FLAG);
+ }
}
} else {
if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
- (pd & ~TARGET_PAGE_MASK) != IO_MEM_CODE) {
+ !(pd & IO_MEM_ROMD)) {
/* I/O case */
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
if (l >= 4 && ((addr & 3) == 0)) {
stw_p(buf, val);
l = 2;
} else {
- /* 8 bit access */
+ /* 8 bit read access */
val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr);
stb_p(buf, val);
l = 1;
}
} else {
/* RAM case */
- ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
(addr & ~TARGET_PAGE_MASK);
memcpy(buf, ptr, l);
}
}
}
+/* used for ROM loading : can write in RAM and ROM */
+void cpu_physical_memory_write_rom(target_phys_addr_t addr,
+ const uint8_t *buf, int len)
+{
+ int l;
+ uint8_t *ptr;
+ target_phys_addr_t page;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ while (len > 0) {
+ page = addr & TARGET_PAGE_MASK;
+ l = (page + TARGET_PAGE_SIZE) - addr;
+ if (l > len)
+ l = len;
+ p = phys_page_find(page >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
+ (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* do nothing */
+ } else {
+ unsigned long addr1;
+ addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
+ /* ROM/RAM case */
+ ptr = phys_ram_base + addr1;
+ memcpy(ptr, buf, l);
+ }
+ len -= l;
+ buf += l;
+ addr += l;
+ }
+}
+
+
/* warning: addr must be aligned */
uint32_t ldl_phys(target_phys_addr_t addr)
{
} else {
pd = p->phys_offset;
}
-
+
if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
- (pd & ~TARGET_PAGE_MASK) != IO_MEM_CODE) {
+ !(pd & IO_MEM_ROMD)) {
/* I/O case */
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
} else {
/* RAM case */
- ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
(addr & ~TARGET_PAGE_MASK);
val = ldl_p(ptr);
}
return val;
}
+/* warning: addr must be aligned */
+uint64_t ldq_phys(target_phys_addr_t addr)
+{
+ int io_index;
+ uint8_t *ptr;
+ uint64_t val;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
+ !(pd & IO_MEM_ROMD)) {
+ /* I/O case */
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+#ifdef TARGET_WORDS_BIGENDIAN
+ val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
+ val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
+#else
+ val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
+ val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
+#endif
+ } else {
+ /* RAM case */
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ val = ldq_p(ptr);
+ }
+ return val;
+}
+
+/* XXX: optimize */
+uint32_t ldub_phys(target_phys_addr_t addr)
+{
+ uint8_t val;
+ cpu_physical_memory_read(addr, &val, 1);
+ return val;
+}
+
+/* XXX: optimize */
+uint32_t lduw_phys(target_phys_addr_t addr)
+{
+ uint16_t val;
+ cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
+ return tswap16(val);
+}
+
/* warning: addr must be aligned. The ram page is not masked as dirty
and the code inside is not invalidated. It is useful if the dirty
bits are used to track modified PTEs */
} else {
pd = p->phys_offset;
}
-
- if ((pd & ~TARGET_PAGE_MASK) != 0) {
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
} else {
- ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
(addr & ~TARGET_PAGE_MASK);
stl_p(ptr, val);
}
}
+void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
+{
+ int io_index;
+ uint8_t *ptr;
+ unsigned long pd;
+ PhysPageDesc *p;
+
+ p = phys_page_find(addr >> TARGET_PAGE_BITS);
+ if (!p) {
+ pd = IO_MEM_UNASSIGNED;
+ } else {
+ pd = p->phys_offset;
+ }
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
+ io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
+#ifdef TARGET_WORDS_BIGENDIAN
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
+#else
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
+ io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
+#endif
+ } else {
+ ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
+ (addr & ~TARGET_PAGE_MASK);
+ stq_p(ptr, val);
+ }
+}
+
/* warning: addr must be aligned */
-/* XXX: optimize code invalidation test */
void stl_phys(target_phys_addr_t addr, uint32_t val)
{
int io_index;
} else {
pd = p->phys_offset;
}
-
- if ((pd & ~TARGET_PAGE_MASK) != 0) {
+
+ if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
} else {
/* RAM case */
ptr = phys_ram_base + addr1;
stl_p(ptr, val);
- /* invalidate code */
- tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
- /* set dirty bit */
- phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] = 0xff;
+ if (!cpu_physical_memory_is_dirty(addr1)) {
+ /* invalidate code */
+ tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
+ /* set dirty bit */
+ phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
+ (0xff & ~CODE_DIRTY_FLAG);
+ }
}
}
+/* XXX: optimize */
+void stb_phys(target_phys_addr_t addr, uint32_t val)
+{
+ uint8_t v = val;
+ cpu_physical_memory_write(addr, &v, 1);
+}
+
+/* XXX: optimize */
+void stw_phys(target_phys_addr_t addr, uint32_t val)
+{
+ uint16_t v = tswap16(val);
+ cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
+}
+
+/* XXX: optimize */
+void stq_phys(target_phys_addr_t addr, uint64_t val)
+{
+ val = tswap64(val);
+ cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
+}
+
#endif
/* virtual memory access for debug */
-int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
+int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
uint8_t *buf, int len, int is_write)
{
int l;
- target_ulong page, phys_addr;
+ target_phys_addr_t phys_addr;
+ target_ulong page;
while (len > 0) {
page = addr & TARGET_PAGE_MASK;
l = (page + TARGET_PAGE_SIZE) - addr;
if (l > len)
l = len;
- cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
+ cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
buf, l, is_write);
len -= l;
buf += l;
int i, target_code_size, max_target_code_size;
int direct_jmp_count, direct_jmp2_count, cross_page;
TranslationBlock *tb;
-
+
target_code_size = 0;
max_target_code_size = 0;
cross_page = 0;
}
}
/* XXX: avoid using doubles ? */
+ cpu_fprintf(f, "Translation buffer state:\n");
cpu_fprintf(f, "TB count %d\n", nb_tbs);
- cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
+ cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
nb_tbs ? target_code_size / nb_tbs : 0,
max_target_code_size);
- cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
+ cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
- cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
- cross_page,
+ cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
+ cross_page,
nb_tbs ? (cross_page * 100) / nb_tbs : 0);
cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
- direct_jmp_count,
+ direct_jmp_count,
nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
direct_jmp2_count,
nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
+ cpu_fprintf(f, "\nStatistics:\n");
cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
+#ifdef CONFIG_PROFILER
+ {
+ int64_t tot;
+ tot = dyngen_interm_time + dyngen_code_time;
+ cpu_fprintf(f, "JIT cycles %" PRId64 " (%0.3f s at 2.4 GHz)\n",
+ tot, tot / 2.4e9);
+ cpu_fprintf(f, "translated TBs %" PRId64 " (aborted=%" PRId64 " %0.1f%%)\n",
+ dyngen_tb_count,
+ dyngen_tb_count1 - dyngen_tb_count,
+ dyngen_tb_count1 ? (double)(dyngen_tb_count1 - dyngen_tb_count) / dyngen_tb_count1 * 100.0 : 0);
+ cpu_fprintf(f, "avg ops/TB %0.1f max=%d\n",
+ dyngen_tb_count ? (double)dyngen_op_count / dyngen_tb_count : 0, dyngen_op_count_max);
+ cpu_fprintf(f, "old ops/total ops %0.1f%%\n",
+ dyngen_op_count ? (double)dyngen_old_op_count / dyngen_op_count * 100.0 : 0);
+ cpu_fprintf(f, "deleted ops/TB %0.2f\n",
+ dyngen_tb_count ?
+ (double)dyngen_tcg_del_op_count / dyngen_tb_count : 0);
+ cpu_fprintf(f, "cycles/op %0.1f\n",
+ dyngen_op_count ? (double)tot / dyngen_op_count : 0);
+ cpu_fprintf(f, "cycles/in byte %0.1f\n",
+ dyngen_code_in_len ? (double)tot / dyngen_code_in_len : 0);
+ cpu_fprintf(f, "cycles/out byte %0.1f\n",
+ dyngen_code_out_len ? (double)tot / dyngen_code_out_len : 0);
+ if (tot == 0)
+ tot = 1;
+ cpu_fprintf(f, " gen_interm time %0.1f%%\n",
+ (double)dyngen_interm_time / tot * 100.0);
+ cpu_fprintf(f, " gen_code time %0.1f%%\n",
+ (double)dyngen_code_time / tot * 100.0);
+ cpu_fprintf(f, "cpu_restore count %" PRId64 "\n",
+ dyngen_restore_count);
+ cpu_fprintf(f, " avg cycles %0.1f\n",
+ dyngen_restore_count ? (double)dyngen_restore_time / dyngen_restore_count : 0);
+ {
+ extern void dump_op_count(void);
+ dump_op_count();
+ }
+ }
+#endif
}
-#if !defined(CONFIG_USER_ONLY)
+#if !defined(CONFIG_USER_ONLY)
#define MMUSUFFIX _cmmu
#define GETPC() NULL