#include "exec/cputlb.h"
#include "exec/memory-internal.h"
+#include "exec/ram_addr.h"
//#define DEBUG_TLB
//#define DEBUG_TLB_CHECK
/* statistics */
int tlb_flush_count;
-static const CPUTLBEntry s_cputlb_empty_entry = {
- .addr_read = -1,
- .addr_write = -1,
- .addr_code = -1,
- .addend = -1,
-};
-
/* NOTE:
* If flush_global is true (the usual case), flush all tlb entries.
* If flush_global is false, flush (at least) all tlb entries not
* entries from the TLB at any time, so flushing more entries than
* required is only an efficiency issue, not a correctness issue.
*/
-void tlb_flush(CPUArchState *env, int flush_global)
+void tlb_flush(CPUState *cpu, int flush_global)
{
- CPUState *cpu = ENV_GET_CPU(env);
- int i;
+ CPUArchState *env = cpu->env_ptr;
#if defined(DEBUG_TLB)
printf("tlb_flush:\n");
links while we are modifying them */
cpu->current_tb = NULL;
- for (i = 0; i < CPU_TLB_SIZE; i++) {
- int mmu_idx;
-
- for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
- env->tlb_table[mmu_idx][i] = s_cputlb_empty_entry;
- }
- }
-
- memset(env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
+ memset(env->tlb_table, -1, sizeof(env->tlb_table));
+ memset(cpu->tb_jmp_cache, 0, sizeof(cpu->tb_jmp_cache));
env->tlb_flush_addr = -1;
env->tlb_flush_mask = 0;
(TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
addr == (tlb_entry->addr_code &
(TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
- *tlb_entry = s_cputlb_empty_entry;
+ memset(tlb_entry, -1, sizeof(*tlb_entry));
}
}
-void tlb_flush_page(CPUArchState *env, target_ulong addr)
+void tlb_flush_page(CPUState *cpu, target_ulong addr)
{
- CPUState *cpu = ENV_GET_CPU(env);
+ CPUArchState *env = cpu->env_ptr;
int i;
int mmu_idx;
TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
env->tlb_flush_addr, env->tlb_flush_mask);
#endif
- tlb_flush(env, 1);
+ tlb_flush(cpu, 1);
return;
}
/* must reset current TB so that interrupts cannot modify the
tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
}
- tb_flush_jmp_cache(env, addr);
+ tb_flush_jmp_cache(cpu, addr);
}
/* update the TLBs so that writes to code in the virtual page 'addr'
can be detected */
void tlb_protect_code(ram_addr_t ram_addr)
{
- cpu_physical_memory_reset_dirty(ram_addr,
- ram_addr + TARGET_PAGE_SIZE,
- CODE_DIRTY_FLAG);
+ cpu_physical_memory_reset_dirty(ram_addr, TARGET_PAGE_SIZE,
+ DIRTY_MEMORY_CODE);
}
/* update the TLB so that writes in physical page 'phys_addr' are no longer
tested for self modifying code */
-void tlb_unprotect_code_phys(CPUArchState *env, ram_addr_t ram_addr,
+void tlb_unprotect_code_phys(CPUState *cpu, ram_addr_t ram_addr,
target_ulong vaddr)
{
- cpu_physical_memory_set_dirty_flags(ram_addr, CODE_DIRTY_FLAG);
+ cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
}
static bool tlb_is_dirty_ram(CPUTLBEntry *tlbe)
}
}
-static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
+static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
{
ram_addr_t ram_addr;
- void *p;
- if (tlb_is_dirty_ram(tlb_entry)) {
- p = (void *)(uintptr_t)((tlb_entry->addr_write & TARGET_PAGE_MASK)
- + tlb_entry->addend);
- ram_addr = qemu_ram_addr_from_host_nofail(p);
- if (!cpu_physical_memory_is_dirty(ram_addr)) {
- tlb_entry->addr_write |= TLB_NOTDIRTY;
- }
+ if (qemu_ram_addr_from_host(ptr, &ram_addr) == NULL) {
+ fprintf(stderr, "Bad ram pointer %p\n", ptr);
+ abort();
}
+ return ram_addr;
}
void cpu_tlb_reset_dirty_all(ram_addr_t start1, ram_addr_t length)
{
+ CPUState *cpu;
CPUArchState *env;
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
+ CPU_FOREACH(cpu) {
int mmu_idx;
+ env = cpu->env_ptr;
for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
unsigned int i;
/* Add a new TLB entry. At most one entry for a given virtual address
is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
supplied size is only used by tlb_flush_page. */
-void tlb_set_page(CPUArchState *env, target_ulong vaddr,
+void tlb_set_page(CPUState *cpu, target_ulong vaddr,
hwaddr paddr, int prot,
int mmu_idx, target_ulong size)
{
+ CPUArchState *env = cpu->env_ptr;
MemoryRegionSection *section;
unsigned int index;
target_ulong address;
}
sz = size;
- section = address_space_translate(&address_space_memory, paddr, &xlat, &sz,
- false);
+ section = address_space_translate_for_iotlb(cpu->as, paddr,
+ &xlat, &sz);
assert(sz >= TARGET_PAGE_SIZE);
#if defined(DEBUG_TLB)
printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
- " prot=%x idx=%d pd=0x%08lx\n",
- vaddr, paddr, prot, mmu_idx, pd);
+ " prot=%x idx=%d\n",
+ vaddr, paddr, prot, mmu_idx);
#endif
address = vaddr;
}
code_address = address;
- iotlb = memory_region_section_get_iotlb(env, section, vaddr, paddr, xlat,
+ iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
prot, &address);
index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
/* Write access calls the I/O callback. */
te->addr_write = address | TLB_MMIO;
} else if (memory_region_is_ram(section->mr)
- && !cpu_physical_memory_is_dirty(section->mr->ram_addr + xlat)) {
+ && cpu_physical_memory_is_clean(section->mr->ram_addr
+ + xlat)) {
te->addr_write = address | TLB_NOTDIRTY;
} else {
te->addr_write = address;
int mmu_idx, page_index, pd;
void *p;
MemoryRegion *mr;
+ CPUState *cpu = ENV_GET_CPU(env1);
page_index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
mmu_idx = cpu_mmu_index(env1);
cpu_ldub_code(env1, addr);
}
pd = env1->iotlb[mmu_idx][page_index] & ~TARGET_PAGE_MASK;
- mr = iotlb_to_region(pd);
+ mr = iotlb_to_region(cpu->as, pd);
if (memory_region_is_unassigned(mr)) {
-#if defined(TARGET_ALPHA) || defined(TARGET_MIPS) || defined(TARGET_SPARC)
- cpu_unassigned_access(env1, addr, 0, 1, 0, 4);
-#else
- cpu_abort(env1, "Trying to execute code outside RAM or ROM at 0x"
- TARGET_FMT_lx "\n", addr);
-#endif
+ CPUClass *cc = CPU_GET_CLASS(cpu);
+
+ if (cc->do_unassigned_access) {
+ cc->do_unassigned_access(cpu, addr, false, true, 0, 4);
+ } else {
+ cpu_abort(cpu, "Trying to execute code outside RAM or ROM at 0x"
+ TARGET_FMT_lx "\n", addr);
+ }
}
p = (void *)((uintptr_t)addr + env1->tlb_table[mmu_idx][page_index].addend);
return qemu_ram_addr_from_host_nofail(p);