/*
* internal execution defines for qemu
- *
+ *
* Copyright (c) 2003 Fabrice Bellard
*
* This library is free software; you can redistribute it and/or
/* allow to see translation results - the slowdown should be negligible, so we leave it */
#define DEBUG_DISAS
-#ifndef glue
-#define xglue(x, y) x ## y
-#define glue(x, y) xglue(x, y)
-#define stringify(s) tostring(s)
-#define tostring(s) #s
-#endif
-
-#if __GNUC__ < 3
-#define __builtin_expect(x, n) (x)
-#endif
-
-#ifdef __i386__
-#define REGPARM(n) __attribute((regparm(n)))
-#else
-#define REGPARM(n)
-#endif
-
/* is_jmp field values */
#define DISAS_NEXT 0 /* next instruction can be analyzed */
#define DISAS_JUMP 1 /* only pc was modified dynamically */
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
extern target_ulong gen_opc_jump_pc[2];
+extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
typedef void (GenOpFunc)(void);
typedef void (GenOpFunc1)(long);
typedef void (GenOpFunc2)(long, long);
typedef void (GenOpFunc3)(long, long, long);
-
+
#if defined(TARGET_I386)
void optimize_flags_init(void);
void dump_ops(const uint16_t *opc_buf, const uint32_t *opparam_buf);
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
int max_code_size, int *gen_code_size_ptr);
-int cpu_restore_state(struct TranslationBlock *tb,
+int cpu_restore_state(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc,
void *puc);
int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
int max_code_size, int *gen_code_size_ptr);
-int cpu_restore_state_copy(struct TranslationBlock *tb,
+int cpu_restore_state_copy(struct TranslationBlock *tb,
CPUState *env, unsigned long searched_pc,
void *puc);
void cpu_resume_from_signal(CPUState *env1, void *puc);
-void cpu_exec_init(void);
-int page_unprotect(unsigned long address, unsigned long pc, void *puc);
-void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
+void cpu_exec_init(CPUState *env);
+int page_unprotect(target_ulong address, unsigned long pc, void *puc);
+void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
int is_cpu_write_access);
void tb_invalidate_page_range(target_ulong start, target_ulong end);
void tlb_flush_page(CPUState *env, target_ulong addr);
void tlb_flush(CPUState *env, int flush_global);
-int tlb_set_page(CPUState *env, target_ulong vaddr,
- target_phys_addr_t paddr, int prot,
- int is_user, int is_softmmu);
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, int is_softmmu);
+static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int mmu_idx, int is_softmmu)
+{
+ if (prot & PAGE_READ)
+ prot |= PAGE_EXEC;
+ return tlb_set_page_exec(env, vaddr, paddr, prot, mmu_idx, is_softmmu);
+}
#define CODE_GEN_MAX_SIZE 65536
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
-#define CODE_GEN_HASH_BITS 15
-#define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
-
#define CODE_GEN_PHYS_HASH_BITS 15
#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
#define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
-#if defined(__powerpc__)
+#if defined(__powerpc__)
#define USE_DIRECT_JUMP
#endif
#if defined(__i386__) && !defined(_WIN32)
typedef struct TranslationBlock {
target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
target_ulong cs_base; /* CS base for this block */
- unsigned int flags; /* flags defining in which context the code was generated */
+ uint64_t flags; /* flags defining in which context the code was generated */
uint16_t size; /* size of target code for this block (1 <=
size <= TARGET_PAGE_SIZE) */
uint16_t cflags; /* compile flags */
#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
uint8_t *tc_ptr; /* pointer to the translated code */
- struct TranslationBlock *hash_next; /* next matching tb for virtual address */
/* next matching tb for physical address. */
- struct TranslationBlock *phys_hash_next;
+ struct TranslationBlock *phys_hash_next;
/* first and second physical page containing code. The lower bit
of the pointer tells the index in page_next[] */
- struct TranslationBlock *page_next[2];
- target_ulong page_addr[2];
+ struct TranslationBlock *page_next[2];
+ target_ulong page_addr[2];
/* the following data are used to directly call another TB from
the code of this one. */
the two least significant bits of the pointers to tell what is
the next pointer: 0 = jmp_next[0], 1 = jmp_next[1], 2 =
jmp_first */
- struct TranslationBlock *jmp_next[2];
+ struct TranslationBlock *jmp_next[2];
struct TranslationBlock *jmp_first;
} TranslationBlock;
-static inline unsigned int tb_hash_func(target_ulong pc)
+static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
+{
+ target_ulong tmp;
+ tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
+ return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
+}
+
+static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
{
- return pc & (CODE_GEN_HASH_SIZE - 1);
+ target_ulong tmp;
+ tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
+ return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
+ (tmp & TB_JMP_ADDR_MASK));
}
static inline unsigned int tb_phys_hash_func(unsigned long pc)
TranslationBlock *tb_alloc(target_ulong pc);
void tb_flush(CPUState *env);
-void tb_link(TranslationBlock *tb);
-void tb_link_phys(TranslationBlock *tb,
+void tb_link_phys(TranslationBlock *tb,
target_ulong phys_pc, target_ulong phys_page2);
-extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
extern uint8_t *code_gen_ptr;
-/* find a translation block in the translation cache. If not found,
- return NULL and the pointer to the last element of the list in pptb */
-static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
- target_ulong pc,
- target_ulong cs_base,
- unsigned int flags)
-{
- TranslationBlock **ptb, *tb;
- unsigned int h;
-
- h = tb_hash_func(pc);
- ptb = &tb_hash[h];
- for(;;) {
- tb = *ptb;
- if (!tb)
- break;
- if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
- return tb;
- ptb = &tb->hash_next;
- }
- *pptb = ptb;
- return NULL;
-}
-
-
#if defined(USE_DIRECT_JUMP)
#if defined(__powerpc__)
}
#endif
-static inline void tb_set_jmp_target(TranslationBlock *tb,
+static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
unsigned long offset;
#else
/* set the jump target */
-static inline void tb_set_jmp_target(TranslationBlock *tb,
+static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
{
tb->tb_next[n] = addr;
#endif
-static inline void tb_add_jump(TranslationBlock *tb, int n,
+static inline void tb_add_jump(TranslationBlock *tb, int n,
TranslationBlock *tb_next)
{
/* NOTE: this test is only needed for thread safety */
if (!tb->jmp_next[n]) {
/* patch the native jump address */
tb_set_jmp_target(tb, n, (unsigned long)tb_next->tc_ptr);
-
+
/* add in TB jmp circular list */
tb->jmp_next[n] = tb_next->jmp_first;
tb_next->jmp_first = (TranslationBlock *)((long)(tb) | (n));
#define ASM_PREVIOUS_SECTION ".previous\n"
#endif
+#define ASM_OP_LABEL_NAME(n, opname) \
+ ASM_NAME(__op_label) #n "." ASM_NAME(opname)
+
#if defined(__powerpc__)
/* we patch the jump instruction directly */
#define GOTO_TB(opname, tbparam, n)\
do {\
asm volatile (ASM_DATA_SECTION\
- ASM_NAME(__op_label) #n "." ASM_NAME(opname) ":\n"\
+ ASM_OP_LABEL_NAME(n, opname) ":\n"\
".long 1f\n"\
ASM_PREVIOUS_SECTION \
"b " ASM_NAME(__op_jmp) #n "\n"\
#define GOTO_TB(opname, tbparam, n)\
do {\
asm volatile (".section .data\n"\
- ASM_NAME(__op_label) #n "." ASM_NAME(opname) ":\n"\
+ ASM_OP_LABEL_NAME(n, opname) ":\n"\
".long 1f\n"\
ASM_PREVIOUS_SECTION \
"jmp " ASM_NAME(__op_jmp) #n "\n"\
cache flushing, but slower because of indirect jump) */
#define GOTO_TB(opname, tbparam, n)\
do {\
- static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
- static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
+ static void __attribute__((used)) *dummy ## n = &&dummy_label ## n;\
+ static void __attribute__((used)) *__op_label ## n \
+ __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
label ## n: ;\
dummy_label ## n: ;\
#endif
-/* XXX: will be suppressed */
-#define JUMP_TB(opname, tbparam, n, eip)\
-do {\
- GOTO_TB(opname, tbparam, n);\
- T0 = (long)(tbparam) + (n);\
- EIP = (int32_t)eip;\
- EXIT_TB();\
-} while (0)
-
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
-#ifdef __powerpc__
+#if defined(__powerpc__)
static inline int testandset (int *p)
{
int ret;
: "cr0", "memory");
return ret;
}
-#endif
-
-#ifdef __i386__
+#elif defined(__i386__)
static inline int testandset (int *p)
{
long int readval = 0;
-
+
__asm__ __volatile__ ("lock; cmpxchgl %2, %0"
: "+m" (*p), "+a" (readval)
: "r" (1)
: "cc");
return readval;
}
-#endif
-
-#ifdef __x86_64__
+#elif defined(__x86_64__)
static inline int testandset (int *p)
{
long int readval = 0;
-
+
__asm__ __volatile__ ("lock; cmpxchgl %2, %0"
: "+m" (*p), "+a" (readval)
: "r" (1)
: "cc");
return readval;
}
-#endif
-
-#ifdef __s390__
+#elif defined(__s390__)
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__ ("0: cs %0,%1,0(%2)\n"
" jl 0b"
: "=&d" (ret)
- : "r" (1), "a" (p), "0" (*p)
+ : "r" (1), "a" (p), "0" (*p)
: "cc", "memory" );
return ret;
}
-#endif
-
-#ifdef __alpha__
+#elif defined(__alpha__)
static inline int testandset (int *p)
{
int ret;
: "m" (*p));
return ret;
}
-#endif
-
-#ifdef __sparc__
+#elif defined(__sparc__)
static inline int testandset (int *p)
{
int ret;
return (ret ? 1 : 0);
}
-#endif
-
-#ifdef __arm__
+#elif defined(__arm__)
static inline int testandset (int *spinlock)
{
register unsigned int ret;
__asm__ __volatile__("swp %0, %1, [%2]"
: "=r"(ret)
: "0"(1), "r"(spinlock));
-
+
return ret;
}
-#endif
-
-#ifdef __mc68000
+#elif defined(__mc68000)
static inline int testandset (int *p)
{
char ret;
: "cc","memory");
return ret;
}
-#endif
+#elif defined(__ia64)
-#ifdef __ia64
#include <ia64intrin.h>
static inline int testandset (int *p)
{
return __sync_lock_test_and_set (p, 1);
}
+#elif defined(__mips__)
+static inline int testandset (int *p)
+{
+ int ret;
+
+ __asm__ __volatile__ (
+ " .set push \n"
+ " .set noat \n"
+ " .set mips2 \n"
+ "1: li $1, 1 \n"
+ " ll %0, %1 \n"
+ " sc $1, %1 \n"
+ " beqz $1, 1b \n"
+ " .set pop "
+ : "=r" (ret), "+R" (*p)
+ :
+ : "memory");
+
+ return ret;
+}
+#else
+#error unimplemented CPU support
#endif
typedef int spinlock_t;
#if !defined(CONFIG_USER_ONLY)
-void tlb_fill(target_ulong addr, int is_write, int is_user,
+void tlb_fill(target_ulong addr, int is_write, int mmu_idx,
void *retaddr);
-#define ACCESS_TYPE 3
+#define ACCESS_TYPE (NB_MMU_MODES + 1)
#define MEMSUFFIX _code
#define env cpu_single_env
/* NOTE: this function can trigger an exception */
/* NOTE2: the returned address is not exactly the physical address: it
is the offset relative to phys_ram_base */
-/* XXX: i386 target specific */
static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
{
- int is_user, index, pd;
+ int mmu_idx, index, pd;
index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
-#if defined(TARGET_I386)
- is_user = ((env->hflags & HF_CPL_MASK) == 3);
-#elif defined (TARGET_PPC)
- is_user = msr_pr;
-#elif defined (TARGET_MIPS)
- is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
-#elif defined (TARGET_SPARC)
- is_user = (env->psrs == 0);
-#else
-#error "Unimplemented !"
-#endif
- if (__builtin_expect(env->tlb_read[is_user][index].address !=
+ mmu_idx = cpu_mmu_index(env);
+ if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_code !=
(addr & TARGET_PAGE_MASK), 0)) {
ldub_code(addr);
}
- pd = env->tlb_read[is_user][index].address & ~TARGET_PAGE_MASK;
- if (pd > IO_MEM_ROM) {
- cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x%08lx\n", addr);
+ pd = env->tlb_table[mmu_idx][index].addr_code & ~TARGET_PAGE_MASK;
+ if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
+#if defined(TARGET_SPARC) || defined(TARGET_MIPS)
+ do_unassigned_access(addr, 0, 1, 0);
+#else
+ cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
+#endif
}
- return addr + env->tlb_read[is_user][index].addend - (unsigned long)phys_ram_base;
+ return addr + env->tlb_table[mmu_idx][index].addend - (unsigned long)phys_ram_base;
}
#endif
-
#ifdef USE_KQEMU
+#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
+
int kqemu_init(CPUState *env);
int kqemu_cpu_exec(CPUState *env);
void kqemu_flush_page(CPUState *env, target_ulong addr);
void kqemu_flush(CPUState *env, int global);
+void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
+void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
+void kqemu_cpu_interrupt(CPUState *env);
+void kqemu_record_dump(void);
static inline int kqemu_is_ok(CPUState *env)
{
return(env->kqemu_enabled &&
- (env->hflags & HF_CPL_MASK) == 3 &&
- (env->eflags & IOPL_MASK) != IOPL_MASK &&
- (env->cr[0] & CR0_PE_MASK) &&
+ (env->cr[0] & CR0_PE_MASK) &&
+ !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
(env->eflags & IF_MASK) &&
!(env->eflags & VM_MASK) &&
- (env->ldt.limit == 0 || env->ldt.limit == 0x27));
+ (env->kqemu_enabled == 2 ||
+ ((env->hflags & HF_CPL_MASK) == 3 &&
+ (env->eflags & IOPL_MASK) != IOPL_MASK)));
}
#endif