#define tostring(s) #s
#endif
-#if GCC_MAJOR < 3
+#if __GNUC__ < 3
#define __builtin_expect(x, n) (x)
#endif
extern uint16_t gen_opc_buf[OPC_BUF_SIZE];
extern uint32_t gen_opparam_buf[OPPARAM_BUF_SIZE];
-extern uint32_t gen_opc_pc[OPC_BUF_SIZE];
+extern long gen_labels[OPC_BUF_SIZE];
+extern int nb_gen_labels;
+extern target_ulong gen_opc_pc[OPC_BUF_SIZE];
+extern target_ulong gen_opc_npc[OPC_BUF_SIZE];
extern uint8_t gen_opc_cc_op[OPC_BUF_SIZE];
extern uint8_t gen_opc_instr_start[OPC_BUF_SIZE];
-
+extern target_ulong gen_opc_jump_pc[2];
+extern uint32_t gen_opc_hflags[OPC_BUF_SIZE];
+
+typedef void (GenOpFunc)(void);
+typedef void (GenOpFunc1)(long);
+typedef void (GenOpFunc2)(long, long);
+typedef void (GenOpFunc3)(long, long, long);
+
#if defined(TARGET_I386)
void optimize_flags_init(void);
int cpu_gen_code(CPUState *env, struct TranslationBlock *tb,
int max_code_size, int *gen_code_size_ptr);
int cpu_restore_state(struct TranslationBlock *tb,
- CPUState *env, unsigned long searched_pc);
-void cpu_exec_init(void);
-int page_unprotect(unsigned long address);
-void tb_invalidate_page(unsigned long address);
-void tlb_flush_page(CPUState *env, uint32_t addr);
-void tlb_flush_page_write(CPUState *env, uint32_t addr);
-void tlb_flush(CPUState *env);
+ CPUState *env, unsigned long searched_pc,
+ void *puc);
+int cpu_gen_code_copy(CPUState *env, struct TranslationBlock *tb,
+ int max_code_size, int *gen_code_size_ptr);
+int cpu_restore_state_copy(struct TranslationBlock *tb,
+ CPUState *env, unsigned long searched_pc,
+ void *puc);
+void cpu_resume_from_signal(CPUState *env1, void *puc);
+void cpu_exec_init(CPUState *env);
+int page_unprotect(target_ulong address, unsigned long pc, void *puc);
+void tb_invalidate_phys_page_range(target_ulong start, target_ulong end,
+ int is_cpu_write_access);
+void tb_invalidate_page_range(target_ulong start, target_ulong end);
+void tlb_flush_page(CPUState *env, target_ulong addr);
+void tlb_flush(CPUState *env, int flush_global);
+int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int is_user, int is_softmmu);
+static inline int tlb_set_page(CPUState *env, target_ulong vaddr,
+ target_phys_addr_t paddr, int prot,
+ int is_user, int is_softmmu)
+{
+ if (prot & PAGE_READ)
+ prot |= PAGE_EXEC;
+ return tlb_set_page_exec(env, vaddr, paddr, prot, is_user, is_softmmu);
+}
#define CODE_GEN_MAX_SIZE 65536
#define CODE_GEN_ALIGN 16 /* must be >= of the size of a icache line */
-#define CODE_GEN_HASH_BITS 15
-#define CODE_GEN_HASH_SIZE (1 << CODE_GEN_HASH_BITS)
+#define CODE_GEN_PHYS_HASH_BITS 15
+#define CODE_GEN_PHYS_HASH_SIZE (1 << CODE_GEN_PHYS_HASH_BITS)
/* maximum total translate dcode allocated */
-#define CODE_GEN_BUFFER_SIZE (2048 * 1024)
+
+/* NOTE: the translated code area cannot be too big because on some
+ archs the range of "fast" function calls is limited. Here is a
+ summary of the ranges:
+
+ i386 : signed 32 bits
+ arm : signed 26 bits
+ ppc : signed 24 bits
+ sparc : signed 32 bits
+ alpha : signed 23 bits
+*/
+
+#if defined(__alpha__)
+#define CODE_GEN_BUFFER_SIZE (2 * 1024 * 1024)
+#elif defined(__ia64)
+#define CODE_GEN_BUFFER_SIZE (4 * 1024 * 1024) /* range of addl */
+#elif defined(__powerpc__)
+#define CODE_GEN_BUFFER_SIZE (6 * 1024 * 1024)
+#else
+#define CODE_GEN_BUFFER_SIZE (16 * 1024 * 1024)
+#endif
+
//#define CODE_GEN_BUFFER_SIZE (128 * 1024)
-#if defined(__powerpc__)
+/* estimated block size for TB allocation */
+/* XXX: use a per code average code fragment size and modulate it
+ according to the host CPU */
+#if defined(CONFIG_SOFTMMU)
+#define CODE_GEN_AVG_BLOCK_SIZE 128
+#else
+#define CODE_GEN_AVG_BLOCK_SIZE 64
+#endif
+
+#define CODE_GEN_MAX_BLOCKS (CODE_GEN_BUFFER_SIZE / CODE_GEN_AVG_BLOCK_SIZE)
+
+#if defined(__powerpc__)
+#define USE_DIRECT_JUMP
+#endif
+#if defined(__i386__) && !defined(_WIN32)
#define USE_DIRECT_JUMP
#endif
typedef struct TranslationBlock {
- unsigned long pc; /* simulated PC corresponding to this block (EIP + CS base) */
- unsigned long cs_base; /* CS base for this block */
+ target_ulong pc; /* simulated PC corresponding to this block (EIP + CS base) */
+ target_ulong cs_base; /* CS base for this block */
unsigned int flags; /* flags defining in which context the code was generated */
uint16_t size; /* size of target code for this block (1 <=
size <= TARGET_PAGE_SIZE) */
+ uint16_t cflags; /* compile flags */
+#define CF_CODE_COPY 0x0001 /* block was generated in code copy mode */
+#define CF_TB_FP_USED 0x0002 /* fp ops are used in the TB */
+#define CF_FP_USED 0x0004 /* fp ops are used in the TB or in a chained TB */
+#define CF_SINGLE_INSN 0x0008 /* compile only a single instruction */
+
uint8_t *tc_ptr; /* pointer to the translated code */
- struct TranslationBlock *hash_next; /* next matching block */
- struct TranslationBlock *page_next[2]; /* next blocks in even/odd page */
+ /* next matching tb for physical address. */
+ struct TranslationBlock *phys_hash_next;
+ /* first and second physical page containing code. The lower bit
+ of the pointer tells the index in page_next[] */
+ struct TranslationBlock *page_next[2];
+ target_ulong page_addr[2];
+
/* the following data are used to directly call another TB from
the code of this one. */
uint16_t tb_next_offset[2]; /* offset of original jump target */
struct TranslationBlock *jmp_first;
} TranslationBlock;
-static inline unsigned int tb_hash_func(unsigned long pc)
+static inline unsigned int tb_jmp_cache_hash_page(target_ulong pc)
{
- return pc & (CODE_GEN_HASH_SIZE - 1);
+ target_ulong tmp;
+ tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
+ return (tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK;
}
-TranslationBlock *tb_alloc(unsigned long pc);
+static inline unsigned int tb_jmp_cache_hash_func(target_ulong pc)
+{
+ target_ulong tmp;
+ tmp = pc ^ (pc >> (TARGET_PAGE_BITS - TB_JMP_PAGE_BITS));
+ return (((tmp >> TB_JMP_PAGE_BITS) & TB_JMP_PAGE_MASK) |
+ (tmp & TB_JMP_ADDR_MASK));
+}
+
+static inline unsigned int tb_phys_hash_func(unsigned long pc)
+{
+ return pc & (CODE_GEN_PHYS_HASH_SIZE - 1);
+}
+
+TranslationBlock *tb_alloc(target_ulong pc);
void tb_flush(CPUState *env);
-void tb_link(TranslationBlock *tb);
+void tb_link_phys(TranslationBlock *tb,
+ target_ulong phys_pc, target_ulong phys_page2);
-extern TranslationBlock *tb_hash[CODE_GEN_HASH_SIZE];
+extern TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
extern uint8_t code_gen_buffer[CODE_GEN_BUFFER_SIZE];
extern uint8_t *code_gen_ptr;
-/* find a translation block in the translation cache. If not found,
- return NULL and the pointer to the last element of the list in pptb */
-static inline TranslationBlock *tb_find(TranslationBlock ***pptb,
- unsigned long pc,
- unsigned long cs_base,
- unsigned int flags)
-{
- TranslationBlock **ptb, *tb;
- unsigned int h;
-
- h = tb_hash_func(pc);
- ptb = &tb_hash[h];
- for(;;) {
- tb = *ptb;
- if (!tb)
- break;
- if (tb->pc == pc && tb->cs_base == cs_base && tb->flags == flags)
- return tb;
- ptb = &tb->hash_next;
- }
- *pptb = ptb;
- return NULL;
-}
+#if defined(USE_DIRECT_JUMP)
#if defined(__powerpc__)
-
static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
{
uint32_t val, *ptr;
asm volatile ("sync" : : : "memory");
asm volatile ("isync" : : : "memory");
}
+#elif defined(__i386__)
+static inline void tb_set_jmp_target1(unsigned long jmp_addr, unsigned long addr)
+{
+ /* patch the branch destination */
+ *(uint32_t *)jmp_addr = addr - (jmp_addr + 4);
+ /* no need to flush icache explicitely */
+}
+#endif
static inline void tb_set_jmp_target(TranslationBlock *tb,
int n, unsigned long addr)
#define offsetof(type, field) ((size_t) &((type *)0)->field)
#endif
+#if defined(_WIN32)
+#define ASM_DATA_SECTION ".section \".data\"\n"
+#define ASM_PREVIOUS_SECTION ".section .text\n"
+#elif defined(__APPLE__)
+#define ASM_DATA_SECTION ".data\n"
+#define ASM_PREVIOUS_SECTION ".text\n"
+#else
+#define ASM_DATA_SECTION ".section \".data\"\n"
+#define ASM_PREVIOUS_SECTION ".previous\n"
+#endif
+
+#define ASM_OP_LABEL_NAME(n, opname) \
+ ASM_NAME(__op_label) #n "." ASM_NAME(opname)
+
#if defined(__powerpc__)
-/* on PowerPC we patch the jump instruction directly */
-#define JUMP_TB(opname, tbparam, n, eip)\
+/* we patch the jump instruction directly */
+#define GOTO_TB(opname, tbparam, n)\
do {\
- asm volatile (".section \".data\"\n"\
- "__op_label" #n "." stringify(opname) ":\n"\
+ asm volatile (ASM_DATA_SECTION\
+ ASM_OP_LABEL_NAME(n, opname) ":\n"\
".long 1f\n"\
- ".previous\n"\
- "b __op_jmp" #n "\n"\
+ ASM_PREVIOUS_SECTION \
+ "b " ASM_NAME(__op_jmp) #n "\n"\
"1:\n");\
- T0 = (long)(tbparam) + (n);\
- EIP = eip;\
- EXIT_TB();\
} while (0)
-#define JUMP_TB2(opname, tbparam, n)\
+#elif defined(__i386__) && defined(USE_DIRECT_JUMP)
+
+/* we patch the jump instruction directly */
+#define GOTO_TB(opname, tbparam, n)\
do {\
- asm volatile ("b __op_jmp%0\n" : : "i" (n + 2));\
+ asm volatile (".section .data\n"\
+ ASM_OP_LABEL_NAME(n, opname) ":\n"\
+ ".long 1f\n"\
+ ASM_PREVIOUS_SECTION \
+ "jmp " ASM_NAME(__op_jmp) #n "\n"\
+ "1:\n");\
} while (0)
#else
/* jump to next block operations (more portable code, does not need
cache flushing, but slower because of indirect jump) */
-#define JUMP_TB(opname, tbparam, n, eip)\
+#define GOTO_TB(opname, tbparam, n)\
do {\
- static void __attribute__((unused)) *__op_label ## n = &&label ## n;\
static void __attribute__((unused)) *dummy ## n = &&dummy_label ## n;\
+ static void __attribute__((unused)) *__op_label ## n \
+ __asm__(ASM_OP_LABEL_NAME(n, opname)) = &&label ## n;\
goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
-label ## n:\
- T0 = (long)(tbparam) + (n);\
- EIP = eip;\
-dummy_label ## n:\
- EXIT_TB();\
-} while (0)
-
-/* second jump to same destination 'n' */
-#define JUMP_TB2(opname, tbparam, n)\
-do {\
- goto *(void *)(((TranslationBlock *)tbparam)->tb_next[n]);\
+label ## n: ;\
+dummy_label ## n: ;\
} while (0)
#endif
-/* physical memory access */
-#define IO_MEM_NB_ENTRIES 256
-#define TLB_INVALID_MASK (1 << 3)
-#define IO_MEM_SHIFT 4
-#define IO_MEM_UNASSIGNED (1 << IO_MEM_SHIFT)
-
-unsigned long physpage_find(unsigned long page);
-
extern CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
extern CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
+extern void *io_mem_opaque[IO_MEM_NB_ENTRIES];
#ifdef __powerpc__
static inline int testandset (int *p)
{
int ret;
__asm__ __volatile__ (
- "0: lwarx %0,0,%1 ;"
- " xor. %0,%3,%0;"
- " bne 1f;"
- " stwcx. %2,0,%1;"
- " bne- 0b;"
+ "0: lwarx %0,0,%1\n"
+ " xor. %0,%3,%0\n"
+ " bne 1f\n"
+ " stwcx. %2,0,%1\n"
+ " bne- 0b\n"
"1: "
: "=&r" (ret)
: "r" (p), "r" (1), "r" (0)
#ifdef __i386__
static inline int testandset (int *p)
{
- char ret;
- long int readval;
+ long int readval = 0;
- __asm__ __volatile__ ("lock; cmpxchgl %3, %1; sete %0"
- : "=q" (ret), "=m" (*p), "=a" (readval)
- : "r" (1), "m" (*p), "a" (0)
- : "memory");
- return ret;
+ __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
+ : "+m" (*p), "+a" (readval)
+ : "r" (1)
+ : "cc");
+ return readval;
+}
+#endif
+
+#ifdef __x86_64__
+static inline int testandset (int *p)
+{
+ long int readval = 0;
+
+ __asm__ __volatile__ ("lock; cmpxchgl %2, %0"
+ : "+m" (*p), "+a" (readval)
+ : "r" (1)
+ : "cc");
+ return readval;
}
#endif
: "=r" (ret)
: "m" (p)
: "cc","memory");
- return ret == 0;
+ return ret;
+}
+#endif
+
+#ifdef __ia64
+#include <ia64intrin.h>
+
+static inline int testandset (int *p)
+{
+ return __sync_lock_test_and_set (p, 1);
}
#endif
extern int tb_invalidated_flag;
-#if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
+#if !defined(CONFIG_USER_ONLY)
-void tlb_fill(unsigned long addr, int is_write, int is_user,
+void tlb_fill(target_ulong addr, int is_write, int is_user,
void *retaddr);
#define ACCESS_TYPE 3
#define DATA_SIZE 4
#include "softmmu_header.h"
+#define DATA_SIZE 8
+#include "softmmu_header.h"
+
#undef ACCESS_TYPE
#undef MEMSUFFIX
#undef env
#endif
+
+#if defined(CONFIG_USER_ONLY)
+static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
+{
+ return addr;
+}
+#else
+/* NOTE: this function can trigger an exception */
+/* NOTE2: the returned address is not exactly the physical address: it
+ is the offset relative to phys_ram_base */
+static inline target_ulong get_phys_addr_code(CPUState *env, target_ulong addr)
+{
+ int is_user, index, pd;
+
+ index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
+#if defined(TARGET_I386)
+ is_user = ((env->hflags & HF_CPL_MASK) == 3);
+#elif defined (TARGET_PPC)
+ is_user = msr_pr;
+#elif defined (TARGET_MIPS)
+ is_user = ((env->hflags & MIPS_HFLAG_MODE) == MIPS_HFLAG_UM);
+#elif defined (TARGET_SPARC)
+ is_user = (env->psrs == 0);
+#elif defined (TARGET_ARM)
+ is_user = ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_USR);
+#elif defined (TARGET_SH4)
+ is_user = ((env->sr & SR_MD) == 0);
+#elif defined (TARGET_ALPHA)
+ is_user = ((env->ps >> 3) & 3);
+#else
+#error unimplemented CPU
+#endif
+ if (__builtin_expect(env->tlb_table[is_user][index].addr_code !=
+ (addr & TARGET_PAGE_MASK), 0)) {
+ ldub_code(addr);
+ }
+ pd = env->tlb_table[is_user][index].addr_code & ~TARGET_PAGE_MASK;
+ if (pd > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
+ cpu_abort(env, "Trying to execute code outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
+ }
+ return addr + env->tlb_table[is_user][index].addend - (unsigned long)phys_ram_base;
+}
+#endif
+
+#ifdef USE_KQEMU
+#define KQEMU_MODIFY_PAGE_MASK (0xff & ~(VGA_DIRTY_FLAG | CODE_DIRTY_FLAG))
+
+int kqemu_init(CPUState *env);
+int kqemu_cpu_exec(CPUState *env);
+void kqemu_flush_page(CPUState *env, target_ulong addr);
+void kqemu_flush(CPUState *env, int global);
+void kqemu_set_notdirty(CPUState *env, ram_addr_t ram_addr);
+void kqemu_modify_page(CPUState *env, ram_addr_t ram_addr);
+void kqemu_cpu_interrupt(CPUState *env);
+void kqemu_record_dump(void);
+
+static inline int kqemu_is_ok(CPUState *env)
+{
+ return(env->kqemu_enabled &&
+ (env->cr[0] & CR0_PE_MASK) &&
+ !(env->hflags & HF_INHIBIT_IRQ_MASK) &&
+ (env->eflags & IF_MASK) &&
+ !(env->eflags & VM_MASK) &&
+ (env->kqemu_enabled == 2 ||
+ ((env->hflags & HF_CPL_MASK) == 3 &&
+ (env->eflags & IOPL_MASK) != IOPL_MASK)));
+}
+
+#endif