#include <linux/kvm.h>
#include "qemu-common.h"
-#include "qemu-barrier.h"
-#include "qemu-option.h"
-#include "qemu-config.h"
-#include "sysemu.h"
+#include "qemu/atomic.h"
+#include "qemu/option.h"
+#include "qemu/config-file.h"
+#include "sysemu/sysemu.h"
#include "hw/hw.h"
-#include "hw/msi.h"
-#include "gdbstub.h"
-#include "kvm.h"
-#include "bswap.h"
-#include "memory.h"
-#include "exec-memory.h"
-#include "event_notifier.h"
+#include "hw/pci/msi.h"
+#include "exec/gdbstub.h"
+#include "sysemu/kvm.h"
+#include "qemu/bswap.h"
+#include "exec/memory.h"
+#include "exec/address-spaces.h"
+#include "qemu/event_notifier.h"
+#include "trace.h"
/* This check must be after config-host.h is included */
#ifdef CONFIG_EVENTFD
#include <sys/eventfd.h>
#endif
+#ifdef CONFIG_VALGRIND_H
+#include <valgrind/memcheck.h>
+#endif
+
/* KVM uses PAGE_SIZE in its definition of COALESCED_MMIO_MAX */
#define PAGE_SIZE TARGET_PAGE_SIZE
typedef struct KVMSlot
{
- target_phys_addr_t start_addr;
+ hwaddr start_addr;
ram_addr_t memory_size;
void *ram;
int slot;
int pit_state2;
int xsave, xcrs;
int many_ioeventfds;
+ int intx_set_mask;
/* The man page (and posix) say ioctl numbers are signed int, but
* they're not. Linux, glibc and *BSD all treat ioctl numbers as
* unsigned, and treating them as signed here can break things */
- unsigned irqchip_inject_ioctl;
+ unsigned irq_set_ioctl;
#ifdef KVM_CAP_IRQ_ROUTING
struct kvm_irq_routing *irq_routes;
int nr_allocated_irq_routes;
KVMState *kvm_state;
bool kvm_kernel_irqchip;
+bool kvm_async_interrupts_allowed;
+bool kvm_irqfds_allowed;
+bool kvm_msi_via_irqfd_allowed;
+bool kvm_gsi_routing_allowed;
+bool kvm_allowed;
+bool kvm_readonly_mem_allowed;
static const KVMCapabilityInfo kvm_required_capabilites[] = {
KVM_CAP_INFO(USER_MEMORY),
}
static KVMSlot *kvm_lookup_matching_slot(KVMState *s,
- target_phys_addr_t start_addr,
- target_phys_addr_t end_addr)
+ hwaddr start_addr,
+ hwaddr end_addr)
{
int i;
* Find overlapping slot with lowest start address
*/
static KVMSlot *kvm_lookup_overlapping_slot(KVMState *s,
- target_phys_addr_t start_addr,
- target_phys_addr_t end_addr)
+ hwaddr start_addr,
+ hwaddr end_addr)
{
KVMSlot *found = NULL;
int i;
}
int kvm_physical_memory_addr_from_host(KVMState *s, void *ram,
- target_phys_addr_t *phys_addr)
+ hwaddr *phys_addr)
{
int i;
mem.slot = slot->slot;
mem.guest_phys_addr = slot->start_addr;
- mem.memory_size = slot->memory_size;
mem.userspace_addr = (unsigned long)slot->ram;
mem.flags = slot->flags;
if (s->migration_log) {
mem.flags |= KVM_MEM_LOG_DIRTY_PAGES;
}
+
+ if (slot->memory_size && mem.flags & KVM_MEM_READONLY) {
+ /* Set the slot size to 0 before setting the slot to the desired
+ * value. This is needed based on KVM commit 75d61fbc. */
+ mem.memory_size = 0;
+ kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
+ }
+ mem.memory_size = slot->memory_size;
return kvm_vm_ioctl(s, KVM_SET_USER_MEMORY_REGION, &mem);
}
static void kvm_reset_vcpu(void *opaque)
{
- CPUArchState *env = opaque;
+ CPUState *cpu = opaque;
- kvm_arch_reset_vcpu(env);
+ kvm_arch_reset_vcpu(cpu);
}
-int kvm_init_vcpu(CPUArchState *env)
+int kvm_init_vcpu(CPUState *cpu)
{
KVMState *s = kvm_state;
long mmap_size;
DPRINTF("kvm_init_vcpu\n");
- ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, env->cpu_index);
+ ret = kvm_vm_ioctl(s, KVM_CREATE_VCPU, (void *)kvm_arch_vcpu_id(cpu));
if (ret < 0) {
DPRINTF("kvm_create_vcpu failed\n");
goto err;
}
- env->kvm_fd = ret;
- env->kvm_state = s;
- env->kvm_vcpu_dirty = 1;
+ cpu->kvm_fd = ret;
+ cpu->kvm_state = s;
+ cpu->kvm_vcpu_dirty = true;
mmap_size = kvm_ioctl(s, KVM_GET_VCPU_MMAP_SIZE, 0);
if (mmap_size < 0) {
goto err;
}
- env->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
- env->kvm_fd, 0);
- if (env->kvm_run == MAP_FAILED) {
+ cpu->kvm_run = mmap(NULL, mmap_size, PROT_READ | PROT_WRITE, MAP_SHARED,
+ cpu->kvm_fd, 0);
+ if (cpu->kvm_run == MAP_FAILED) {
ret = -errno;
DPRINTF("mmap'ing vcpu state failed\n");
goto err;
if (s->coalesced_mmio && !s->coalesced_mmio_ring) {
s->coalesced_mmio_ring =
- (void *)env->kvm_run + s->coalesced_mmio * PAGE_SIZE;
+ (void *)cpu->kvm_run + s->coalesced_mmio * PAGE_SIZE;
}
- ret = kvm_arch_init_vcpu(env);
+ ret = kvm_arch_init_vcpu(cpu);
if (ret == 0) {
- qemu_register_reset(kvm_reset_vcpu, env);
- kvm_arch_reset_vcpu(env);
+ qemu_register_reset(kvm_reset_vcpu, cpu);
+ kvm_arch_reset_vcpu(cpu);
}
err:
return ret;
* dirty pages logging control
*/
-static int kvm_mem_flags(KVMState *s, bool log_dirty)
+static int kvm_mem_flags(KVMState *s, bool log_dirty, bool readonly)
{
- return log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
+ int flags = 0;
+ flags = log_dirty ? KVM_MEM_LOG_DIRTY_PAGES : 0;
+ if (readonly && kvm_readonly_mem_allowed) {
+ flags |= KVM_MEM_READONLY;
+ }
+ return flags;
}
static int kvm_slot_dirty_pages_log_change(KVMSlot *mem, bool log_dirty)
old_flags = mem->flags;
- flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty);
+ flags = (mem->flags & ~mask) | kvm_mem_flags(s, log_dirty, false);
mem->flags = flags;
/* If nothing changed effectively, no need to issue ioctl */
return kvm_set_user_memory_region(s, mem);
}
-static int kvm_dirty_pages_log_change(target_phys_addr_t phys_addr,
+static int kvm_dirty_pages_log_change(hwaddr phys_addr,
ram_addr_t size, bool log_dirty)
{
KVMState *s = kvm_state;
if (mem == NULL) {
fprintf(stderr, "BUG: %s: invalid parameters " TARGET_FMT_plx "-"
TARGET_FMT_plx "\n", __func__, phys_addr,
- (target_phys_addr_t)(phys_addr + size - 1));
+ (hwaddr)(phys_addr + size - 1));
return -EINVAL;
}
return kvm_slot_dirty_pages_log_change(mem, log_dirty);
{
unsigned int i, j;
unsigned long page_number, c;
- target_phys_addr_t addr, addr1;
- unsigned int len = ((section->size / TARGET_PAGE_SIZE) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
+ hwaddr addr, addr1;
+ unsigned int len = ((section->size / getpagesize()) + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
/*
KVMDirtyLog d;
KVMSlot *mem;
int ret = 0;
- target_phys_addr_t start_addr = section->offset_within_address_space;
- target_phys_addr_t end_addr = start_addr + section->size;
+ hwaddr start_addr = section->offset_within_address_space;
+ hwaddr end_addr = start_addr + section->size;
d.dirty_bitmap = NULL;
while (start_addr < end_addr) {
return ret;
}
-int kvm_coalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
+static void kvm_coalesce_mmio_region(MemoryListener *listener,
+ MemoryRegionSection *secion,
+ hwaddr start, hwaddr size)
{
- int ret = -ENOSYS;
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
zone.size = size;
zone.pad = 0;
- ret = kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
+ (void)kvm_vm_ioctl(s, KVM_REGISTER_COALESCED_MMIO, &zone);
}
-
- return ret;
}
-int kvm_uncoalesce_mmio_region(target_phys_addr_t start, ram_addr_t size)
+static void kvm_uncoalesce_mmio_region(MemoryListener *listener,
+ MemoryRegionSection *secion,
+ hwaddr start, hwaddr size)
{
- int ret = -ENOSYS;
KVMState *s = kvm_state;
if (s->coalesced_mmio) {
zone.size = size;
zone.pad = 0;
- ret = kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
+ (void)kvm_vm_ioctl(s, KVM_UNREGISTER_COALESCED_MMIO, &zone);
}
-
- return ret;
}
int kvm_check_extension(KVMState *s, unsigned int extension)
return ret;
}
+static int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val,
+ bool assign, uint32_t size, bool datamatch)
+{
+ int ret;
+ struct kvm_ioeventfd iofd;
+
+ iofd.datamatch = datamatch ? val : 0;
+ iofd.addr = addr;
+ iofd.len = size;
+ iofd.flags = 0;
+ iofd.fd = fd;
+
+ if (!kvm_enabled()) {
+ return -ENOSYS;
+ }
+
+ if (datamatch) {
+ iofd.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
+ }
+ if (!assign) {
+ iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
+ }
+
+ ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
+
+ if (ret < 0) {
+ return -errno;
+ }
+
+ return 0;
+}
+
+static int kvm_set_ioeventfd_pio(int fd, uint16_t addr, uint16_t val,
+ bool assign, uint32_t size, bool datamatch)
+{
+ struct kvm_ioeventfd kick = {
+ .datamatch = datamatch ? val : 0,
+ .addr = addr,
+ .flags = KVM_IOEVENTFD_FLAG_PIO,
+ .len = size,
+ .fd = fd,
+ };
+ int r;
+ if (!kvm_enabled()) {
+ return -ENOSYS;
+ }
+ if (datamatch) {
+ kick.flags |= KVM_IOEVENTFD_FLAG_DATAMATCH;
+ }
+ if (!assign) {
+ kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
+ }
+ r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
+ if (r < 0) {
+ return r;
+ }
+ return 0;
+}
+
+
static int kvm_check_many_ioeventfds(void)
{
/* Userspace can use ioeventfd for io notification. This requires a host
if (ioeventfds[i] < 0) {
break;
}
- ret = kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, true);
+ ret = kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, true, 2, true);
if (ret < 0) {
close(ioeventfds[i]);
break;
ret = i == ARRAY_SIZE(ioeventfds);
while (i-- > 0) {
- kvm_set_ioeventfd_pio_word(ioeventfds[i], 0, i, false);
+ kvm_set_ioeventfd_pio(ioeventfds[i], 0, i, false, 2, true);
close(ioeventfds[i]);
}
return ret;
int err;
MemoryRegion *mr = section->mr;
bool log_dirty = memory_region_is_logging(mr);
- target_phys_addr_t start_addr = section->offset_within_address_space;
+ bool writeable = !mr->readonly && !mr->rom_device;
+ bool readonly_flag = mr->readonly || memory_region_is_romd(mr);
+ hwaddr start_addr = section->offset_within_address_space;
ram_addr_t size = section->size;
void *ram = NULL;
unsigned delta;
}
if (!memory_region_is_ram(mr)) {
- return;
+ if (writeable || !kvm_readonly_mem_allowed) {
+ return;
+ } else if (!mr->romd_mode) {
+ /* If the memory device is not in romd_mode, then we actually want
+ * to remove the kvm memory slot so all accesses will trap. */
+ add = false;
+ }
}
ram = memory_region_get_ram_ptr(mr) + section->offset_within_region + delta;
mem->memory_size = old.memory_size;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
- mem->flags = kvm_mem_flags(s, log_dirty);
+ mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
mem->memory_size = start_addr - old.start_addr;
mem->start_addr = old.start_addr;
mem->ram = old.ram;
- mem->flags = kvm_mem_flags(s, log_dirty);
+ mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
size_delta = mem->start_addr - old.start_addr;
mem->memory_size = old.memory_size - size_delta;
mem->ram = old.ram + size_delta;
- mem->flags = kvm_mem_flags(s, log_dirty);
+ mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
mem->memory_size = size;
mem->start_addr = start_addr;
mem->ram = ram;
- mem->flags = kvm_mem_flags(s, log_dirty);
+ mem->flags = kvm_mem_flags(s, log_dirty, readonly_flag);
err = kvm_set_user_memory_region(s, mem);
if (err) {
}
}
-static void kvm_begin(MemoryListener *listener)
-{
-}
-
-static void kvm_commit(MemoryListener *listener)
-{
-}
-
static void kvm_region_add(MemoryListener *listener,
MemoryRegionSection *section)
{
kvm_set_phys_mem(section, false);
}
-static void kvm_region_nop(MemoryListener *listener,
- MemoryRegionSection *section)
-{
-}
-
static void kvm_log_sync(MemoryListener *listener,
MemoryRegionSection *section)
{
assert(r >= 0);
}
-static void kvm_mem_ioeventfd_add(MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
+static void kvm_mem_ioeventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
{
+ int fd = event_notifier_get_fd(e);
int r;
- assert(match_data && section->size <= 8);
-
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
- data, true, section->size);
+ data, true, section->size, match_data);
if (r < 0) {
abort();
}
}
-static void kvm_mem_ioeventfd_del(MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
+static void kvm_mem_ioeventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
{
+ int fd = event_notifier_get_fd(e);
int r;
r = kvm_set_ioeventfd_mmio(fd, section->offset_within_address_space,
- data, false, section->size);
+ data, false, section->size, match_data);
if (r < 0) {
abort();
}
}
-static void kvm_io_ioeventfd_add(MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
+static void kvm_io_ioeventfd_add(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
{
+ int fd = event_notifier_get_fd(e);
int r;
- assert(match_data && section->size == 2);
-
- r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
- data, true);
+ r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
+ data, true, section->size, match_data);
if (r < 0) {
abort();
}
}
-static void kvm_io_ioeventfd_del(MemoryRegionSection *section,
- bool match_data, uint64_t data, int fd)
+static void kvm_io_ioeventfd_del(MemoryListener *listener,
+ MemoryRegionSection *section,
+ bool match_data, uint64_t data,
+ EventNotifier *e)
{
+ int fd = event_notifier_get_fd(e);
int r;
- r = kvm_set_ioeventfd_pio_word(fd, section->offset_within_address_space,
- data, false);
+ r = kvm_set_ioeventfd_pio(fd, section->offset_within_address_space,
+ data, false, section->size, match_data);
if (r < 0) {
abort();
}
}
-static void kvm_eventfd_add(MemoryListener *listener,
- MemoryRegionSection *section,
- bool match_data, uint64_t data,
- EventNotifier *e)
-{
- if (section->address_space == get_system_memory()) {
- kvm_mem_ioeventfd_add(section, match_data, data,
- event_notifier_get_fd(e));
- } else {
- kvm_io_ioeventfd_add(section, match_data, data,
- event_notifier_get_fd(e));
- }
-}
-
-static void kvm_eventfd_del(MemoryListener *listener,
- MemoryRegionSection *section,
- bool match_data, uint64_t data,
- EventNotifier *e)
-{
- if (section->address_space == get_system_memory()) {
- kvm_mem_ioeventfd_del(section, match_data, data,
- event_notifier_get_fd(e));
- } else {
- kvm_io_ioeventfd_del(section, match_data, data,
- event_notifier_get_fd(e));
- }
-}
-
static MemoryListener kvm_memory_listener = {
- .begin = kvm_begin,
- .commit = kvm_commit,
.region_add = kvm_region_add,
.region_del = kvm_region_del,
- .region_nop = kvm_region_nop,
.log_start = kvm_log_start,
.log_stop = kvm_log_stop,
.log_sync = kvm_log_sync,
.log_global_start = kvm_log_global_start,
.log_global_stop = kvm_log_global_stop,
- .eventfd_add = kvm_eventfd_add,
- .eventfd_del = kvm_eventfd_del,
+ .eventfd_add = kvm_mem_ioeventfd_add,
+ .eventfd_del = kvm_mem_ioeventfd_del,
+ .coalesced_mmio_add = kvm_coalesce_mmio_region,
+ .coalesced_mmio_del = kvm_uncoalesce_mmio_region,
.priority = 10,
};
-static void kvm_handle_interrupt(CPUArchState *env, int mask)
+static MemoryListener kvm_io_listener = {
+ .eventfd_add = kvm_io_ioeventfd_add,
+ .eventfd_del = kvm_io_ioeventfd_del,
+ .priority = 10,
+};
+
+static void kvm_handle_interrupt(CPUState *cpu, int mask)
{
- env->interrupt_request |= mask;
+ cpu->interrupt_request |= mask;
- if (!qemu_cpu_is_self(env)) {
- qemu_cpu_kick(env);
+ if (!qemu_cpu_is_self(cpu)) {
+ qemu_cpu_kick(cpu);
}
}
-int kvm_irqchip_set_irq(KVMState *s, int irq, int level)
+int kvm_set_irq(KVMState *s, int irq, int level)
{
struct kvm_irq_level event;
int ret;
- assert(kvm_irqchip_in_kernel());
+ assert(kvm_async_interrupts_enabled());
event.level = level;
event.irq = irq;
- ret = kvm_vm_ioctl(s, s->irqchip_inject_ioctl, &event);
+ ret = kvm_vm_ioctl(s, s->irq_set_ioctl, &event);
if (ret < 0) {
- perror("kvm_set_irqchip_line");
+ perror("kvm_set_irq");
abort();
}
- return (s->irqchip_inject_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
+ return (s->irq_set_ioctl == KVM_IRQ_LINE) ? 1 : event.status;
}
#ifdef KVM_CAP_IRQ_ROUTING
kvm_irqchip_commit_routes(s);
}
+static int kvm_update_routing_entry(KVMState *s,
+ struct kvm_irq_routing_entry *new_entry)
+{
+ struct kvm_irq_routing_entry *entry;
+ int n;
+
+ for (n = 0; n < s->irq_routes->nr; n++) {
+ entry = &s->irq_routes->entries[n];
+ if (entry->gsi != new_entry->gsi) {
+ continue;
+ }
+
+ entry->type = new_entry->type;
+ entry->flags = new_entry->flags;
+ entry->u = new_entry->u;
+
+ kvm_irqchip_commit_routes(s);
+
+ return 0;
+ }
+
+ return -ESRCH;
+}
+
void kvm_irqchip_add_irq_route(KVMState *s, int irq, int irqchip, int pin)
{
struct kvm_irq_routing_entry e;
}
}
clear_gsi(s, virq);
-
- kvm_irqchip_commit_routes(s);
}
static unsigned int kvm_hash_msi(uint32_t data)
assert(route->kroute.type == KVM_IRQ_ROUTING_MSI);
- return kvm_irqchip_set_irq(s, route->kroute.gsi, 1);
+ return kvm_set_irq(s, route->kroute.gsi, 1);
}
int kvm_irqchip_add_msi_route(KVMState *s, MSIMessage msg)
struct kvm_irq_routing_entry kroute;
int virq;
- if (!kvm_irqchip_in_kernel()) {
+ if (!kvm_gsi_routing_enabled()) {
return -ENOSYS;
}
return virq;
}
+int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
+{
+ struct kvm_irq_routing_entry kroute;
+
+ if (!kvm_irqchip_in_kernel()) {
+ return -ENOSYS;
+ }
+
+ kroute.gsi = virq;
+ kroute.type = KVM_IRQ_ROUTING_MSI;
+ kroute.flags = 0;
+ kroute.u.msi.address_lo = (uint32_t)msg.address;
+ kroute.u.msi.address_hi = msg.address >> 32;
+ kroute.u.msi.data = msg.data;
+
+ return kvm_update_routing_entry(s, &kroute);
+}
+
static int kvm_irqchip_assign_irqfd(KVMState *s, int fd, int virq, bool assign)
{
struct kvm_irqfd irqfd = {
.flags = assign ? 0 : KVM_IRQFD_FLAG_DEASSIGN,
};
- if (!kvm_irqchip_in_kernel()) {
+ if (!kvm_irqfds_enabled()) {
return -ENOSYS;
}
{
abort();
}
-#endif /* !KVM_CAP_IRQ_ROUTING */
-int kvm_irqchip_add_irqfd(KVMState *s, int fd, int virq)
+int kvm_irqchip_update_msi_route(KVMState *s, int virq, MSIMessage msg)
{
- return kvm_irqchip_assign_irqfd(s, fd, virq, true);
-}
-
-int kvm_irqchip_add_irq_notifier(KVMState *s, EventNotifier *n, int virq)
-{
- return kvm_irqchip_add_irqfd(s, event_notifier_get_fd(n), virq);
+ return -ENOSYS;
}
+#endif /* !KVM_CAP_IRQ_ROUTING */
-int kvm_irqchip_remove_irqfd(KVMState *s, int fd, int virq)
+int kvm_irqchip_add_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
{
- return kvm_irqchip_assign_irqfd(s, fd, virq, false);
+ return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, true);
}
-int kvm_irqchip_remove_irq_notifier(KVMState *s, EventNotifier *n, int virq)
+int kvm_irqchip_remove_irqfd_notifier(KVMState *s, EventNotifier *n, int virq)
{
- return kvm_irqchip_remove_irqfd(s, event_notifier_get_fd(n), virq);
+ return kvm_irqchip_assign_irqfd(s, event_notifier_get_fd(n), virq, false);
}
static int kvm_irqchip_create(KVMState *s)
return ret;
}
- s->irqchip_inject_ioctl = KVM_IRQ_LINE;
- if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
- s->irqchip_inject_ioctl = KVM_IRQ_LINE_STATUS;
- }
kvm_kernel_irqchip = true;
+ /* If we have an in-kernel IRQ chip then we must have asynchronous
+ * interrupt delivery (though the reverse is not necessarily true)
+ */
+ kvm_async_interrupts_allowed = true;
kvm_init_irq_routing(s);
return 0;
}
+static int kvm_max_vcpus(KVMState *s)
+{
+ int ret;
+
+ /* Find number of supported CPUs using the recommended
+ * procedure from the kernel API documentation to cope with
+ * older kernels that may be missing capabilities.
+ */
+ ret = kvm_check_extension(s, KVM_CAP_MAX_VCPUS);
+ if (ret) {
+ return ret;
+ }
+ ret = kvm_check_extension(s, KVM_CAP_NR_VCPUS);
+ if (ret) {
+ return ret;
+ }
+
+ return 4;
+}
+
int kvm_init(void)
{
static const char upgrade_note[] =
const KVMCapabilityInfo *missing_cap;
int ret;
int i;
+ int max_vcpus;
s = g_malloc0(sizeof(KVMState));
goto err;
}
+ max_vcpus = kvm_max_vcpus(s);
+ if (smp_cpus > max_vcpus) {
+ ret = -EINVAL;
+ fprintf(stderr, "Number of SMP cpus requested (%d) exceeds max cpus "
+ "supported by KVM (%d)\n", smp_cpus, max_vcpus);
+ goto err;
+ }
+
s->vmfd = kvm_ioctl(s, KVM_CREATE_VM, 0);
if (s->vmfd < 0) {
#ifdef TARGET_S390X
s->direct_msi = (kvm_check_extension(s, KVM_CAP_SIGNAL_MSI) > 0);
#endif
+ s->intx_set_mask = kvm_check_extension(s, KVM_CAP_PCI_2_3);
+
+ s->irq_set_ioctl = KVM_IRQ_LINE;
+ if (kvm_check_extension(s, KVM_CAP_IRQ_INJECT_STATUS)) {
+ s->irq_set_ioctl = KVM_IRQ_LINE_STATUS;
+ }
+
+#ifdef KVM_CAP_READONLY_MEM
+ kvm_readonly_mem_allowed =
+ (kvm_check_extension(s, KVM_CAP_READONLY_MEM) > 0);
+#endif
+
ret = kvm_arch_init(s);
if (ret < 0) {
goto err;
}
kvm_state = s;
- memory_listener_register(&kvm_memory_listener, NULL);
+ memory_listener_register(&kvm_memory_listener, &address_space_memory);
+ memory_listener_register(&kvm_io_listener, &address_space_io);
s->many_ioeventfds = kvm_check_many_ioeventfds();
return 0;
err:
- if (s) {
- if (s->vmfd >= 0) {
- close(s->vmfd);
- }
- if (s->fd != -1) {
- close(s->fd);
- }
+ if (s->vmfd >= 0) {
+ close(s->vmfd);
+ }
+ if (s->fd != -1) {
+ close(s->fd);
}
g_free(s);
static int kvm_handle_internal_error(CPUArchState *env, struct kvm_run *run)
{
+ CPUState *cpu = ENV_GET_CPU(env);
+
fprintf(stderr, "KVM internal error.");
if (kvm_check_extension(kvm_state, KVM_CAP_INTERNAL_ERROR_DATA)) {
int i;
}
if (run->internal.suberror == KVM_INTERNAL_ERROR_EMULATION) {
fprintf(stderr, "emulation failure\n");
- if (!kvm_arch_stop_on_emulation_error(env)) {
+ if (!kvm_arch_stop_on_emulation_error(cpu)) {
cpu_dump_state(env, stderr, fprintf, CPU_DUMP_CODE);
return EXCP_INTERRUPT;
}
s->coalesced_flush_in_progress = false;
}
-static void do_kvm_cpu_synchronize_state(void *_env)
+static void do_kvm_cpu_synchronize_state(void *arg)
{
- CPUArchState *env = _env;
+ CPUState *cpu = arg;
- if (!env->kvm_vcpu_dirty) {
- kvm_arch_get_registers(env);
- env->kvm_vcpu_dirty = 1;
+ if (!cpu->kvm_vcpu_dirty) {
+ kvm_arch_get_registers(cpu);
+ cpu->kvm_vcpu_dirty = true;
}
}
void kvm_cpu_synchronize_state(CPUArchState *env)
{
- if (!env->kvm_vcpu_dirty) {
- run_on_cpu(env, do_kvm_cpu_synchronize_state, env);
+ CPUState *cpu = ENV_GET_CPU(env);
+
+ if (!cpu->kvm_vcpu_dirty) {
+ run_on_cpu(cpu, do_kvm_cpu_synchronize_state, cpu);
}
}
-void kvm_cpu_synchronize_post_reset(CPUArchState *env)
+void kvm_cpu_synchronize_post_reset(CPUState *cpu)
{
- kvm_arch_put_registers(env, KVM_PUT_RESET_STATE);
- env->kvm_vcpu_dirty = 0;
+ kvm_arch_put_registers(cpu, KVM_PUT_RESET_STATE);
+ cpu->kvm_vcpu_dirty = false;
}
-void kvm_cpu_synchronize_post_init(CPUArchState *env)
+void kvm_cpu_synchronize_post_init(CPUState *cpu)
{
- kvm_arch_put_registers(env, KVM_PUT_FULL_STATE);
- env->kvm_vcpu_dirty = 0;
+ kvm_arch_put_registers(cpu, KVM_PUT_FULL_STATE);
+ cpu->kvm_vcpu_dirty = false;
}
int kvm_cpu_exec(CPUArchState *env)
{
- struct kvm_run *run = env->kvm_run;
+ CPUState *cpu = ENV_GET_CPU(env);
+ struct kvm_run *run = cpu->kvm_run;
int ret, run_ret;
DPRINTF("kvm_cpu_exec()\n");
- if (kvm_arch_process_async_events(env)) {
- env->exit_request = 0;
+ if (kvm_arch_process_async_events(cpu)) {
+ cpu->exit_request = 0;
return EXCP_HLT;
}
do {
- if (env->kvm_vcpu_dirty) {
- kvm_arch_put_registers(env, KVM_PUT_RUNTIME_STATE);
- env->kvm_vcpu_dirty = 0;
+ if (cpu->kvm_vcpu_dirty) {
+ kvm_arch_put_registers(cpu, KVM_PUT_RUNTIME_STATE);
+ cpu->kvm_vcpu_dirty = false;
}
- kvm_arch_pre_run(env, run);
- if (env->exit_request) {
+ kvm_arch_pre_run(cpu, run);
+ if (cpu->exit_request) {
DPRINTF("interrupt exit requested\n");
/*
* KVM requires us to reenter the kernel after IO exits to complete
}
qemu_mutex_unlock_iothread();
- run_ret = kvm_vcpu_ioctl(env, KVM_RUN, 0);
+ run_ret = kvm_vcpu_ioctl(cpu, KVM_RUN, 0);
qemu_mutex_lock_iothread();
- kvm_arch_post_run(env, run);
-
- kvm_flush_coalesced_mmio_buffer();
+ kvm_arch_post_run(cpu, run);
if (run_ret < 0) {
if (run_ret == -EINTR || run_ret == -EAGAIN) {
abort();
}
+ trace_kvm_run_exit(cpu->cpu_index, run->exit_reason);
switch (run->exit_reason) {
case KVM_EXIT_IO:
DPRINTF("handle_io\n");
break;
default:
DPRINTF("kvm_arch_handle_exit\n");
- ret = kvm_arch_handle_exit(env, run);
+ ret = kvm_arch_handle_exit(cpu, run);
break;
}
} while (ret == 0);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
- env->exit_request = 0;
+ cpu->exit_request = 0;
return ret;
}
arg = va_arg(ap, void *);
va_end(ap);
+ trace_kvm_ioctl(type, arg);
ret = ioctl(s->fd, type, arg);
if (ret == -1) {
ret = -errno;
arg = va_arg(ap, void *);
va_end(ap);
+ trace_kvm_vm_ioctl(type, arg);
ret = ioctl(s->vmfd, type, arg);
if (ret == -1) {
ret = -errno;
return ret;
}
-int kvm_vcpu_ioctl(CPUArchState *env, int type, ...)
+int kvm_vcpu_ioctl(CPUState *cpu, int type, ...)
{
int ret;
void *arg;
arg = va_arg(ap, void *);
va_end(ap);
- ret = ioctl(env->kvm_fd, type, arg);
+ trace_kvm_vcpu_ioctl(cpu->cpu_index, type, arg);
+ ret = ioctl(cpu->kvm_fd, type, arg);
if (ret == -1) {
ret = -errno;
}
#endif
}
-int kvm_allows_irq0_override(void)
+int kvm_has_intx_set_mask(void)
{
- return !kvm_irqchip_in_kernel() || kvm_has_gsi_routing();
+ return kvm_state->intx_set_mask;
}
-void *kvm_vmalloc(ram_addr_t size)
+void *kvm_ram_alloc(ram_addr_t size)
{
#ifdef TARGET_S390X
void *mem;
- mem = kvm_arch_vmalloc(size);
+ mem = kvm_arch_ram_alloc(size);
if (mem) {
return mem;
}
#endif
- return qemu_vmalloc(size);
+ return qemu_anon_ram_alloc(size);
}
void kvm_setup_guest_memory(void *start, size_t size)
{
+#ifdef CONFIG_VALGRIND_H
+ VALGRIND_MAKE_MEM_DEFINED(start, size);
+#endif
if (!kvm_has_sync_mmu()) {
int ret = qemu_madvise(start, size, QEMU_MADV_DONTFORK);
}
#ifdef KVM_CAP_SET_GUEST_DEBUG
-struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUArchState *env,
+struct kvm_sw_breakpoint *kvm_find_sw_breakpoint(CPUState *cpu,
target_ulong pc)
{
struct kvm_sw_breakpoint *bp;
- QTAILQ_FOREACH(bp, &env->kvm_state->kvm_sw_breakpoints, entry) {
+ QTAILQ_FOREACH(bp, &cpu->kvm_state->kvm_sw_breakpoints, entry) {
if (bp->pc == pc) {
return bp;
}
return NULL;
}
-int kvm_sw_breakpoints_active(CPUArchState *env)
+int kvm_sw_breakpoints_active(CPUState *cpu)
{
- return !QTAILQ_EMPTY(&env->kvm_state->kvm_sw_breakpoints);
+ return !QTAILQ_EMPTY(&cpu->kvm_state->kvm_sw_breakpoints);
}
struct kvm_set_guest_debug_data {
struct kvm_guest_debug dbg;
- CPUArchState *env;
+ CPUState *cpu;
int err;
};
static void kvm_invoke_set_guest_debug(void *data)
{
struct kvm_set_guest_debug_data *dbg_data = data;
- CPUArchState *env = dbg_data->env;
- dbg_data->err = kvm_vcpu_ioctl(env, KVM_SET_GUEST_DEBUG, &dbg_data->dbg);
+ dbg_data->err = kvm_vcpu_ioctl(dbg_data->cpu, KVM_SET_GUEST_DEBUG,
+ &dbg_data->dbg);
}
int kvm_update_guest_debug(CPUArchState *env, unsigned long reinject_trap)
{
+ CPUState *cpu = ENV_GET_CPU(env);
struct kvm_set_guest_debug_data data;
data.dbg.control = reinject_trap;
if (env->singlestep_enabled) {
data.dbg.control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_SINGLESTEP;
}
- kvm_arch_update_guest_debug(env, &data.dbg);
- data.env = env;
+ kvm_arch_update_guest_debug(cpu, &data.dbg);
+ data.cpu = cpu;
- run_on_cpu(env, kvm_invoke_set_guest_debug, &data);
+ run_on_cpu(cpu, kvm_invoke_set_guest_debug, &data);
return data.err;
}
int kvm_insert_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
+ CPUState *current_cpu = ENV_GET_CPU(current_env);
struct kvm_sw_breakpoint *bp;
CPUArchState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
- bp = kvm_find_sw_breakpoint(current_env, addr);
+ bp = kvm_find_sw_breakpoint(current_cpu, addr);
if (bp) {
bp->use_count++;
return 0;
bp->pc = addr;
bp->use_count = 1;
- err = kvm_arch_insert_sw_breakpoint(current_env, bp);
+ err = kvm_arch_insert_sw_breakpoint(current_cpu, bp);
if (err) {
g_free(bp);
return err;
}
- QTAILQ_INSERT_HEAD(¤t_env->kvm_state->kvm_sw_breakpoints,
+ QTAILQ_INSERT_HEAD(¤t_cpu->kvm_state->kvm_sw_breakpoints,
bp, entry);
} else {
err = kvm_arch_insert_hw_breakpoint(addr, len, type);
int kvm_remove_breakpoint(CPUArchState *current_env, target_ulong addr,
target_ulong len, int type)
{
+ CPUState *current_cpu = ENV_GET_CPU(current_env);
struct kvm_sw_breakpoint *bp;
CPUArchState *env;
int err;
if (type == GDB_BREAKPOINT_SW) {
- bp = kvm_find_sw_breakpoint(current_env, addr);
+ bp = kvm_find_sw_breakpoint(current_cpu, addr);
if (!bp) {
return -ENOENT;
}
return 0;
}
- err = kvm_arch_remove_sw_breakpoint(current_env, bp);
+ err = kvm_arch_remove_sw_breakpoint(current_cpu, bp);
if (err) {
return err;
}
- QTAILQ_REMOVE(¤t_env->kvm_state->kvm_sw_breakpoints, bp, entry);
+ QTAILQ_REMOVE(¤t_cpu->kvm_state->kvm_sw_breakpoints, bp, entry);
g_free(bp);
} else {
err = kvm_arch_remove_hw_breakpoint(addr, len, type);
void kvm_remove_all_breakpoints(CPUArchState *current_env)
{
+ CPUState *current_cpu = ENV_GET_CPU(current_env);
struct kvm_sw_breakpoint *bp, *next;
- KVMState *s = current_env->kvm_state;
+ KVMState *s = current_cpu->kvm_state;
CPUArchState *env;
+ CPUState *cpu;
QTAILQ_FOREACH_SAFE(bp, &s->kvm_sw_breakpoints, entry, next) {
- if (kvm_arch_remove_sw_breakpoint(current_env, bp) != 0) {
+ if (kvm_arch_remove_sw_breakpoint(current_cpu, bp) != 0) {
/* Try harder to find a CPU that currently sees the breakpoint. */
for (env = first_cpu; env != NULL; env = env->next_cpu) {
- if (kvm_arch_remove_sw_breakpoint(env, bp) == 0) {
+ cpu = ENV_GET_CPU(env);
+ if (kvm_arch_remove_sw_breakpoint(cpu, bp) == 0) {
break;
}
}
}
+ QTAILQ_REMOVE(&s->kvm_sw_breakpoints, bp, entry);
+ g_free(bp);
}
kvm_arch_remove_all_hw_breakpoints();
int kvm_set_signal_mask(CPUArchState *env, const sigset_t *sigset)
{
+ CPUState *cpu = ENV_GET_CPU(env);
struct kvm_signal_mask *sigmask;
int r;
if (!sigset) {
- return kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, NULL);
+ return kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, NULL);
}
sigmask = g_malloc(sizeof(*sigmask) + sizeof(*sigset));
sigmask->len = 8;
memcpy(sigmask->sigset, sigset, sizeof(*sigset));
- r = kvm_vcpu_ioctl(env, KVM_SET_SIGNAL_MASK, sigmask);
+ r = kvm_vcpu_ioctl(cpu, KVM_SET_SIGNAL_MASK, sigmask);
g_free(sigmask);
return r;
}
-
-int kvm_set_ioeventfd_mmio(int fd, uint32_t addr, uint32_t val, bool assign,
- uint32_t size)
-{
- int ret;
- struct kvm_ioeventfd iofd;
-
- iofd.datamatch = val;
- iofd.addr = addr;
- iofd.len = size;
- iofd.flags = KVM_IOEVENTFD_FLAG_DATAMATCH;
- iofd.fd = fd;
-
- if (!kvm_enabled()) {
- return -ENOSYS;
- }
-
- if (!assign) {
- iofd.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
- }
-
- ret = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &iofd);
-
- if (ret < 0) {
- return -errno;
- }
-
- return 0;
-}
-
-int kvm_set_ioeventfd_pio_word(int fd, uint16_t addr, uint16_t val, bool assign)
-{
- struct kvm_ioeventfd kick = {
- .datamatch = val,
- .addr = addr,
- .len = 2,
- .flags = KVM_IOEVENTFD_FLAG_DATAMATCH | KVM_IOEVENTFD_FLAG_PIO,
- .fd = fd,
- };
- int r;
- if (!kvm_enabled()) {
- return -ENOSYS;
- }
- if (!assign) {
- kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN;
- }
- r = kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick);
- if (r < 0) {
- return r;
- }
- return 0;
-}
-
-int kvm_on_sigbus_vcpu(CPUArchState *env, int code, void *addr)
+int kvm_on_sigbus_vcpu(CPUState *cpu, int code, void *addr)
{
- return kvm_arch_on_sigbus_vcpu(env, code, addr);
+ return kvm_arch_on_sigbus_vcpu(cpu, code, addr);
}
int kvm_on_sigbus(int code, void *addr)