#endif /* CONFIG_LINUX */
-static CPUArchState *next_cpu;
+static CPUState *next_cpu;
-static bool cpu_thread_is_idle(CPUArchState *env)
+bool cpu_is_stopped(CPUState *cpu)
{
- CPUState *cpu = ENV_GET_CPU(env);
+ return cpu->stopped || !runstate_is_running();
+}
+static bool cpu_thread_is_idle(CPUState *cpu)
+{
if (cpu->stop || cpu->queued_work_first) {
return false;
}
- if (cpu->stopped || !runstate_is_running()) {
+ if (cpu_is_stopped(cpu)) {
return true;
}
- if (!env->halted || qemu_cpu_has_work(cpu) ||
- kvm_async_interrupts_enabled()) {
+ if (!cpu->halted || qemu_cpu_has_work(cpu) ||
+ kvm_halt_in_kernel()) {
return false;
}
return true;
static bool all_cpu_threads_idle(void)
{
- CPUArchState *env;
+ CPUState *cpu;
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- if (!cpu_thread_is_idle(env)) {
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
+ if (!cpu_thread_is_idle(cpu)) {
return false;
}
}
int64_t dummy;
} TimersState;
-TimersState timers_state;
+static TimersState timers_state;
/* Return the virtual CPU time, based on the instruction counter. */
int64_t cpu_get_icount(void)
{
int64_t icount;
- CPUArchState *env = cpu_single_env;
+ CPUState *cpu = current_cpu;
icount = qemu_icount;
- if (env) {
+ if (cpu) {
+ CPUArchState *env = cpu->env_ptr;
if (!can_do_io(env)) {
fprintf(stderr, "Bad clock read\n");
}
return;
}
cur_time = cpu_get_clock();
- cur_icount = qemu_get_clock_ns(vm_clock);
+ cur_icount = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
delta = cur_icount - cur_time;
/* FIXME: This is a very crude algorithm, somewhat prone to oscillation. */
if (delta > 0
static void icount_adjust_rt(void *opaque)
{
- qemu_mod_timer(icount_rt_timer,
- qemu_get_clock_ms(rt_clock) + 1000);
+ timer_mod(icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000);
icount_adjust();
}
static void icount_adjust_vm(void *opaque)
{
- qemu_mod_timer(icount_vm_timer,
- qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
+ timer_mod(icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ get_ticks_per_sec() / 10);
icount_adjust();
}
}
if (runstate_is_running()) {
- int64_t clock = qemu_get_clock_ns(rt_clock);
+ int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
int64_t warp_delta = clock - vm_clock_warp_start;
if (use_icount == 1) {
qemu_icount_bias += warp_delta;
} else {
/*
- * In adaptive mode, do not let the vm_clock run too
+ * In adaptive mode, do not let QEMU_CLOCK_VIRTUAL run too
* far ahead of real time.
*/
int64_t cur_time = cpu_get_clock();
- int64_t cur_icount = qemu_get_clock_ns(vm_clock);
+ int64_t cur_icount = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
int64_t delta = cur_time - cur_icount;
qemu_icount_bias += MIN(warp_delta, delta);
}
- if (qemu_clock_expired(vm_clock)) {
- qemu_notify_event();
+ if (qemu_clock_expired(QEMU_CLOCK_VIRTUAL)) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
}
}
vm_clock_warp_start = -1;
void qtest_clock_warp(int64_t dest)
{
- int64_t clock = qemu_get_clock_ns(vm_clock);
+ int64_t clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
assert(qtest_enabled());
while (clock < dest) {
- int64_t deadline = qemu_clock_deadline(vm_clock);
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
int64_t warp = MIN(dest - clock, deadline);
qemu_icount_bias += warp;
- qemu_run_timers(vm_clock);
- clock = qemu_get_clock_ns(vm_clock);
+ qemu_clock_run_timers(QEMU_CLOCK_VIRTUAL);
+ clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
}
- qemu_notify_event();
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
}
-void qemu_clock_warp(QEMUClock *clock)
+void qemu_clock_warp(QEMUClockType type)
{
int64_t deadline;
* applicable to other clocks. But a clock argument removes the
* need for if statements all over the place.
*/
- if (clock != vm_clock || !use_icount) {
+ if (type != QEMU_CLOCK_VIRTUAL || !use_icount) {
return;
}
/*
- * If the CPUs have been sleeping, advance the vm_clock timer now. This
- * ensures that the deadline for the timer is computed correctly below.
+ * If the CPUs have been sleeping, advance QEMU_CLOCK_VIRTUAL timer now.
+ * This ensures that the deadline for the timer is computed correctly below.
* This also makes sure that the insn counter is synchronized before the
* CPU starts running, in case the CPU is woken by an event other than
- * the earliest vm_clock timer.
+ * the earliest QEMU_CLOCK_VIRTUAL timer.
*/
icount_warp_rt(NULL);
- if (!all_cpu_threads_idle() || !qemu_clock_has_timers(vm_clock)) {
- qemu_del_timer(icount_warp_timer);
+ if (!all_cpu_threads_idle() || !qemu_clock_has_timers(QEMU_CLOCK_VIRTUAL)) {
+ timer_del(icount_warp_timer);
return;
}
return;
}
- vm_clock_warp_start = qemu_get_clock_ns(rt_clock);
- deadline = qemu_clock_deadline(vm_clock);
+ vm_clock_warp_start = qemu_clock_get_ns(QEMU_CLOCK_REALTIME);
+ /* We want to use the earliest deadline from ALL vm_clocks */
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
+
+ /* Maintain prior (possibly buggy) behaviour where if no deadline
+ * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
+ * INT32_MAX nanoseconds ahead, we still use INT32_MAX
+ * nanoseconds.
+ */
+ if ((deadline < 0) || (deadline > INT32_MAX)) {
+ deadline = INT32_MAX;
+ }
+
if (deadline > 0) {
/*
- * Ensure the vm_clock proceeds even when the virtual CPU goes to
+ * Ensure QEMU_CLOCK_VIRTUAL proceeds even when the virtual CPU goes to
* sleep. Otherwise, the CPU might be waiting for a future timer
* interrupt to wake it up, but the interrupt never comes because
* the vCPU isn't running any insns and thus doesn't advance the
- * vm_clock.
+ * QEMU_CLOCK_VIRTUAL.
*
* An extreme solution for this problem would be to never let VCPUs
- * sleep in icount mode if there is a pending vm_clock timer; rather
- * time could just advance to the next vm_clock event. Instead, we
- * do stop VCPUs and only advance vm_clock after some "real" time,
- * (related to the time left until the next event) has passed. This
- * rt_clock timer will do this. This avoids that the warps are too
- * visible externally---for example, you will not be sending network
- * packets continuously instead of every 100ms.
+ * sleep in icount mode if there is a pending QEMU_CLOCK_VIRTUAL
+ * timer; rather time could just advance to the next QEMU_CLOCK_VIRTUAL
+ * event. Instead, we do stop VCPUs and only advance QEMU_CLOCK_VIRTUAL
+ * after some e"real" time, (related to the time left until the next
+ * event) has passed. The QEMU_CLOCK_REALTIME timer will do this.
+ * This avoids that the warps are visible externally; for example,
+ * you will not be sending network packets continuously instead of
+ * every 100ms.
*/
- qemu_mod_timer(icount_warp_timer, vm_clock_warp_start + deadline);
- } else {
- qemu_notify_event();
+ timer_mod(icount_warp_timer, vm_clock_warp_start + deadline);
+ } else if (deadline == 0) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
}
}
return;
}
- icount_warp_timer = qemu_new_timer_ns(rt_clock, icount_warp_rt, NULL);
+ icount_warp_timer = timer_new_ns(QEMU_CLOCK_REALTIME,
+ icount_warp_rt, NULL);
if (strcmp(option, "auto") != 0) {
icount_time_shift = strtol(option, NULL, 0);
use_icount = 1;
the virtual time trigger catches emulated time passing too fast.
Realtime triggers occur even when idle, so use them less frequently
than VM triggers. */
- icount_rt_timer = qemu_new_timer_ms(rt_clock, icount_adjust_rt, NULL);
- qemu_mod_timer(icount_rt_timer,
- qemu_get_clock_ms(rt_clock) + 1000);
- icount_vm_timer = qemu_new_timer_ns(vm_clock, icount_adjust_vm, NULL);
- qemu_mod_timer(icount_vm_timer,
- qemu_get_clock_ns(vm_clock) + get_ticks_per_sec() / 10);
+ icount_rt_timer = timer_new_ms(QEMU_CLOCK_REALTIME,
+ icount_adjust_rt, NULL);
+ timer_mod(icount_rt_timer,
+ qemu_clock_get_ms(QEMU_CLOCK_REALTIME) + 1000);
+ icount_vm_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL,
+ icount_adjust_vm, NULL);
+ timer_mod(icount_vm_timer,
+ qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
+ get_ticks_per_sec() / 10);
}
/***********************************************************/
void hw_error(const char *fmt, ...)
{
va_list ap;
- CPUArchState *env;
CPUState *cpu;
va_start(ap, fmt);
fprintf(stderr, "qemu: hardware error: ");
vfprintf(stderr, fmt, ap);
fprintf(stderr, "\n");
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- cpu = ENV_GET_CPU(env);
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
fprintf(stderr, "CPU #%d:\n", cpu->cpu_index);
- cpu_dump_state(env, stderr, fprintf, CPU_DUMP_FPU);
+ cpu_dump_state(cpu, stderr, fprintf, CPU_DUMP_FPU);
}
va_end(ap);
abort();
void cpu_synchronize_all_states(void)
{
- CPUArchState *cpu;
+ CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_state(cpu);
void cpu_synchronize_all_post_reset(void)
{
- CPUArchState *cpu;
+ CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_reset(cpu);
void cpu_synchronize_all_post_init(void)
{
- CPUArchState *cpu;
+ CPUState *cpu;
for (cpu = first_cpu; cpu; cpu = cpu->next_cpu) {
cpu_synchronize_post_init(cpu);
}
}
-bool cpu_is_stopped(CPUState *cpu)
+static int do_vm_stop(RunState state)
{
- return !runstate_is_running() || cpu->stopped;
-}
+ int ret = 0;
-static void do_vm_stop(RunState state)
-{
if (runstate_is_running()) {
cpu_disable_ticks();
pause_all_vcpus();
runstate_set(state);
vm_state_notify(0, state);
- bdrv_drain_all();
- bdrv_flush_all();
monitor_protocol_event(QEVENT_STOP, NULL);
}
+
+ bdrv_drain_all();
+ ret = bdrv_flush_all();
+
+ return ret;
}
static bool cpu_can_run(CPUState *cpu)
if (cpu->stop) {
return false;
}
- if (cpu->stopped || !runstate_is_running()) {
+ if (cpu_is_stopped(cpu)) {
return false;
}
return true;
}
-static void cpu_handle_guest_debug(CPUArchState *env)
+static void cpu_handle_guest_debug(CPUState *cpu)
{
- CPUState *cpu = ENV_GET_CPU(env);
-
- gdb_set_stop_cpu(env);
+ gdb_set_stop_cpu(cpu);
qemu_system_debug_request();
cpu->stopped = true;
}
static void cpu_signal(int sig)
{
- if (cpu_single_env) {
- cpu_exit(cpu_single_env);
+ if (current_cpu) {
+ cpu_exit(current_cpu);
}
exit_request = 1;
}
{
}
-static void qemu_kvm_init_cpu_signals(CPUArchState *env)
+static void qemu_kvm_init_cpu_signals(CPUState *cpu)
{
int r;
sigset_t set;
pthread_sigmask(SIG_BLOCK, NULL, &set);
sigdelset(&set, SIG_IPI);
sigdelset(&set, SIGBUS);
- r = kvm_set_signal_mask(env, &set);
+ r = kvm_set_signal_mask(cpu, &set);
if (r) {
fprintf(stderr, "kvm_set_signal_mask: %s\n", strerror(-r));
exit(1);
}
#else /* _WIN32 */
-static void qemu_kvm_init_cpu_signals(CPUArchState *env)
+static void qemu_kvm_init_cpu_signals(CPUState *cpu)
{
abort();
}
wi.func = func;
wi.data = data;
+ wi.free = false;
if (cpu->queued_work_first == NULL) {
cpu->queued_work_first = &wi;
} else {
qemu_cpu_kick(cpu);
while (!wi.done) {
- CPUArchState *self_env = cpu_single_env;
+ CPUState *self_cpu = current_cpu;
qemu_cond_wait(&qemu_work_cond, &qemu_global_mutex);
- cpu_single_env = self_env;
+ current_cpu = self_cpu;
+ }
+}
+
+void async_run_on_cpu(CPUState *cpu, void (*func)(void *data), void *data)
+{
+ struct qemu_work_item *wi;
+
+ if (qemu_cpu_is_self(cpu)) {
+ func(data);
+ return;
+ }
+
+ wi = g_malloc0(sizeof(struct qemu_work_item));
+ wi->func = func;
+ wi->data = data;
+ wi->free = true;
+ if (cpu->queued_work_first == NULL) {
+ cpu->queued_work_first = wi;
+ } else {
+ cpu->queued_work_last->next = wi;
}
+ cpu->queued_work_last = wi;
+ wi->next = NULL;
+ wi->done = false;
+
+ qemu_cpu_kick(cpu);
}
static void flush_queued_work(CPUState *cpu)
cpu->queued_work_first = wi->next;
wi->func(wi->data);
wi->done = true;
+ if (wi->free) {
+ g_free(wi);
+ }
}
cpu->queued_work_last = NULL;
qemu_cond_broadcast(&qemu_work_cond);
static void qemu_tcg_wait_io_event(void)
{
- CPUArchState *env;
+ CPUState *cpu;
while (all_cpu_threads_idle()) {
/* Start accounting real time to the virtual clock if the CPUs
are idle. */
- qemu_clock_warp(vm_clock);
+ qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
}
qemu_cond_wait(&qemu_io_proceeded_cond, &qemu_global_mutex);
}
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- qemu_wait_io_event_common(ENV_GET_CPU(env));
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
+ qemu_wait_io_event_common(cpu);
}
}
-static void qemu_kvm_wait_io_event(CPUArchState *env)
+static void qemu_kvm_wait_io_event(CPUState *cpu)
{
- CPUState *cpu = ENV_GET_CPU(env);
-
- while (cpu_thread_is_idle(env)) {
+ while (cpu_thread_is_idle(cpu)) {
qemu_cond_wait(cpu->halt_cond, &qemu_global_mutex);
}
static void *qemu_kvm_cpu_thread_fn(void *arg)
{
- CPUArchState *env = arg;
- CPUState *cpu = ENV_GET_CPU(env);
+ CPUState *cpu = arg;
int r;
qemu_mutex_lock(&qemu_global_mutex);
qemu_thread_get_self(cpu->thread);
cpu->thread_id = qemu_get_thread_id();
- cpu_single_env = env;
+ current_cpu = cpu;
r = kvm_init_vcpu(cpu);
if (r < 0) {
exit(1);
}
- qemu_kvm_init_cpu_signals(env);
+ qemu_kvm_init_cpu_signals(cpu);
/* signal CPU creation */
cpu->created = true;
while (1) {
if (cpu_can_run(cpu)) {
- r = kvm_cpu_exec(env);
+ r = kvm_cpu_exec(cpu);
if (r == EXCP_DEBUG) {
- cpu_handle_guest_debug(env);
+ cpu_handle_guest_debug(cpu);
}
}
- qemu_kvm_wait_io_event(env);
+ qemu_kvm_wait_io_event(cpu);
}
return NULL;
fprintf(stderr, "qtest is not supported under Windows\n");
exit(1);
#else
- CPUArchState *env = arg;
- CPUState *cpu = ENV_GET_CPU(env);
+ CPUState *cpu = arg;
sigset_t waitset;
int r;
cpu->created = true;
qemu_cond_signal(&qemu_cpu_cond);
- cpu_single_env = env;
+ current_cpu = cpu;
while (1) {
- cpu_single_env = NULL;
+ current_cpu = NULL;
qemu_mutex_unlock_iothread();
do {
int sig;
exit(1);
}
qemu_mutex_lock_iothread();
- cpu_single_env = env;
+ current_cpu = cpu;
qemu_wait_io_event_common(cpu);
}
static void tcg_exec_all(void);
+static void tcg_signal_cpu_creation(CPUState *cpu, void *data)
+{
+ cpu->thread_id = qemu_get_thread_id();
+ cpu->created = true;
+}
+
static void *qemu_tcg_cpu_thread_fn(void *arg)
{
CPUState *cpu = arg;
- CPUArchState *env;
qemu_tcg_init_cpu_signals();
qemu_thread_get_self(cpu->thread);
- /* signal CPU creation */
qemu_mutex_lock(&qemu_global_mutex);
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- cpu = ENV_GET_CPU(env);
- cpu->thread_id = qemu_get_thread_id();
- cpu->created = true;
- }
+ qemu_for_each_cpu(tcg_signal_cpu_creation, NULL);
qemu_cond_signal(&qemu_cpu_cond);
/* wait for initial kick-off after machine start */
- while (ENV_GET_CPU(first_cpu)->stopped) {
+ while (first_cpu->stopped) {
qemu_cond_wait(tcg_halt_cond, &qemu_global_mutex);
/* process any pending work */
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- qemu_wait_io_event_common(ENV_GET_CPU(env));
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
+ qemu_wait_io_event_common(cpu);
}
}
while (1) {
tcg_exec_all();
- if (use_icount && qemu_clock_deadline(vm_clock) <= 0) {
- qemu_notify_event();
+
+ if (use_icount) {
+ int64_t deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
+
+ if (deadline == 0) {
+ qemu_clock_notify(QEMU_CLOCK_VIRTUAL);
+ }
}
qemu_tcg_wait_io_event();
}
}
#else /* _WIN32 */
if (!qemu_cpu_is_self(cpu)) {
- SuspendThread(cpu->hThread);
+ CONTEXT tcgContext;
+
+ if (SuspendThread(cpu->hThread) == (DWORD)-1) {
+ fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
+ GetLastError());
+ exit(1);
+ }
+
+ /* On multi-core systems, we are not sure that the thread is actually
+ * suspended until we can get the context.
+ */
+ tcgContext.ContextFlags = CONTEXT_CONTROL;
+ while (GetThreadContext(cpu->hThread, &tcgContext) != 0) {
+ continue;
+ }
+
cpu_signal(0);
- ResumeThread(cpu->hThread);
+
+ if (ResumeThread(cpu->hThread) == (DWORD)-1) {
+ fprintf(stderr, "qemu:%s: GetLastError:%lu\n", __func__,
+ GetLastError());
+ exit(1);
+ }
}
#endif
}
void qemu_cpu_kick_self(void)
{
#ifndef _WIN32
- assert(cpu_single_env);
- CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
+ assert(current_cpu);
- if (!cpu_single_cpu->thread_kicked) {
- qemu_cpu_kick_thread(cpu_single_cpu);
- cpu_single_cpu->thread_kicked = true;
+ if (!current_cpu->thread_kicked) {
+ qemu_cpu_kick_thread(current_cpu);
+ current_cpu->thread_kicked = true;
}
#else
abort();
static bool qemu_in_vcpu_thread(void)
{
- return cpu_single_env && qemu_cpu_is_self(ENV_GET_CPU(cpu_single_env));
+ return current_cpu && qemu_cpu_is_self(current_cpu);
}
void qemu_mutex_lock_iothread(void)
} else {
iothread_requesting_mutex = true;
if (qemu_mutex_trylock(&qemu_global_mutex)) {
- qemu_cpu_kick_thread(ENV_GET_CPU(first_cpu));
+ qemu_cpu_kick_thread(first_cpu);
qemu_mutex_lock(&qemu_global_mutex);
}
iothread_requesting_mutex = false;
static int all_vcpus_paused(void)
{
- CPUArchState *penv = first_cpu;
+ CPUState *cpu = first_cpu;
- while (penv) {
- CPUState *pcpu = ENV_GET_CPU(penv);
- if (!pcpu->stopped) {
+ while (cpu) {
+ if (!cpu->stopped) {
return 0;
}
- penv = penv->next_cpu;
+ cpu = cpu->next_cpu;
}
return 1;
void pause_all_vcpus(void)
{
- CPUArchState *penv = first_cpu;
+ CPUState *cpu = first_cpu;
- qemu_clock_enable(vm_clock, false);
- while (penv) {
- CPUState *pcpu = ENV_GET_CPU(penv);
- pcpu->stop = true;
- qemu_cpu_kick(pcpu);
- penv = penv->next_cpu;
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, false);
+ while (cpu) {
+ cpu->stop = true;
+ qemu_cpu_kick(cpu);
+ cpu = cpu->next_cpu;
}
if (qemu_in_vcpu_thread()) {
cpu_stop_current();
if (!kvm_enabled()) {
- while (penv) {
- CPUState *pcpu = ENV_GET_CPU(penv);
- pcpu->stop = 0;
- pcpu->stopped = true;
- penv = penv->next_cpu;
+ cpu = first_cpu;
+ while (cpu) {
+ cpu->stop = false;
+ cpu->stopped = true;
+ cpu = cpu->next_cpu;
}
return;
}
while (!all_vcpus_paused()) {
qemu_cond_wait(&qemu_pause_cond, &qemu_global_mutex);
- penv = first_cpu;
- while (penv) {
- qemu_cpu_kick(ENV_GET_CPU(penv));
- penv = penv->next_cpu;
+ cpu = first_cpu;
+ while (cpu) {
+ qemu_cpu_kick(cpu);
+ cpu = cpu->next_cpu;
}
}
}
+void cpu_resume(CPUState *cpu)
+{
+ cpu->stop = false;
+ cpu->stopped = false;
+ qemu_cpu_kick(cpu);
+}
+
void resume_all_vcpus(void)
{
- CPUArchState *penv = first_cpu;
+ CPUState *cpu = first_cpu;
- qemu_clock_enable(vm_clock, true);
- while (penv) {
- CPUState *pcpu = ENV_GET_CPU(penv);
- pcpu->stop = false;
- pcpu->stopped = false;
- qemu_cpu_kick(pcpu);
- penv = penv->next_cpu;
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL, true);
+ while (cpu) {
+ cpu_resume(cpu);
+ cpu = cpu->next_cpu;
}
}
}
}
-static void qemu_kvm_start_vcpu(CPUArchState *env)
+static void qemu_kvm_start_vcpu(CPUState *cpu)
{
- CPUState *cpu = ENV_GET_CPU(env);
-
cpu->thread = g_malloc0(sizeof(QemuThread));
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(cpu->halt_cond);
- qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, env,
+ qemu_thread_create(cpu->thread, qemu_kvm_cpu_thread_fn, cpu,
QEMU_THREAD_JOINABLE);
while (!cpu->created) {
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
}
-static void qemu_dummy_start_vcpu(CPUArchState *env)
+static void qemu_dummy_start_vcpu(CPUState *cpu)
{
- CPUState *cpu = ENV_GET_CPU(env);
-
cpu->thread = g_malloc0(sizeof(QemuThread));
cpu->halt_cond = g_malloc0(sizeof(QemuCond));
qemu_cond_init(cpu->halt_cond);
- qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, env,
+ qemu_thread_create(cpu->thread, qemu_dummy_cpu_thread_fn, cpu,
QEMU_THREAD_JOINABLE);
while (!cpu->created) {
qemu_cond_wait(&qemu_cpu_cond, &qemu_global_mutex);
}
}
-void qemu_init_vcpu(void *_env)
+void qemu_init_vcpu(CPUState *cpu)
{
- CPUArchState *env = _env;
- CPUState *cpu = ENV_GET_CPU(env);
-
cpu->nr_cores = smp_cores;
cpu->nr_threads = smp_threads;
cpu->stopped = true;
if (kvm_enabled()) {
- qemu_kvm_start_vcpu(env);
+ qemu_kvm_start_vcpu(cpu);
} else if (tcg_enabled()) {
qemu_tcg_init_vcpu(cpu);
} else {
- qemu_dummy_start_vcpu(env);
+ qemu_dummy_start_vcpu(cpu);
}
}
void cpu_stop_current(void)
{
- if (cpu_single_env) {
- CPUState *cpu_single_cpu = ENV_GET_CPU(cpu_single_env);
- cpu_single_cpu->stop = false;
- cpu_single_cpu->stopped = true;
- cpu_exit(cpu_single_env);
+ if (current_cpu) {
+ current_cpu->stop = false;
+ current_cpu->stopped = true;
+ cpu_exit(current_cpu);
qemu_cond_signal(&qemu_pause_cond);
}
}
-void vm_stop(RunState state)
+int vm_stop(RunState state)
{
if (qemu_in_vcpu_thread()) {
qemu_system_vmstop_request(state);
* vm_stop() has been requested.
*/
cpu_stop_current();
- return;
+ return 0;
}
- do_vm_stop(state);
+
+ return do_vm_stop(state);
}
/* does a state transition even if the VM is already stopped,
current state is forgotten forever */
-void vm_stop_force_state(RunState state)
+int vm_stop_force_state(RunState state)
{
if (runstate_is_running()) {
- vm_stop(state);
+ return vm_stop(state);
} else {
runstate_set(state);
+ /* Make sure to return an error if the flush in a previous vm_stop()
+ * failed. */
+ return bdrv_flush_all();
}
}
#endif
if (use_icount) {
int64_t count;
+ int64_t deadline;
int decr;
qemu_icount -= (env->icount_decr.u16.low + env->icount_extra);
env->icount_decr.u16.low = 0;
env->icount_extra = 0;
- count = qemu_icount_round(qemu_clock_deadline(vm_clock));
+ deadline = qemu_clock_deadline_ns_all(QEMU_CLOCK_VIRTUAL);
+
+ /* Maintain prior (possibly buggy) behaviour where if no deadline
+ * was set (as there is no QEMU_CLOCK_VIRTUAL timer) or it is more than
+ * INT32_MAX nanoseconds ahead, we still use INT32_MAX
+ * nanoseconds.
+ */
+ if ((deadline < 0) || (deadline > INT32_MAX)) {
+ deadline = INT32_MAX;
+ }
+
+ count = qemu_icount_round(deadline);
qemu_icount += count;
decr = (count > 0xffff) ? 0xffff : count;
count -= decr;
{
int r;
- /* Account partial waits to the vm_clock. */
- qemu_clock_warp(vm_clock);
+ /* Account partial waits to QEMU_CLOCK_VIRTUAL. */
+ qemu_clock_warp(QEMU_CLOCK_VIRTUAL);
if (next_cpu == NULL) {
next_cpu = first_cpu;
}
for (; next_cpu != NULL && !exit_request; next_cpu = next_cpu->next_cpu) {
- CPUArchState *env = next_cpu;
- CPUState *cpu = ENV_GET_CPU(env);
+ CPUState *cpu = next_cpu;
+ CPUArchState *env = cpu->env_ptr;
- qemu_clock_enable(vm_clock,
- (env->singlestep_enabled & SSTEP_NOTIMER) == 0);
+ qemu_clock_enable(QEMU_CLOCK_VIRTUAL,
+ (cpu->singlestep_enabled & SSTEP_NOTIMER) == 0);
if (cpu_can_run(cpu)) {
r = tcg_cpu_exec(env);
if (r == EXCP_DEBUG) {
- cpu_handle_guest_debug(env);
+ cpu_handle_guest_debug(cpu);
break;
}
} else if (cpu->stop || cpu->stopped) {
void set_numa_modes(void)
{
- CPUArchState *env;
CPUState *cpu;
int i;
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- cpu = ENV_GET_CPU(env);
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
for (i = 0; i < nb_numa_nodes; i++) {
if (test_bit(cpu->cpu_index, node_cpumask[i])) {
cpu->numa_node = i;
}
}
-void set_cpu_log(const char *optarg)
-{
- int mask;
- const CPULogItem *item;
-
- mask = cpu_str_to_log_mask(optarg);
- if (!mask) {
- printf("Log items (comma separated):\n");
- for (item = cpu_log_items; item->mask != 0; item++) {
- printf("%-10s %s\n", item->name, item->help);
- }
- exit(1);
- }
- cpu_set_log(mask);
-}
-
-void set_cpu_log_filename(const char *optarg)
-{
- cpu_set_log_filename(optarg);
-}
-
void list_cpus(FILE *f, fprintf_function cpu_fprintf, const char *optarg)
{
/* XXX: implement xxx_cpu_list for targets that still miss it */
CpuInfoList *qmp_query_cpus(Error **errp)
{
CpuInfoList *head = NULL, *cur_item = NULL;
- CPUArchState *env;
+ CPUState *cpu;
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
- CPUState *cpu = ENV_GET_CPU(env);
+ for (cpu = first_cpu; cpu != NULL; cpu = cpu->next_cpu) {
CpuInfoList *info;
+#if defined(TARGET_I386)
+ X86CPU *x86_cpu = X86_CPU(cpu);
+ CPUX86State *env = &x86_cpu->env;
+#elif defined(TARGET_PPC)
+ PowerPCCPU *ppc_cpu = POWERPC_CPU(cpu);
+ CPUPPCState *env = &ppc_cpu->env;
+#elif defined(TARGET_SPARC)
+ SPARCCPU *sparc_cpu = SPARC_CPU(cpu);
+ CPUSPARCState *env = &sparc_cpu->env;
+#elif defined(TARGET_MIPS)
+ MIPSCPU *mips_cpu = MIPS_CPU(cpu);
+ CPUMIPSState *env = &mips_cpu->env;
+#endif
- cpu_synchronize_state(env);
+ cpu_synchronize_state(cpu);
info = g_malloc0(sizeof(*info));
info->value = g_malloc0(sizeof(*info->value));
info->value->CPU = cpu->cpu_index;
- info->value->current = (env == first_cpu);
- info->value->halted = env->halted;
+ info->value->current = (cpu == first_cpu);
+ info->value->halted = cpu->halted;
info->value->thread_id = cpu->thread_id;
#if defined(TARGET_I386)
info->value->has_pc = true;
{
FILE *f;
uint32_t l;
- CPUArchState *env;
CPUState *cpu;
uint8_t buf[1024];
cpu_index = 0;
}
- for (env = first_cpu; env; env = env->next_cpu) {
- cpu = ENV_GET_CPU(env);
- if (cpu_index == cpu->cpu_index) {
- break;
- }
- }
-
- if (env == NULL) {
+ cpu = qemu_get_cpu(cpu_index);
+ if (cpu == NULL) {
error_set(errp, QERR_INVALID_PARAMETER_VALUE, "cpu-index",
"a CPU number");
return;
f = fopen(filename, "wb");
if (!f) {
- error_set(errp, QERR_OPEN_FILE_FAILED, filename);
+ error_setg_file_open(errp, errno, filename);
return;
}
l = sizeof(buf);
if (l > size)
l = size;
- cpu_memory_rw_debug(env, addr, buf, l, 0);
+ cpu_memory_rw_debug(cpu, addr, buf, l, 0);
if (fwrite(buf, 1, l, f) != l) {
error_set(errp, QERR_IO_ERROR);
goto exit;
f = fopen(filename, "wb");
if (!f) {
- error_set(errp, QERR_OPEN_FILE_FAILED, filename);
+ error_setg_file_open(errp, errno, filename);
return;
}
void qmp_inject_nmi(Error **errp)
{
#if defined(TARGET_I386)
- CPUArchState *env;
+ CPUState *cs;
+
+ for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
+ X86CPU *cpu = X86_CPU(cs);
+ CPUX86State *env = &cpu->env;
- for (env = first_cpu; env != NULL; env = env->next_cpu) {
if (!env->apic_state) {
- cpu_interrupt(env, CPU_INTERRUPT_NMI);
+ cpu_interrupt(cs, CPU_INTERRUPT_NMI);
} else {
apic_deliver_nmi(env->apic_state);
}
}
+#elif defined(TARGET_S390X)
+ CPUState *cs;
+ S390CPU *cpu;
+
+ for (cs = first_cpu; cs != NULL; cs = cs->next_cpu) {
+ cpu = S390_CPU(cs);
+ if (cpu->env.cpu_num == monitor_get_cpu_index()) {
+ if (s390_cpu_restart(S390_CPU(cs)) == -1) {
+ error_set(errp, QERR_UNSUPPORTED);
+ return;
+ }
+ break;
+ }
+ }
#else
error_set(errp, QERR_UNSUPPORTED);
#endif