2 * ARM NEON vector operations.
4 * Copyright (c) 2007, 2008 CodeSourcery.
5 * Written by Paul Brook
7 * This code is licenced under the GNU GPL v2.
16 #define SIGNBIT (uint32_t)0x80000000
17 #define SIGNBIT64 ((uint64_t)1 << 63)
19 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q
21 #define NFS (&env->vfp.standard_fp_status)
23 #define NEON_TYPE1(name, type) \
28 #ifdef HOST_WORDS_BIGENDIAN
29 #define NEON_TYPE2(name, type) \
35 #define NEON_TYPE4(name, type) \
44 #define NEON_TYPE2(name, type) \
50 #define NEON_TYPE4(name, type) \
60 NEON_TYPE4(s8, int8_t)
61 NEON_TYPE4(u8, uint8_t)
62 NEON_TYPE2(s16, int16_t)
63 NEON_TYPE2(u16, uint16_t)
64 NEON_TYPE1(s32, int32_t)
65 NEON_TYPE1(u32, uint32_t)
70 /* Copy from a uint32_t to a vector structure type. */
71 #define NEON_UNPACK(vtype, dest, val) do { \
80 /* Copy from a vector structure type to a uint32_t. */
81 #define NEON_PACK(vtype, dest, val) do { \
91 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
93 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
96 NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
97 NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
98 NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
99 NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
101 #define NEON_VOP_BODY(vtype, n) \
107 NEON_UNPACK(vtype, vsrc1, arg1); \
108 NEON_UNPACK(vtype, vsrc2, arg2); \
110 NEON_PACK(vtype, res, vdest); \
114 #define NEON_VOP(name, vtype, n) \
115 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
116 NEON_VOP_BODY(vtype, n)
118 /* Pairwise operations. */
119 /* For 32-bit elements each segment only contains a single element, so
120 the elementwise and pairwise operations are the same. */
122 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
123 NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
125 NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
126 NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
127 NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
128 NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
130 #define NEON_POP(name, vtype, n) \
131 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
137 NEON_UNPACK(vtype, vsrc1, arg1); \
138 NEON_UNPACK(vtype, vsrc2, arg2); \
140 NEON_PACK(vtype, res, vdest); \
144 /* Unary operators. */
145 #define NEON_VOP1(name, vtype, n) \
146 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
150 NEON_UNPACK(vtype, vsrc1, arg); \
152 NEON_PACK(vtype, arg, vdest); \
157 #define NEON_USAT(dest, src1, src2, type) do { \
158 uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
159 if (tmp != (type)tmp) { \
165 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
166 NEON_VOP(qadd_u8, neon_u8, 4)
168 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
169 NEON_VOP(qadd_u16, neon_u16, 2)
173 uint32_t HELPER(neon_qadd_u32)(uint32_t a, uint32_t b)
175 uint32_t res = a + b;
183 uint64_t HELPER(neon_qadd_u64)(uint64_t src1, uint64_t src2)
195 #define NEON_SSAT(dest, src1, src2, type) do { \
196 int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
197 if (tmp != (type)tmp) { \
200 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
202 tmp = 1 << (sizeof(type) * 8 - 1); \
207 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
208 NEON_VOP(qadd_s8, neon_s8, 4)
210 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
211 NEON_VOP(qadd_s16, neon_s16, 2)
215 uint32_t HELPER(neon_qadd_s32)(uint32_t a, uint32_t b)
217 uint32_t res = a + b;
218 if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
220 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
225 uint64_t HELPER(neon_qadd_s64)(uint64_t src1, uint64_t src2)
230 if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
232 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
237 #define NEON_USAT(dest, src1, src2, type) do { \
238 uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
239 if (tmp != (type)tmp) { \
245 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
246 NEON_VOP(qsub_u8, neon_u8, 4)
248 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
249 NEON_VOP(qsub_u16, neon_u16, 2)
253 uint32_t HELPER(neon_qsub_u32)(uint32_t a, uint32_t b)
255 uint32_t res = a - b;
263 uint64_t HELPER(neon_qsub_u64)(uint64_t src1, uint64_t src2)
276 #define NEON_SSAT(dest, src1, src2, type) do { \
277 int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
278 if (tmp != (type)tmp) { \
281 tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
283 tmp = 1 << (sizeof(type) * 8 - 1); \
288 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
289 NEON_VOP(qsub_s8, neon_s8, 4)
291 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
292 NEON_VOP(qsub_s16, neon_s16, 2)
296 uint32_t HELPER(neon_qsub_s32)(uint32_t a, uint32_t b)
298 uint32_t res = a - b;
299 if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
301 res = ~(((int32_t)a >> 31) ^ SIGNBIT);
306 uint64_t HELPER(neon_qsub_s64)(uint64_t src1, uint64_t src2)
311 if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
313 res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
318 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
319 NEON_VOP(hadd_s8, neon_s8, 4)
320 NEON_VOP(hadd_u8, neon_u8, 4)
321 NEON_VOP(hadd_s16, neon_s16, 2)
322 NEON_VOP(hadd_u16, neon_u16, 2)
325 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
329 dest = (src1 >> 1) + (src2 >> 1);
335 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
339 dest = (src1 >> 1) + (src2 >> 1);
345 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
346 NEON_VOP(rhadd_s8, neon_s8, 4)
347 NEON_VOP(rhadd_u8, neon_u8, 4)
348 NEON_VOP(rhadd_s16, neon_s16, 2)
349 NEON_VOP(rhadd_u16, neon_u16, 2)
352 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
356 dest = (src1 >> 1) + (src2 >> 1);
357 if ((src1 | src2) & 1)
362 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
366 dest = (src1 >> 1) + (src2 >> 1);
367 if ((src1 | src2) & 1)
372 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
373 NEON_VOP(hsub_s8, neon_s8, 4)
374 NEON_VOP(hsub_u8, neon_u8, 4)
375 NEON_VOP(hsub_s16, neon_s16, 2)
376 NEON_VOP(hsub_u16, neon_u16, 2)
379 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
383 dest = (src1 >> 1) - (src2 >> 1);
384 if ((~src1) & src2 & 1)
389 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
393 dest = (src1 >> 1) - (src2 >> 1);
394 if ((~src1) & src2 & 1)
399 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
400 NEON_VOP(cgt_s8, neon_s8, 4)
401 NEON_VOP(cgt_u8, neon_u8, 4)
402 NEON_VOP(cgt_s16, neon_s16, 2)
403 NEON_VOP(cgt_u16, neon_u16, 2)
404 NEON_VOP(cgt_s32, neon_s32, 1)
405 NEON_VOP(cgt_u32, neon_u32, 1)
408 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
409 NEON_VOP(cge_s8, neon_s8, 4)
410 NEON_VOP(cge_u8, neon_u8, 4)
411 NEON_VOP(cge_s16, neon_s16, 2)
412 NEON_VOP(cge_u16, neon_u16, 2)
413 NEON_VOP(cge_s32, neon_s32, 1)
414 NEON_VOP(cge_u32, neon_u32, 1)
417 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
418 NEON_VOP(min_s8, neon_s8, 4)
419 NEON_VOP(min_u8, neon_u8, 4)
420 NEON_VOP(min_s16, neon_s16, 2)
421 NEON_VOP(min_u16, neon_u16, 2)
422 NEON_VOP(min_s32, neon_s32, 1)
423 NEON_VOP(min_u32, neon_u32, 1)
424 NEON_POP(pmin_s8, neon_s8, 4)
425 NEON_POP(pmin_u8, neon_u8, 4)
426 NEON_POP(pmin_s16, neon_s16, 2)
427 NEON_POP(pmin_u16, neon_u16, 2)
430 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
431 NEON_VOP(max_s8, neon_s8, 4)
432 NEON_VOP(max_u8, neon_u8, 4)
433 NEON_VOP(max_s16, neon_s16, 2)
434 NEON_VOP(max_u16, neon_u16, 2)
435 NEON_VOP(max_s32, neon_s32, 1)
436 NEON_VOP(max_u32, neon_u32, 1)
437 NEON_POP(pmax_s8, neon_s8, 4)
438 NEON_POP(pmax_u8, neon_u8, 4)
439 NEON_POP(pmax_s16, neon_s16, 2)
440 NEON_POP(pmax_u16, neon_u16, 2)
443 #define NEON_FN(dest, src1, src2) \
444 dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
445 NEON_VOP(abd_s8, neon_s8, 4)
446 NEON_VOP(abd_u8, neon_u8, 4)
447 NEON_VOP(abd_s16, neon_s16, 2)
448 NEON_VOP(abd_u16, neon_u16, 2)
449 NEON_VOP(abd_s32, neon_s32, 1)
450 NEON_VOP(abd_u32, neon_u32, 1)
453 #define NEON_FN(dest, src1, src2) do { \
455 tmp = (int8_t)src2; \
456 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
457 tmp <= -(ssize_t)sizeof(src1) * 8) { \
459 } else if (tmp < 0) { \
460 dest = src1 >> -tmp; \
462 dest = src1 << tmp; \
464 NEON_VOP(shl_u8, neon_u8, 4)
465 NEON_VOP(shl_u16, neon_u16, 2)
466 NEON_VOP(shl_u32, neon_u32, 1)
469 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
471 int8_t shift = (int8_t)shiftop;
472 if (shift >= 64 || shift <= -64) {
474 } else if (shift < 0) {
482 #define NEON_FN(dest, src1, src2) do { \
484 tmp = (int8_t)src2; \
485 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
487 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
488 dest = src1 >> (sizeof(src1) * 8 - 1); \
489 } else if (tmp < 0) { \
490 dest = src1 >> -tmp; \
492 dest = src1 << tmp; \
494 NEON_VOP(shl_s8, neon_s8, 4)
495 NEON_VOP(shl_s16, neon_s16, 2)
496 NEON_VOP(shl_s32, neon_s32, 1)
499 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
501 int8_t shift = (int8_t)shiftop;
505 } else if (shift <= -64) {
507 } else if (shift < 0) {
515 #define NEON_FN(dest, src1, src2) do { \
517 tmp = (int8_t)src2; \
518 if ((tmp >= (ssize_t)sizeof(src1) * 8) \
519 || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
521 } else if (tmp < 0) { \
522 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
524 dest = src1 << tmp; \
526 NEON_VOP(rshl_s8, neon_s8, 4)
527 NEON_VOP(rshl_s16, neon_s16, 2)
530 /* The addition of the rounding constant may overflow, so we use an
531 * intermediate 64 bits accumulator. */
532 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
535 int32_t val = (int32_t)valop;
536 int8_t shift = (int8_t)shiftop;
537 if ((shift >= 32) || (shift <= -32)) {
539 } else if (shift < 0) {
540 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
541 dest = big_dest >> -shift;
548 /* Handling addition overflow with 64 bits inputs values is more
549 * tricky than with 32 bits values. */
550 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
552 int8_t shift = (int8_t)shiftop;
554 if ((shift >= 64) || (shift <= -64)) {
556 } else if (shift < 0) {
557 val >>= (-shift - 1);
558 if (val == INT64_MAX) {
559 /* In this case, it means that the rounding constant is 1,
560 * and the addition would overflow. Return the actual
561 * result directly. */
562 val = 0x4000000000000000LL;
573 #define NEON_FN(dest, src1, src2) do { \
575 tmp = (int8_t)src2; \
576 if (tmp >= (ssize_t)sizeof(src1) * 8 || \
577 tmp < -(ssize_t)sizeof(src1) * 8) { \
579 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
580 dest = src1 >> (-tmp - 1); \
581 } else if (tmp < 0) { \
582 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
584 dest = src1 << tmp; \
586 NEON_VOP(rshl_u8, neon_u8, 4)
587 NEON_VOP(rshl_u16, neon_u16, 2)
590 /* The addition of the rounding constant may overflow, so we use an
591 * intermediate 64 bits accumulator. */
592 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
595 int8_t shift = (int8_t)shiftop;
596 if (shift >= 32 || shift < -32) {
598 } else if (shift == -32) {
600 } else if (shift < 0) {
601 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
602 dest = big_dest >> -shift;
609 /* Handling addition overflow with 64 bits inputs values is more
610 * tricky than with 32 bits values. */
611 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
613 int8_t shift = (uint8_t)shiftop;
614 if (shift >= 64 || shift < -64) {
616 } else if (shift == -64) {
617 /* Rounding a 1-bit result just preserves that bit. */
619 } else if (shift < 0) {
620 val >>= (-shift - 1);
621 if (val == UINT64_MAX) {
622 /* In this case, it means that the rounding constant is 1,
623 * and the addition would overflow. Return the actual
624 * result directly. */
625 val = 0x8000000000000000ULL;
636 #define NEON_FN(dest, src1, src2) do { \
638 tmp = (int8_t)src2; \
639 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
646 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
648 } else if (tmp < 0) { \
649 dest = src1 >> -tmp; \
651 dest = src1 << tmp; \
652 if ((dest >> tmp) != src1) { \
657 NEON_VOP(qshl_u8, neon_u8, 4)
658 NEON_VOP(qshl_u16, neon_u16, 2)
659 NEON_VOP(qshl_u32, neon_u32, 1)
662 uint64_t HELPER(neon_qshl_u64)(uint64_t val, uint64_t shiftop)
664 int8_t shift = (int8_t)shiftop;
670 } else if (shift <= -64) {
672 } else if (shift < 0) {
677 if ((val >> shift) != tmp) {
685 #define NEON_FN(dest, src1, src2) do { \
687 tmp = (int8_t)src2; \
688 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
691 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
698 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
700 } else if (tmp < 0) { \
701 dest = src1 >> -tmp; \
703 dest = src1 << tmp; \
704 if ((dest >> tmp) != src1) { \
706 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
712 NEON_VOP(qshl_s8, neon_s8, 4)
713 NEON_VOP(qshl_s16, neon_s16, 2)
714 NEON_VOP(qshl_s32, neon_s32, 1)
717 uint64_t HELPER(neon_qshl_s64)(uint64_t valop, uint64_t shiftop)
719 int8_t shift = (uint8_t)shiftop;
724 val = (val >> 63) ^ ~SIGNBIT64;
726 } else if (shift <= -64) {
728 } else if (shift < 0) {
733 if ((val >> shift) != tmp) {
735 val = (tmp >> 63) ^ ~SIGNBIT64;
741 #define NEON_FN(dest, src1, src2) do { \
742 if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
747 tmp = (int8_t)src2; \
748 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
755 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
757 } else if (tmp < 0) { \
758 dest = src1 >> -tmp; \
760 dest = src1 << tmp; \
761 if ((dest >> tmp) != src1) { \
767 NEON_VOP(qshlu_s8, neon_u8, 4)
768 NEON_VOP(qshlu_s16, neon_u16, 2)
771 uint32_t HELPER(neon_qshlu_s32)(uint32_t valop, uint32_t shiftop)
773 if ((int32_t)valop < 0) {
777 return helper_neon_qshl_u32(valop, shiftop);
780 uint64_t HELPER(neon_qshlu_s64)(uint64_t valop, uint64_t shiftop)
782 if ((int64_t)valop < 0) {
786 return helper_neon_qshl_u64(valop, shiftop);
789 /* FIXME: This is wrong. */
790 #define NEON_FN(dest, src1, src2) do { \
792 tmp = (int8_t)src2; \
793 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
800 } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
802 } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
803 dest = src1 >> (sizeof(src1) * 8 - 1); \
804 } else if (tmp < 0) { \
805 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
807 dest = src1 << tmp; \
808 if ((dest >> tmp) != src1) { \
813 NEON_VOP(qrshl_u8, neon_u8, 4)
814 NEON_VOP(qrshl_u16, neon_u16, 2)
817 /* The addition of the rounding constant may overflow, so we use an
818 * intermediate 64 bits accumulator. */
819 uint32_t HELPER(neon_qrshl_u32)(uint32_t val, uint32_t shiftop)
822 int8_t shift = (int8_t)shiftop;
830 } else if (shift < -32) {
832 } else if (shift == -32) {
834 } else if (shift < 0) {
835 uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
836 dest = big_dest >> -shift;
839 if ((dest >> shift) != val) {
847 /* Handling addition overflow with 64 bits inputs values is more
848 * tricky than with 32 bits values. */
849 uint64_t HELPER(neon_qrshl_u64)(uint64_t val, uint64_t shiftop)
851 int8_t shift = (int8_t)shiftop;
857 } else if (shift < -64) {
859 } else if (shift == -64) {
861 } else if (shift < 0) {
862 val >>= (-shift - 1);
863 if (val == UINT64_MAX) {
864 /* In this case, it means that the rounding constant is 1,
865 * and the addition would overflow. Return the actual
866 * result directly. */
867 val = 0x8000000000000000ULL;
875 if ((val >> shift) != tmp) {
883 #define NEON_FN(dest, src1, src2) do { \
885 tmp = (int8_t)src2; \
886 if (tmp >= (ssize_t)sizeof(src1) * 8) { \
889 dest = (1 << (sizeof(src1) * 8 - 1)); \
896 } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
898 } else if (tmp < 0) { \
899 dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
901 dest = src1 << tmp; \
902 if ((dest >> tmp) != src1) { \
904 dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
910 NEON_VOP(qrshl_s8, neon_s8, 4)
911 NEON_VOP(qrshl_s16, neon_s16, 2)
914 /* The addition of the rounding constant may overflow, so we use an
915 * intermediate 64 bits accumulator. */
916 uint32_t HELPER(neon_qrshl_s32)(uint32_t valop, uint32_t shiftop)
919 int32_t val = (int32_t)valop;
920 int8_t shift = (int8_t)shiftop;
924 dest = (val >> 31) ^ ~SIGNBIT;
928 } else if (shift <= -32) {
930 } else if (shift < 0) {
931 int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
932 dest = big_dest >> -shift;
935 if ((dest >> shift) != val) {
937 dest = (val >> 31) ^ ~SIGNBIT;
943 /* Handling addition overflow with 64 bits inputs values is more
944 * tricky than with 32 bits values. */
945 uint64_t HELPER(neon_qrshl_s64)(uint64_t valop, uint64_t shiftop)
947 int8_t shift = (uint8_t)shiftop;
953 val = (val >> 63) ^ ~SIGNBIT64;
955 } else if (shift <= -64) {
957 } else if (shift < 0) {
958 val >>= (-shift - 1);
959 if (val == INT64_MAX) {
960 /* In this case, it means that the rounding constant is 1,
961 * and the addition would overflow. Return the actual
962 * result directly. */
963 val = 0x4000000000000000ULL;
971 if ((val >> shift) != tmp) {
973 val = (tmp >> 63) ^ ~SIGNBIT64;
979 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
982 mask = (a ^ b) & 0x80808080u;
985 return (a + b) ^ mask;
988 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
991 mask = (a ^ b) & 0x80008000u;
994 return (a + b) ^ mask;
997 #define NEON_FN(dest, src1, src2) dest = src1 + src2
998 NEON_POP(padd_u8, neon_u8, 4)
999 NEON_POP(padd_u16, neon_u16, 2)
1002 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1003 NEON_VOP(sub_u8, neon_u8, 4)
1004 NEON_VOP(sub_u16, neon_u16, 2)
1007 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1008 NEON_VOP(mul_u8, neon_u8, 4)
1009 NEON_VOP(mul_u16, neon_u16, 2)
1012 /* Polynomial multiplication is like integer multiplication except the
1013 partial products are XORed, not added. */
1014 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1024 mask |= (0xff << 8);
1025 if (op1 & (1 << 16))
1026 mask |= (0xff << 16);
1027 if (op1 & (1 << 24))
1028 mask |= (0xff << 24);
1029 result ^= op2 & mask;
1030 op1 = (op1 >> 1) & 0x7f7f7f7f;
1031 op2 = (op2 << 1) & 0xfefefefe;
1036 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1038 uint64_t result = 0;
1040 uint64_t op2ex = op2;
1041 op2ex = (op2ex & 0xff) |
1042 ((op2ex & 0xff00) << 8) |
1043 ((op2ex & 0xff0000) << 16) |
1044 ((op2ex & 0xff000000) << 24);
1050 if (op1 & (1 << 8)) {
1051 mask |= (0xffffU << 16);
1053 if (op1 & (1 << 16)) {
1054 mask |= (0xffffULL << 32);
1056 if (op1 & (1 << 24)) {
1057 mask |= (0xffffULL << 48);
1059 result ^= op2ex & mask;
1060 op1 = (op1 >> 1) & 0x7f7f7f7f;
1066 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1067 NEON_VOP(tst_u8, neon_u8, 4)
1068 NEON_VOP(tst_u16, neon_u16, 2)
1069 NEON_VOP(tst_u32, neon_u32, 1)
1072 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1073 NEON_VOP(ceq_u8, neon_u8, 4)
1074 NEON_VOP(ceq_u16, neon_u16, 2)
1075 NEON_VOP(ceq_u32, neon_u32, 1)
1078 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1079 NEON_VOP1(abs_s8, neon_s8, 4)
1080 NEON_VOP1(abs_s16, neon_s16, 2)
1083 /* Count Leading Sign/Zero Bits. */
1084 static inline int do_clz8(uint8_t x)
1092 static inline int do_clz16(uint16_t x)
1095 for (n = 16; x; n--)
1100 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1101 NEON_VOP1(clz_u8, neon_u8, 4)
1104 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1105 NEON_VOP1(clz_u16, neon_u16, 2)
1108 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1109 NEON_VOP1(cls_s8, neon_s8, 4)
1112 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1113 NEON_VOP1(cls_s16, neon_s16, 2)
1116 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1121 for (count = 32; x; count--)
1127 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1129 x = (x & 0x55555555) + ((x >> 1) & 0x55555555);
1130 x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
1131 x = (x & 0x0f0f0f0f) + ((x >> 4) & 0x0f0f0f0f);
1135 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1136 uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1137 if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1139 tmp = (tmp >> 31) ^ ~SIGNBIT; \
1144 int32_t old = tmp; \
1146 if ((int32_t)tmp < old) { \
1148 tmp = SIGNBIT - 1; \
1153 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1154 NEON_VOP(qdmulh_s16, neon_s16, 2)
1156 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1157 NEON_VOP(qrdmulh_s16, neon_s16, 2)
1159 #undef NEON_QDMULH16
1161 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1162 uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1163 if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1165 tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1170 int64_t old = tmp; \
1171 tmp += (int64_t)1 << 31; \
1172 if ((int64_t)tmp < old) { \
1174 tmp = SIGNBIT64 - 1; \
1179 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1180 NEON_VOP(qdmulh_s32, neon_s32, 1)
1182 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1183 NEON_VOP(qrdmulh_s32, neon_s32, 1)
1185 #undef NEON_QDMULH32
1187 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1189 return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1190 | ((x >> 24) & 0xff000000u);
1193 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1195 return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1198 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1200 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1201 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1204 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1206 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1209 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1211 x &= 0xff80ff80ff80ff80ull;
1212 x += 0x0080008000800080ull;
1213 return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1214 | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1217 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1219 x &= 0xffff8000ffff8000ull;
1220 x += 0x0000800000008000ull;
1221 return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1224 uint32_t HELPER(neon_unarrow_sat8)(uint64_t x)
1240 res |= (uint32_t)d << (n / 2); \
1251 uint32_t HELPER(neon_narrow_sat_u8)(uint64_t x)
1264 res |= (uint32_t)d << (n / 2);
1274 uint32_t HELPER(neon_narrow_sat_s8)(uint64_t x)
1281 if (s != (int8_t)s) { \
1282 d = (s >> 15) ^ 0x7f; \
1287 res |= (uint32_t)d << (n / 2);
1297 uint32_t HELPER(neon_unarrow_sat16)(uint64_t x)
1302 if (low & 0x80000000) {
1305 } else if (low > 0xffff) {
1310 if (high & 0x80000000) {
1313 } else if (high > 0xffff) {
1317 return low | (high << 16);
1320 uint32_t HELPER(neon_narrow_sat_u16)(uint64_t x)
1330 if (high > 0xffff) {
1334 return low | (high << 16);
1337 uint32_t HELPER(neon_narrow_sat_s16)(uint64_t x)
1342 if (low != (int16_t)low) {
1343 low = (low >> 31) ^ 0x7fff;
1347 if (high != (int16_t)high) {
1348 high = (high >> 31) ^ 0x7fff;
1351 return (uint16_t)low | (high << 16);
1354 uint32_t HELPER(neon_unarrow_sat32)(uint64_t x)
1356 if (x & 0x8000000000000000ull) {
1360 if (x > 0xffffffffu) {
1367 uint32_t HELPER(neon_narrow_sat_u32)(uint64_t x)
1369 if (x > 0xffffffffu) {
1376 uint32_t HELPER(neon_narrow_sat_s32)(uint64_t x)
1378 if ((int64_t)x != (int32_t)x) {
1380 return ((int64_t)x >> 63) ^ 0x7fffffff;
1385 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1390 tmp = (uint8_t)(x >> 8);
1392 tmp = (uint8_t)(x >> 16);
1394 tmp = (uint8_t)(x >> 24);
1399 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1403 ret = (uint16_t)(int8_t)x;
1404 tmp = (uint16_t)(int8_t)(x >> 8);
1406 tmp = (uint16_t)(int8_t)(x >> 16);
1408 tmp = (uint16_t)(int8_t)(x >> 24);
1413 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1415 uint64_t high = (uint16_t)(x >> 16);
1416 return ((uint16_t)x) | (high << 32);
1419 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1421 uint64_t high = (int16_t)(x >> 16);
1422 return ((uint32_t)(int16_t)x) | (high << 32);
1425 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1428 mask = (a ^ b) & 0x8000800080008000ull;
1429 a &= ~0x8000800080008000ull;
1430 b &= ~0x8000800080008000ull;
1431 return (a + b) ^ mask;
1434 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1437 mask = (a ^ b) & 0x8000000080000000ull;
1438 a &= ~0x8000000080000000ull;
1439 b &= ~0x8000000080000000ull;
1440 return (a + b) ^ mask;
1443 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1448 tmp = a & 0x0000ffff0000ffffull;
1449 tmp += (a >> 16) & 0x0000ffff0000ffffull;
1450 tmp2 = b & 0xffff0000ffff0000ull;
1451 tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1452 return ( tmp & 0xffff)
1453 | ((tmp >> 16) & 0xffff0000ull)
1454 | ((tmp2 << 16) & 0xffff00000000ull)
1455 | ( tmp2 & 0xffff000000000000ull);
1458 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1460 uint32_t low = a + (a >> 32);
1461 uint32_t high = b + (b >> 32);
1462 return low + ((uint64_t)high << 32);
1465 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1468 mask = (a ^ ~b) & 0x8000800080008000ull;
1469 a |= 0x8000800080008000ull;
1470 b &= ~0x8000800080008000ull;
1471 return (a - b) ^ mask;
1474 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1477 mask = (a ^ ~b) & 0x8000000080000000ull;
1478 a |= 0x8000000080000000ull;
1479 b &= ~0x8000000080000000ull;
1480 return (a - b) ^ mask;
1483 uint64_t HELPER(neon_addl_saturate_s32)(uint64_t a, uint64_t b)
1491 if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1493 low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1498 if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1500 high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1502 return low | ((uint64_t)high << 32);
1505 uint64_t HELPER(neon_addl_saturate_s64)(uint64_t a, uint64_t b)
1510 if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1512 result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1517 /* We have to do the arithmetic in a larger type than
1518 * the input type, because for example with a signed 32 bit
1519 * op the absolute difference can overflow a signed 32 bit value.
1521 #define DO_ABD(dest, x, y, intype, arithtype) do { \
1522 arithtype tmp_x = (intype)(x); \
1523 arithtype tmp_y = (intype)(y); \
1524 dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1527 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1531 DO_ABD(result, a, b, uint8_t, uint32_t);
1532 DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1533 result |= tmp << 16;
1534 DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1535 result |= tmp << 32;
1536 DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1537 result |= tmp << 48;
1541 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1545 DO_ABD(result, a, b, int8_t, int32_t);
1546 DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1547 result |= tmp << 16;
1548 DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1549 result |= tmp << 32;
1550 DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1551 result |= tmp << 48;
1555 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1559 DO_ABD(result, a, b, uint16_t, uint32_t);
1560 DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1561 return result | (tmp << 32);
1564 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1568 DO_ABD(result, a, b, int16_t, int32_t);
1569 DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1570 return result | (tmp << 32);
1573 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1576 DO_ABD(result, a, b, uint32_t, uint64_t);
1580 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1583 DO_ABD(result, a, b, int32_t, int64_t);
1588 /* Widening multiply. Named type is the source type. */
1589 #define DO_MULL(dest, x, y, type1, type2) do { \
1592 dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1595 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1600 DO_MULL(result, a, b, uint8_t, uint16_t);
1601 DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1602 result |= tmp << 16;
1603 DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1604 result |= tmp << 32;
1605 DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1606 result |= tmp << 48;
1610 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1615 DO_MULL(result, a, b, int8_t, uint16_t);
1616 DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1617 result |= tmp << 16;
1618 DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1619 result |= tmp << 32;
1620 DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1621 result |= tmp << 48;
1625 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1630 DO_MULL(result, a, b, uint16_t, uint32_t);
1631 DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1632 return result | (tmp << 32);
1635 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1640 DO_MULL(result, a, b, int16_t, uint32_t);
1641 DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1642 return result | (tmp << 32);
1645 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1649 result = (uint16_t)-x;
1651 result |= (uint64_t)tmp << 16;
1653 result |= (uint64_t)tmp << 32;
1655 result |= (uint64_t)tmp << 48;
1659 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1662 uint32_t high = -(x >> 32);
1663 return low | ((uint64_t)high << 32);
1666 /* FIXME: There should be a native op for this. */
1667 uint64_t HELPER(neon_negl_u64)(uint64_t x)
1672 /* Saturnating sign manuipulation. */
1673 /* ??? Make these use NEON_VOP1 */
1674 #define DO_QABS8(x) do { \
1675 if (x == (int8_t)0x80) { \
1678 } else if (x < 0) { \
1681 uint32_t HELPER(neon_qabs_s8)(uint32_t x)
1684 NEON_UNPACK(neon_s8, vec, x);
1689 NEON_PACK(neon_s8, x, vec);
1694 #define DO_QNEG8(x) do { \
1695 if (x == (int8_t)0x80) { \
1701 uint32_t HELPER(neon_qneg_s8)(uint32_t x)
1704 NEON_UNPACK(neon_s8, vec, x);
1709 NEON_PACK(neon_s8, x, vec);
1714 #define DO_QABS16(x) do { \
1715 if (x == (int16_t)0x8000) { \
1718 } else if (x < 0) { \
1721 uint32_t HELPER(neon_qabs_s16)(uint32_t x)
1724 NEON_UNPACK(neon_s16, vec, x);
1727 NEON_PACK(neon_s16, x, vec);
1732 #define DO_QNEG16(x) do { \
1733 if (x == (int16_t)0x8000) { \
1739 uint32_t HELPER(neon_qneg_s16)(uint32_t x)
1742 NEON_UNPACK(neon_s16, vec, x);
1745 NEON_PACK(neon_s16, x, vec);
1750 uint32_t HELPER(neon_qabs_s32)(uint32_t x)
1755 } else if ((int32_t)x < 0) {
1761 uint32_t HELPER(neon_qneg_s32)(uint32_t x)
1772 /* NEON Float helpers. */
1773 uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b)
1775 return float32_val(float32_min(make_float32(a), make_float32(b), NFS));
1778 uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b)
1780 return float32_val(float32_max(make_float32(a), make_float32(b), NFS));
1783 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b)
1785 float32 f0 = make_float32(a);
1786 float32 f1 = make_float32(b);
1787 return float32_val(float32_abs(float32_sub(f0, f1, NFS)));
1790 uint32_t HELPER(neon_add_f32)(uint32_t a, uint32_t b)
1792 return float32_val(float32_add(make_float32(a), make_float32(b), NFS));
1795 uint32_t HELPER(neon_sub_f32)(uint32_t a, uint32_t b)
1797 return float32_val(float32_sub(make_float32(a), make_float32(b), NFS));
1800 uint32_t HELPER(neon_mul_f32)(uint32_t a, uint32_t b)
1802 return float32_val(float32_mul(make_float32(a), make_float32(b), NFS));
1805 /* Floating point comparisons produce an integer result. */
1806 #define NEON_VOP_FCMP(name, ok) \
1807 uint32_t HELPER(neon_##name)(uint32_t a, uint32_t b) \
1809 switch (float32_compare_quiet(make_float32(a), make_float32(b), NFS)) { \
1811 default: return 0; \
1815 NEON_VOP_FCMP(ceq_f32, case float_relation_equal:)
1816 NEON_VOP_FCMP(cge_f32, case float_relation_equal: case float_relation_greater:)
1817 NEON_VOP_FCMP(cgt_f32, case float_relation_greater:)
1819 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b)
1821 float32 f0 = float32_abs(make_float32(a));
1822 float32 f1 = float32_abs(make_float32(b));
1823 switch (float32_compare_quiet(f0, f1, NFS)) {
1824 case float_relation_equal:
1825 case float_relation_greater:
1832 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b)
1834 float32 f0 = float32_abs(make_float32(a));
1835 float32 f1 = float32_abs(make_float32(b));
1836 if (float32_compare_quiet(f0, f1, NFS) == float_relation_greater) {
1842 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1844 void HELPER(neon_qunzip8)(uint32_t rd, uint32_t rm)
1846 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1847 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1848 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1849 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1850 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1851 | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1852 | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1853 | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1854 uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1855 | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1856 | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1857 | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1858 uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1859 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1860 | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1861 | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1862 uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1863 | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1864 | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1865 | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1866 env->vfp.regs[rm] = make_float64(m0);
1867 env->vfp.regs[rm + 1] = make_float64(m1);
1868 env->vfp.regs[rd] = make_float64(d0);
1869 env->vfp.regs[rd + 1] = make_float64(d1);
1872 void HELPER(neon_qunzip16)(uint32_t rd, uint32_t rm)
1874 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1875 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1876 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1877 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1878 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1879 | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1880 uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1881 | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1882 uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1883 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1884 uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1885 | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1886 env->vfp.regs[rm] = make_float64(m0);
1887 env->vfp.regs[rm + 1] = make_float64(m1);
1888 env->vfp.regs[rd] = make_float64(d0);
1889 env->vfp.regs[rd + 1] = make_float64(d1);
1892 void HELPER(neon_qunzip32)(uint32_t rd, uint32_t rm)
1894 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1895 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1896 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1897 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1898 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1899 uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1900 uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1901 uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1902 env->vfp.regs[rm] = make_float64(m0);
1903 env->vfp.regs[rm + 1] = make_float64(m1);
1904 env->vfp.regs[rd] = make_float64(d0);
1905 env->vfp.regs[rd + 1] = make_float64(d1);
1908 void HELPER(neon_unzip8)(uint32_t rd, uint32_t rm)
1910 uint64_t zm = float64_val(env->vfp.regs[rm]);
1911 uint64_t zd = float64_val(env->vfp.regs[rd]);
1912 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1913 | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1914 | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1915 | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1916 uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1917 | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1918 | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1919 | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1920 env->vfp.regs[rm] = make_float64(m0);
1921 env->vfp.regs[rd] = make_float64(d0);
1924 void HELPER(neon_unzip16)(uint32_t rd, uint32_t rm)
1926 uint64_t zm = float64_val(env->vfp.regs[rm]);
1927 uint64_t zd = float64_val(env->vfp.regs[rd]);
1928 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1929 | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1930 uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1931 | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1932 env->vfp.regs[rm] = make_float64(m0);
1933 env->vfp.regs[rd] = make_float64(d0);
1936 void HELPER(neon_qzip8)(uint32_t rd, uint32_t rm)
1938 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1939 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1940 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1941 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1942 uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1943 | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1944 | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1945 | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1946 uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1947 | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1948 | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1949 | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1950 uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1951 | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1952 | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1953 | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1954 uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1955 | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1956 | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1957 | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1958 env->vfp.regs[rm] = make_float64(m0);
1959 env->vfp.regs[rm + 1] = make_float64(m1);
1960 env->vfp.regs[rd] = make_float64(d0);
1961 env->vfp.regs[rd + 1] = make_float64(d1);
1964 void HELPER(neon_qzip16)(uint32_t rd, uint32_t rm)
1966 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1967 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1968 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1969 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1970 uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1971 | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1972 uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1973 | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1974 uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1975 | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1976 uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1977 | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1978 env->vfp.regs[rm] = make_float64(m0);
1979 env->vfp.regs[rm + 1] = make_float64(m1);
1980 env->vfp.regs[rd] = make_float64(d0);
1981 env->vfp.regs[rd + 1] = make_float64(d1);
1984 void HELPER(neon_qzip32)(uint32_t rd, uint32_t rm)
1986 uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1987 uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1988 uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1989 uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1990 uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1991 uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1992 uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1993 uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1994 env->vfp.regs[rm] = make_float64(m0);
1995 env->vfp.regs[rm + 1] = make_float64(m1);
1996 env->vfp.regs[rd] = make_float64(d0);
1997 env->vfp.regs[rd + 1] = make_float64(d1);
2000 void HELPER(neon_zip8)(uint32_t rd, uint32_t rm)
2002 uint64_t zm = float64_val(env->vfp.regs[rm]);
2003 uint64_t zd = float64_val(env->vfp.regs[rd]);
2004 uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2005 | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2006 | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2007 | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2008 uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2009 | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2010 | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2011 | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2012 env->vfp.regs[rm] = make_float64(m0);
2013 env->vfp.regs[rd] = make_float64(d0);
2016 void HELPER(neon_zip16)(uint32_t rd, uint32_t rm)
2018 uint64_t zm = float64_val(env->vfp.regs[rm]);
2019 uint64_t zd = float64_val(env->vfp.regs[rd]);
2020 uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2021 | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2022 uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2023 | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2024 env->vfp.regs[rm] = make_float64(m0);
2025 env->vfp.regs[rd] = make_float64(d0);