Merge remote-tracking branch 'awilliam/ipxe' into staging
[qemu.git] / target-arm / neon_helper.c
1 /*
2  * ARM NEON vector operations.
3  *
4  * Copyright (c) 2007, 2008 CodeSourcery.
5  * Written by Paul Brook
6  *
7  * This code is licenced under the GNU GPL v2.
8  */
9 #include <stdlib.h>
10 #include <stdio.h>
11
12 #include "cpu.h"
13 #include "exec.h"
14 #include "helper.h"
15
16 #define SIGNBIT (uint32_t)0x80000000
17 #define SIGNBIT64 ((uint64_t)1 << 63)
18
19 #define SET_QC() env->vfp.xregs[ARM_VFP_FPSCR] = CPSR_Q
20
21 #define NFS (&env->vfp.standard_fp_status)
22
23 #define NEON_TYPE1(name, type) \
24 typedef struct \
25 { \
26     type v1; \
27 } neon_##name;
28 #ifdef HOST_WORDS_BIGENDIAN
29 #define NEON_TYPE2(name, type) \
30 typedef struct \
31 { \
32     type v2; \
33     type v1; \
34 } neon_##name;
35 #define NEON_TYPE4(name, type) \
36 typedef struct \
37 { \
38     type v4; \
39     type v3; \
40     type v2; \
41     type v1; \
42 } neon_##name;
43 #else
44 #define NEON_TYPE2(name, type) \
45 typedef struct \
46 { \
47     type v1; \
48     type v2; \
49 } neon_##name;
50 #define NEON_TYPE4(name, type) \
51 typedef struct \
52 { \
53     type v1; \
54     type v2; \
55     type v3; \
56     type v4; \
57 } neon_##name;
58 #endif
59
60 NEON_TYPE4(s8, int8_t)
61 NEON_TYPE4(u8, uint8_t)
62 NEON_TYPE2(s16, int16_t)
63 NEON_TYPE2(u16, uint16_t)
64 NEON_TYPE1(s32, int32_t)
65 NEON_TYPE1(u32, uint32_t)
66 #undef NEON_TYPE4
67 #undef NEON_TYPE2
68 #undef NEON_TYPE1
69
70 /* Copy from a uint32_t to a vector structure type.  */
71 #define NEON_UNPACK(vtype, dest, val) do { \
72     union { \
73         vtype v; \
74         uint32_t i; \
75     } conv_u; \
76     conv_u.i = (val); \
77     dest = conv_u.v; \
78     } while(0)
79
80 /* Copy from a vector structure type to a uint32_t.  */
81 #define NEON_PACK(vtype, dest, val) do { \
82     union { \
83         vtype v; \
84         uint32_t i; \
85     } conv_u; \
86     conv_u.v = (val); \
87     dest = conv_u.i; \
88     } while(0)
89
90 #define NEON_DO1 \
91     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1);
92 #define NEON_DO2 \
93     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
94     NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2);
95 #define NEON_DO4 \
96     NEON_FN(vdest.v1, vsrc1.v1, vsrc2.v1); \
97     NEON_FN(vdest.v2, vsrc1.v2, vsrc2.v2); \
98     NEON_FN(vdest.v3, vsrc1.v3, vsrc2.v3); \
99     NEON_FN(vdest.v4, vsrc1.v4, vsrc2.v4);
100
101 #define NEON_VOP_BODY(vtype, n) \
102 { \
103     uint32_t res; \
104     vtype vsrc1; \
105     vtype vsrc2; \
106     vtype vdest; \
107     NEON_UNPACK(vtype, vsrc1, arg1); \
108     NEON_UNPACK(vtype, vsrc2, arg2); \
109     NEON_DO##n; \
110     NEON_PACK(vtype, res, vdest); \
111     return res; \
112 }
113
114 #define NEON_VOP(name, vtype, n) \
115 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
116 NEON_VOP_BODY(vtype, n)
117
118 /* Pairwise operations.  */
119 /* For 32-bit elements each segment only contains a single element, so
120    the elementwise and pairwise operations are the same.  */
121 #define NEON_PDO2 \
122     NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
123     NEON_FN(vdest.v2, vsrc2.v1, vsrc2.v2);
124 #define NEON_PDO4 \
125     NEON_FN(vdest.v1, vsrc1.v1, vsrc1.v2); \
126     NEON_FN(vdest.v2, vsrc1.v3, vsrc1.v4); \
127     NEON_FN(vdest.v3, vsrc2.v1, vsrc2.v2); \
128     NEON_FN(vdest.v4, vsrc2.v3, vsrc2.v4); \
129
130 #define NEON_POP(name, vtype, n) \
131 uint32_t HELPER(glue(neon_,name))(uint32_t arg1, uint32_t arg2) \
132 { \
133     uint32_t res; \
134     vtype vsrc1; \
135     vtype vsrc2; \
136     vtype vdest; \
137     NEON_UNPACK(vtype, vsrc1, arg1); \
138     NEON_UNPACK(vtype, vsrc2, arg2); \
139     NEON_PDO##n; \
140     NEON_PACK(vtype, res, vdest); \
141     return res; \
142 }
143
144 /* Unary operators.  */
145 #define NEON_VOP1(name, vtype, n) \
146 uint32_t HELPER(glue(neon_,name))(uint32_t arg) \
147 { \
148     vtype vsrc1; \
149     vtype vdest; \
150     NEON_UNPACK(vtype, vsrc1, arg); \
151     NEON_DO##n; \
152     NEON_PACK(vtype, arg, vdest); \
153     return arg; \
154 }
155
156
157 #define NEON_USAT(dest, src1, src2, type) do { \
158     uint32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
159     if (tmp != (type)tmp) { \
160         SET_QC(); \
161         dest = ~0; \
162     } else { \
163         dest = tmp; \
164     }} while(0)
165 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
166 NEON_VOP(qadd_u8, neon_u8, 4)
167 #undef NEON_FN
168 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
169 NEON_VOP(qadd_u16, neon_u16, 2)
170 #undef NEON_FN
171 #undef NEON_USAT
172
173 uint32_t HELPER(neon_qadd_u32)(uint32_t a, uint32_t b)
174 {
175     uint32_t res = a + b;
176     if (res < a) {
177         SET_QC();
178         res = ~0;
179     }
180     return res;
181 }
182
183 uint64_t HELPER(neon_qadd_u64)(uint64_t src1, uint64_t src2)
184 {
185     uint64_t res;
186
187     res = src1 + src2;
188     if (res < src1) {
189         SET_QC();
190         res = ~(uint64_t)0;
191     }
192     return res;
193 }
194
195 #define NEON_SSAT(dest, src1, src2, type) do { \
196     int32_t tmp = (uint32_t)src1 + (uint32_t)src2; \
197     if (tmp != (type)tmp) { \
198         SET_QC(); \
199         if (src2 > 0) { \
200             tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
201         } else { \
202             tmp = 1 << (sizeof(type) * 8 - 1); \
203         } \
204     } \
205     dest = tmp; \
206     } while(0)
207 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
208 NEON_VOP(qadd_s8, neon_s8, 4)
209 #undef NEON_FN
210 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
211 NEON_VOP(qadd_s16, neon_s16, 2)
212 #undef NEON_FN
213 #undef NEON_SSAT
214
215 uint32_t HELPER(neon_qadd_s32)(uint32_t a, uint32_t b)
216 {
217     uint32_t res = a + b;
218     if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
219         SET_QC();
220         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
221     }
222     return res;
223 }
224
225 uint64_t HELPER(neon_qadd_s64)(uint64_t src1, uint64_t src2)
226 {
227     uint64_t res;
228
229     res = src1 + src2;
230     if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) {
231         SET_QC();
232         res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
233     }
234     return res;
235 }
236
237 #define NEON_USAT(dest, src1, src2, type) do { \
238     uint32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
239     if (tmp != (type)tmp) { \
240         SET_QC(); \
241         dest = 0; \
242     } else { \
243         dest = tmp; \
244     }} while(0)
245 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint8_t)
246 NEON_VOP(qsub_u8, neon_u8, 4)
247 #undef NEON_FN
248 #define NEON_FN(dest, src1, src2) NEON_USAT(dest, src1, src2, uint16_t)
249 NEON_VOP(qsub_u16, neon_u16, 2)
250 #undef NEON_FN
251 #undef NEON_USAT
252
253 uint32_t HELPER(neon_qsub_u32)(uint32_t a, uint32_t b)
254 {
255     uint32_t res = a - b;
256     if (res > a) {
257         SET_QC();
258         res = 0;
259     }
260     return res;
261 }
262
263 uint64_t HELPER(neon_qsub_u64)(uint64_t src1, uint64_t src2)
264 {
265     uint64_t res;
266
267     if (src1 < src2) {
268         SET_QC();
269         res = 0;
270     } else {
271         res = src1 - src2;
272     }
273     return res;
274 }
275
276 #define NEON_SSAT(dest, src1, src2, type) do { \
277     int32_t tmp = (uint32_t)src1 - (uint32_t)src2; \
278     if (tmp != (type)tmp) { \
279         SET_QC(); \
280         if (src2 < 0) { \
281             tmp = (1 << (sizeof(type) * 8 - 1)) - 1; \
282         } else { \
283             tmp = 1 << (sizeof(type) * 8 - 1); \
284         } \
285     } \
286     dest = tmp; \
287     } while(0)
288 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int8_t)
289 NEON_VOP(qsub_s8, neon_s8, 4)
290 #undef NEON_FN
291 #define NEON_FN(dest, src1, src2) NEON_SSAT(dest, src1, src2, int16_t)
292 NEON_VOP(qsub_s16, neon_s16, 2)
293 #undef NEON_FN
294 #undef NEON_SSAT
295
296 uint32_t HELPER(neon_qsub_s32)(uint32_t a, uint32_t b)
297 {
298     uint32_t res = a - b;
299     if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
300         SET_QC();
301         res = ~(((int32_t)a >> 31) ^ SIGNBIT);
302     }
303     return res;
304 }
305
306 uint64_t HELPER(neon_qsub_s64)(uint64_t src1, uint64_t src2)
307 {
308     uint64_t res;
309
310     res = src1 - src2;
311     if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) {
312         SET_QC();
313         res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64;
314     }
315     return res;
316 }
317
318 #define NEON_FN(dest, src1, src2) dest = (src1 + src2) >> 1
319 NEON_VOP(hadd_s8, neon_s8, 4)
320 NEON_VOP(hadd_u8, neon_u8, 4)
321 NEON_VOP(hadd_s16, neon_s16, 2)
322 NEON_VOP(hadd_u16, neon_u16, 2)
323 #undef NEON_FN
324
325 int32_t HELPER(neon_hadd_s32)(int32_t src1, int32_t src2)
326 {
327     int32_t dest;
328
329     dest = (src1 >> 1) + (src2 >> 1);
330     if (src1 & src2 & 1)
331         dest++;
332     return dest;
333 }
334
335 uint32_t HELPER(neon_hadd_u32)(uint32_t src1, uint32_t src2)
336 {
337     uint32_t dest;
338
339     dest = (src1 >> 1) + (src2 >> 1);
340     if (src1 & src2 & 1)
341         dest++;
342     return dest;
343 }
344
345 #define NEON_FN(dest, src1, src2) dest = (src1 + src2 + 1) >> 1
346 NEON_VOP(rhadd_s8, neon_s8, 4)
347 NEON_VOP(rhadd_u8, neon_u8, 4)
348 NEON_VOP(rhadd_s16, neon_s16, 2)
349 NEON_VOP(rhadd_u16, neon_u16, 2)
350 #undef NEON_FN
351
352 int32_t HELPER(neon_rhadd_s32)(int32_t src1, int32_t src2)
353 {
354     int32_t dest;
355
356     dest = (src1 >> 1) + (src2 >> 1);
357     if ((src1 | src2) & 1)
358         dest++;
359     return dest;
360 }
361
362 uint32_t HELPER(neon_rhadd_u32)(uint32_t src1, uint32_t src2)
363 {
364     uint32_t dest;
365
366     dest = (src1 >> 1) + (src2 >> 1);
367     if ((src1 | src2) & 1)
368         dest++;
369     return dest;
370 }
371
372 #define NEON_FN(dest, src1, src2) dest = (src1 - src2) >> 1
373 NEON_VOP(hsub_s8, neon_s8, 4)
374 NEON_VOP(hsub_u8, neon_u8, 4)
375 NEON_VOP(hsub_s16, neon_s16, 2)
376 NEON_VOP(hsub_u16, neon_u16, 2)
377 #undef NEON_FN
378
379 int32_t HELPER(neon_hsub_s32)(int32_t src1, int32_t src2)
380 {
381     int32_t dest;
382
383     dest = (src1 >> 1) - (src2 >> 1);
384     if ((~src1) & src2 & 1)
385         dest--;
386     return dest;
387 }
388
389 uint32_t HELPER(neon_hsub_u32)(uint32_t src1, uint32_t src2)
390 {
391     uint32_t dest;
392
393     dest = (src1 >> 1) - (src2 >> 1);
394     if ((~src1) & src2 & 1)
395         dest--;
396     return dest;
397 }
398
399 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? ~0 : 0
400 NEON_VOP(cgt_s8, neon_s8, 4)
401 NEON_VOP(cgt_u8, neon_u8, 4)
402 NEON_VOP(cgt_s16, neon_s16, 2)
403 NEON_VOP(cgt_u16, neon_u16, 2)
404 NEON_VOP(cgt_s32, neon_s32, 1)
405 NEON_VOP(cgt_u32, neon_u32, 1)
406 #undef NEON_FN
407
408 #define NEON_FN(dest, src1, src2) dest = (src1 >= src2) ? ~0 : 0
409 NEON_VOP(cge_s8, neon_s8, 4)
410 NEON_VOP(cge_u8, neon_u8, 4)
411 NEON_VOP(cge_s16, neon_s16, 2)
412 NEON_VOP(cge_u16, neon_u16, 2)
413 NEON_VOP(cge_s32, neon_s32, 1)
414 NEON_VOP(cge_u32, neon_u32, 1)
415 #undef NEON_FN
416
417 #define NEON_FN(dest, src1, src2) dest = (src1 < src2) ? src1 : src2
418 NEON_VOP(min_s8, neon_s8, 4)
419 NEON_VOP(min_u8, neon_u8, 4)
420 NEON_VOP(min_s16, neon_s16, 2)
421 NEON_VOP(min_u16, neon_u16, 2)
422 NEON_VOP(min_s32, neon_s32, 1)
423 NEON_VOP(min_u32, neon_u32, 1)
424 NEON_POP(pmin_s8, neon_s8, 4)
425 NEON_POP(pmin_u8, neon_u8, 4)
426 NEON_POP(pmin_s16, neon_s16, 2)
427 NEON_POP(pmin_u16, neon_u16, 2)
428 #undef NEON_FN
429
430 #define NEON_FN(dest, src1, src2) dest = (src1 > src2) ? src1 : src2
431 NEON_VOP(max_s8, neon_s8, 4)
432 NEON_VOP(max_u8, neon_u8, 4)
433 NEON_VOP(max_s16, neon_s16, 2)
434 NEON_VOP(max_u16, neon_u16, 2)
435 NEON_VOP(max_s32, neon_s32, 1)
436 NEON_VOP(max_u32, neon_u32, 1)
437 NEON_POP(pmax_s8, neon_s8, 4)
438 NEON_POP(pmax_u8, neon_u8, 4)
439 NEON_POP(pmax_s16, neon_s16, 2)
440 NEON_POP(pmax_u16, neon_u16, 2)
441 #undef NEON_FN
442
443 #define NEON_FN(dest, src1, src2) \
444     dest = (src1 > src2) ? (src1 - src2) : (src2 - src1)
445 NEON_VOP(abd_s8, neon_s8, 4)
446 NEON_VOP(abd_u8, neon_u8, 4)
447 NEON_VOP(abd_s16, neon_s16, 2)
448 NEON_VOP(abd_u16, neon_u16, 2)
449 NEON_VOP(abd_s32, neon_s32, 1)
450 NEON_VOP(abd_u32, neon_u32, 1)
451 #undef NEON_FN
452
453 #define NEON_FN(dest, src1, src2) do { \
454     int8_t tmp; \
455     tmp = (int8_t)src2; \
456     if (tmp >= (ssize_t)sizeof(src1) * 8 || \
457         tmp <= -(ssize_t)sizeof(src1) * 8) { \
458         dest = 0; \
459     } else if (tmp < 0) { \
460         dest = src1 >> -tmp; \
461     } else { \
462         dest = src1 << tmp; \
463     }} while (0)
464 NEON_VOP(shl_u8, neon_u8, 4)
465 NEON_VOP(shl_u16, neon_u16, 2)
466 NEON_VOP(shl_u32, neon_u32, 1)
467 #undef NEON_FN
468
469 uint64_t HELPER(neon_shl_u64)(uint64_t val, uint64_t shiftop)
470 {
471     int8_t shift = (int8_t)shiftop;
472     if (shift >= 64 || shift <= -64) {
473         val = 0;
474     } else if (shift < 0) {
475         val >>= -shift;
476     } else {
477         val <<= shift;
478     }
479     return val;
480 }
481
482 #define NEON_FN(dest, src1, src2) do { \
483     int8_t tmp; \
484     tmp = (int8_t)src2; \
485     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
486         dest = 0; \
487     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
488         dest = src1 >> (sizeof(src1) * 8 - 1); \
489     } else if (tmp < 0) { \
490         dest = src1 >> -tmp; \
491     } else { \
492         dest = src1 << tmp; \
493     }} while (0)
494 NEON_VOP(shl_s8, neon_s8, 4)
495 NEON_VOP(shl_s16, neon_s16, 2)
496 NEON_VOP(shl_s32, neon_s32, 1)
497 #undef NEON_FN
498
499 uint64_t HELPER(neon_shl_s64)(uint64_t valop, uint64_t shiftop)
500 {
501     int8_t shift = (int8_t)shiftop;
502     int64_t val = valop;
503     if (shift >= 64) {
504         val = 0;
505     } else if (shift <= -64) {
506         val >>= 63;
507     } else if (shift < 0) {
508         val >>= -shift;
509     } else {
510         val <<= shift;
511     }
512     return val;
513 }
514
515 #define NEON_FN(dest, src1, src2) do { \
516     int8_t tmp; \
517     tmp = (int8_t)src2; \
518     if ((tmp >= (ssize_t)sizeof(src1) * 8) \
519         || (tmp <= -(ssize_t)sizeof(src1) * 8)) { \
520         dest = 0; \
521     } else if (tmp < 0) { \
522         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
523     } else { \
524         dest = src1 << tmp; \
525     }} while (0)
526 NEON_VOP(rshl_s8, neon_s8, 4)
527 NEON_VOP(rshl_s16, neon_s16, 2)
528 #undef NEON_FN
529
530 /* The addition of the rounding constant may overflow, so we use an
531  * intermediate 64 bits accumulator.  */
532 uint32_t HELPER(neon_rshl_s32)(uint32_t valop, uint32_t shiftop)
533 {
534     int32_t dest;
535     int32_t val = (int32_t)valop;
536     int8_t shift = (int8_t)shiftop;
537     if ((shift >= 32) || (shift <= -32)) {
538         dest = 0;
539     } else if (shift < 0) {
540         int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
541         dest = big_dest >> -shift;
542     } else {
543         dest = val << shift;
544     }
545     return dest;
546 }
547
548 /* Handling addition overflow with 64 bits inputs values is more
549  * tricky than with 32 bits values.  */
550 uint64_t HELPER(neon_rshl_s64)(uint64_t valop, uint64_t shiftop)
551 {
552     int8_t shift = (int8_t)shiftop;
553     int64_t val = valop;
554     if ((shift >= 64) || (shift <= -64)) {
555         val = 0;
556     } else if (shift < 0) {
557         val >>= (-shift - 1);
558         if (val == INT64_MAX) {
559             /* In this case, it means that the rounding constant is 1,
560              * and the addition would overflow. Return the actual
561              * result directly.  */
562             val = 0x4000000000000000LL;
563         } else {
564             val++;
565             val >>= 1;
566         }
567     } else {
568         val <<= shift;
569     }
570     return val;
571 }
572
573 #define NEON_FN(dest, src1, src2) do { \
574     int8_t tmp; \
575     tmp = (int8_t)src2; \
576     if (tmp >= (ssize_t)sizeof(src1) * 8 || \
577         tmp < -(ssize_t)sizeof(src1) * 8) { \
578         dest = 0; \
579     } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
580         dest = src1 >> (-tmp - 1); \
581     } else if (tmp < 0) { \
582         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
583     } else { \
584         dest = src1 << tmp; \
585     }} while (0)
586 NEON_VOP(rshl_u8, neon_u8, 4)
587 NEON_VOP(rshl_u16, neon_u16, 2)
588 #undef NEON_FN
589
590 /* The addition of the rounding constant may overflow, so we use an
591  * intermediate 64 bits accumulator.  */
592 uint32_t HELPER(neon_rshl_u32)(uint32_t val, uint32_t shiftop)
593 {
594     uint32_t dest;
595     int8_t shift = (int8_t)shiftop;
596     if (shift >= 32 || shift < -32) {
597         dest = 0;
598     } else if (shift == -32) {
599         dest = val >> 31;
600     } else if (shift < 0) {
601         uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
602         dest = big_dest >> -shift;
603     } else {
604         dest = val << shift;
605     }
606     return dest;
607 }
608
609 /* Handling addition overflow with 64 bits inputs values is more
610  * tricky than with 32 bits values.  */
611 uint64_t HELPER(neon_rshl_u64)(uint64_t val, uint64_t shiftop)
612 {
613     int8_t shift = (uint8_t)shiftop;
614     if (shift >= 64 || shift < -64) {
615         val = 0;
616     } else if (shift == -64) {
617         /* Rounding a 1-bit result just preserves that bit.  */
618         val >>= 63;
619     } else if (shift < 0) {
620         val >>= (-shift - 1);
621         if (val == UINT64_MAX) {
622             /* In this case, it means that the rounding constant is 1,
623              * and the addition would overflow. Return the actual
624              * result directly.  */
625             val = 0x8000000000000000ULL;
626         } else {
627             val++;
628             val >>= 1;
629         }
630     } else {
631         val <<= shift;
632     }
633     return val;
634 }
635
636 #define NEON_FN(dest, src1, src2) do { \
637     int8_t tmp; \
638     tmp = (int8_t)src2; \
639     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
640         if (src1) { \
641             SET_QC(); \
642             dest = ~0; \
643         } else { \
644             dest = 0; \
645         } \
646     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
647         dest = 0; \
648     } else if (tmp < 0) { \
649         dest = src1 >> -tmp; \
650     } else { \
651         dest = src1 << tmp; \
652         if ((dest >> tmp) != src1) { \
653             SET_QC(); \
654             dest = ~0; \
655         } \
656     }} while (0)
657 NEON_VOP(qshl_u8, neon_u8, 4)
658 NEON_VOP(qshl_u16, neon_u16, 2)
659 NEON_VOP(qshl_u32, neon_u32, 1)
660 #undef NEON_FN
661
662 uint64_t HELPER(neon_qshl_u64)(uint64_t val, uint64_t shiftop)
663 {
664     int8_t shift = (int8_t)shiftop;
665     if (shift >= 64) {
666         if (val) {
667             val = ~(uint64_t)0;
668             SET_QC();
669         }
670     } else if (shift <= -64) {
671         val = 0;
672     } else if (shift < 0) {
673         val >>= -shift;
674     } else {
675         uint64_t tmp = val;
676         val <<= shift;
677         if ((val >> shift) != tmp) {
678             SET_QC();
679             val = ~(uint64_t)0;
680         }
681     }
682     return val;
683 }
684
685 #define NEON_FN(dest, src1, src2) do { \
686     int8_t tmp; \
687     tmp = (int8_t)src2; \
688     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
689         if (src1) { \
690             SET_QC(); \
691             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
692             if (src1 > 0) { \
693                 dest--; \
694             } \
695         } else { \
696             dest = src1; \
697         } \
698     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
699         dest = src1 >> 31; \
700     } else if (tmp < 0) { \
701         dest = src1 >> -tmp; \
702     } else { \
703         dest = src1 << tmp; \
704         if ((dest >> tmp) != src1) { \
705             SET_QC(); \
706             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
707             if (src1 > 0) { \
708                 dest--; \
709             } \
710         } \
711     }} while (0)
712 NEON_VOP(qshl_s8, neon_s8, 4)
713 NEON_VOP(qshl_s16, neon_s16, 2)
714 NEON_VOP(qshl_s32, neon_s32, 1)
715 #undef NEON_FN
716
717 uint64_t HELPER(neon_qshl_s64)(uint64_t valop, uint64_t shiftop)
718 {
719     int8_t shift = (uint8_t)shiftop;
720     int64_t val = valop;
721     if (shift >= 64) {
722         if (val) {
723             SET_QC();
724             val = (val >> 63) ^ ~SIGNBIT64;
725         }
726     } else if (shift <= -64) {
727         val >>= 63;
728     } else if (shift < 0) {
729         val >>= -shift;
730     } else {
731         int64_t tmp = val;
732         val <<= shift;
733         if ((val >> shift) != tmp) {
734             SET_QC();
735             val = (tmp >> 63) ^ ~SIGNBIT64;
736         }
737     }
738     return val;
739 }
740
741 #define NEON_FN(dest, src1, src2) do { \
742     if (src1 & (1 << (sizeof(src1) * 8 - 1))) { \
743         SET_QC(); \
744         dest = 0; \
745     } else { \
746         int8_t tmp; \
747         tmp = (int8_t)src2; \
748         if (tmp >= (ssize_t)sizeof(src1) * 8) { \
749             if (src1) { \
750                 SET_QC(); \
751                 dest = ~0; \
752             } else { \
753                 dest = 0; \
754             } \
755         } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
756             dest = 0; \
757         } else if (tmp < 0) { \
758             dest = src1 >> -tmp; \
759         } else { \
760             dest = src1 << tmp; \
761             if ((dest >> tmp) != src1) { \
762                 SET_QC(); \
763                 dest = ~0; \
764             } \
765         } \
766     }} while (0)
767 NEON_VOP(qshlu_s8, neon_u8, 4)
768 NEON_VOP(qshlu_s16, neon_u16, 2)
769 #undef NEON_FN
770
771 uint32_t HELPER(neon_qshlu_s32)(uint32_t valop, uint32_t shiftop)
772 {
773     if ((int32_t)valop < 0) {
774         SET_QC();
775         return 0;
776     }
777     return helper_neon_qshl_u32(valop, shiftop);
778 }
779
780 uint64_t HELPER(neon_qshlu_s64)(uint64_t valop, uint64_t shiftop)
781 {
782     if ((int64_t)valop < 0) {
783         SET_QC();
784         return 0;
785     }
786     return helper_neon_qshl_u64(valop, shiftop);
787 }
788
789 /* FIXME: This is wrong.  */
790 #define NEON_FN(dest, src1, src2) do { \
791     int8_t tmp; \
792     tmp = (int8_t)src2; \
793     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
794         if (src1) { \
795             SET_QC(); \
796             dest = ~0; \
797         } else { \
798             dest = 0; \
799         } \
800     } else if (tmp < -(ssize_t)sizeof(src1) * 8) { \
801         dest = 0; \
802     } else if (tmp == -(ssize_t)sizeof(src1) * 8) { \
803         dest = src1 >> (sizeof(src1) * 8 - 1); \
804     } else if (tmp < 0) { \
805         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
806     } else { \
807         dest = src1 << tmp; \
808         if ((dest >> tmp) != src1) { \
809             SET_QC(); \
810             dest = ~0; \
811         } \
812     }} while (0)
813 NEON_VOP(qrshl_u8, neon_u8, 4)
814 NEON_VOP(qrshl_u16, neon_u16, 2)
815 #undef NEON_FN
816
817 /* The addition of the rounding constant may overflow, so we use an
818  * intermediate 64 bits accumulator.  */
819 uint32_t HELPER(neon_qrshl_u32)(uint32_t val, uint32_t shiftop)
820 {
821     uint32_t dest;
822     int8_t shift = (int8_t)shiftop;
823     if (shift >= 32) {
824         if (val) {
825             SET_QC();
826             dest = ~0;
827         } else {
828             dest = 0;
829         }
830     } else if (shift < -32) {
831         dest = 0;
832     } else if (shift == -32) {
833         dest = val >> 31;
834     } else if (shift < 0) {
835         uint64_t big_dest = ((uint64_t)val + (1 << (-1 - shift)));
836         dest = big_dest >> -shift;
837     } else {
838         dest = val << shift;
839         if ((dest >> shift) != val) {
840             SET_QC();
841             dest = ~0;
842         }
843     }
844     return dest;
845 }
846
847 /* Handling addition overflow with 64 bits inputs values is more
848  * tricky than with 32 bits values.  */
849 uint64_t HELPER(neon_qrshl_u64)(uint64_t val, uint64_t shiftop)
850 {
851     int8_t shift = (int8_t)shiftop;
852     if (shift >= 64) {
853         if (val) {
854             SET_QC();
855             val = ~0;
856         }
857     } else if (shift < -64) {
858         val = 0;
859     } else if (shift == -64) {
860         val >>= 63;
861     } else if (shift < 0) {
862         val >>= (-shift - 1);
863         if (val == UINT64_MAX) {
864             /* In this case, it means that the rounding constant is 1,
865              * and the addition would overflow. Return the actual
866              * result directly.  */
867             val = 0x8000000000000000ULL;
868         } else {
869             val++;
870             val >>= 1;
871         }
872     } else { \
873         uint64_t tmp = val;
874         val <<= shift;
875         if ((val >> shift) != tmp) {
876             SET_QC();
877             val = ~0;
878         }
879     }
880     return val;
881 }
882
883 #define NEON_FN(dest, src1, src2) do { \
884     int8_t tmp; \
885     tmp = (int8_t)src2; \
886     if (tmp >= (ssize_t)sizeof(src1) * 8) { \
887         if (src1) { \
888             SET_QC(); \
889             dest = (1 << (sizeof(src1) * 8 - 1)); \
890             if (src1 > 0) { \
891                 dest--; \
892             } \
893         } else { \
894             dest = 0; \
895         } \
896     } else if (tmp <= -(ssize_t)sizeof(src1) * 8) { \
897         dest = 0; \
898     } else if (tmp < 0) { \
899         dest = (src1 + (1 << (-1 - tmp))) >> -tmp; \
900     } else { \
901         dest = src1 << tmp; \
902         if ((dest >> tmp) != src1) { \
903             SET_QC(); \
904             dest = (uint32_t)(1 << (sizeof(src1) * 8 - 1)); \
905             if (src1 > 0) { \
906                 dest--; \
907             } \
908         } \
909     }} while (0)
910 NEON_VOP(qrshl_s8, neon_s8, 4)
911 NEON_VOP(qrshl_s16, neon_s16, 2)
912 #undef NEON_FN
913
914 /* The addition of the rounding constant may overflow, so we use an
915  * intermediate 64 bits accumulator.  */
916 uint32_t HELPER(neon_qrshl_s32)(uint32_t valop, uint32_t shiftop)
917 {
918     int32_t dest;
919     int32_t val = (int32_t)valop;
920     int8_t shift = (int8_t)shiftop;
921     if (shift >= 32) {
922         if (val) {
923             SET_QC();
924             dest = (val >> 31) ^ ~SIGNBIT;
925         } else {
926             dest = 0;
927         }
928     } else if (shift <= -32) {
929         dest = 0;
930     } else if (shift < 0) {
931         int64_t big_dest = ((int64_t)val + (1 << (-1 - shift)));
932         dest = big_dest >> -shift;
933     } else {
934         dest = val << shift;
935         if ((dest >> shift) != val) {
936             SET_QC();
937             dest = (val >> 31) ^ ~SIGNBIT;
938         }
939     }
940     return dest;
941 }
942
943 /* Handling addition overflow with 64 bits inputs values is more
944  * tricky than with 32 bits values.  */
945 uint64_t HELPER(neon_qrshl_s64)(uint64_t valop, uint64_t shiftop)
946 {
947     int8_t shift = (uint8_t)shiftop;
948     int64_t val = valop;
949
950     if (shift >= 64) {
951         if (val) {
952             SET_QC();
953             val = (val >> 63) ^ ~SIGNBIT64;
954         }
955     } else if (shift <= -64) {
956         val = 0;
957     } else if (shift < 0) {
958         val >>= (-shift - 1);
959         if (val == INT64_MAX) {
960             /* In this case, it means that the rounding constant is 1,
961              * and the addition would overflow. Return the actual
962              * result directly.  */
963             val = 0x4000000000000000ULL;
964         } else {
965             val++;
966             val >>= 1;
967         }
968     } else {
969         int64_t tmp = val;
970         val <<= shift;
971         if ((val >> shift) != tmp) {
972             SET_QC();
973             val = (tmp >> 63) ^ ~SIGNBIT64;
974         }
975     }
976     return val;
977 }
978
979 uint32_t HELPER(neon_add_u8)(uint32_t a, uint32_t b)
980 {
981     uint32_t mask;
982     mask = (a ^ b) & 0x80808080u;
983     a &= ~0x80808080u;
984     b &= ~0x80808080u;
985     return (a + b) ^ mask;
986 }
987
988 uint32_t HELPER(neon_add_u16)(uint32_t a, uint32_t b)
989 {
990     uint32_t mask;
991     mask = (a ^ b) & 0x80008000u;
992     a &= ~0x80008000u;
993     b &= ~0x80008000u;
994     return (a + b) ^ mask;
995 }
996
997 #define NEON_FN(dest, src1, src2) dest = src1 + src2
998 NEON_POP(padd_u8, neon_u8, 4)
999 NEON_POP(padd_u16, neon_u16, 2)
1000 #undef NEON_FN
1001
1002 #define NEON_FN(dest, src1, src2) dest = src1 - src2
1003 NEON_VOP(sub_u8, neon_u8, 4)
1004 NEON_VOP(sub_u16, neon_u16, 2)
1005 #undef NEON_FN
1006
1007 #define NEON_FN(dest, src1, src2) dest = src1 * src2
1008 NEON_VOP(mul_u8, neon_u8, 4)
1009 NEON_VOP(mul_u16, neon_u16, 2)
1010 #undef NEON_FN
1011
1012 /* Polynomial multiplication is like integer multiplication except the
1013    partial products are XORed, not added.  */
1014 uint32_t HELPER(neon_mul_p8)(uint32_t op1, uint32_t op2)
1015 {
1016     uint32_t mask;
1017     uint32_t result;
1018     result = 0;
1019     while (op1) {
1020         mask = 0;
1021         if (op1 & 1)
1022             mask |= 0xff;
1023         if (op1 & (1 << 8))
1024             mask |= (0xff << 8);
1025         if (op1 & (1 << 16))
1026             mask |= (0xff << 16);
1027         if (op1 & (1 << 24))
1028             mask |= (0xff << 24);
1029         result ^= op2 & mask;
1030         op1 = (op1 >> 1) & 0x7f7f7f7f;
1031         op2 = (op2 << 1) & 0xfefefefe;
1032     }
1033     return result;
1034 }
1035
1036 uint64_t HELPER(neon_mull_p8)(uint32_t op1, uint32_t op2)
1037 {
1038     uint64_t result = 0;
1039     uint64_t mask;
1040     uint64_t op2ex = op2;
1041     op2ex = (op2ex & 0xff) |
1042         ((op2ex & 0xff00) << 8) |
1043         ((op2ex & 0xff0000) << 16) |
1044         ((op2ex & 0xff000000) << 24);
1045     while (op1) {
1046         mask = 0;
1047         if (op1 & 1) {
1048             mask |= 0xffff;
1049         }
1050         if (op1 & (1 << 8)) {
1051             mask |= (0xffffU << 16);
1052         }
1053         if (op1 & (1 << 16)) {
1054             mask |= (0xffffULL << 32);
1055         }
1056         if (op1 & (1 << 24)) {
1057             mask |= (0xffffULL << 48);
1058         }
1059         result ^= op2ex & mask;
1060         op1 = (op1 >> 1) & 0x7f7f7f7f;
1061         op2ex <<= 1;
1062     }
1063     return result;
1064 }
1065
1066 #define NEON_FN(dest, src1, src2) dest = (src1 & src2) ? -1 : 0
1067 NEON_VOP(tst_u8, neon_u8, 4)
1068 NEON_VOP(tst_u16, neon_u16, 2)
1069 NEON_VOP(tst_u32, neon_u32, 1)
1070 #undef NEON_FN
1071
1072 #define NEON_FN(dest, src1, src2) dest = (src1 == src2) ? -1 : 0
1073 NEON_VOP(ceq_u8, neon_u8, 4)
1074 NEON_VOP(ceq_u16, neon_u16, 2)
1075 NEON_VOP(ceq_u32, neon_u32, 1)
1076 #undef NEON_FN
1077
1078 #define NEON_FN(dest, src, dummy) dest = (src < 0) ? -src : src
1079 NEON_VOP1(abs_s8, neon_s8, 4)
1080 NEON_VOP1(abs_s16, neon_s16, 2)
1081 #undef NEON_FN
1082
1083 /* Count Leading Sign/Zero Bits.  */
1084 static inline int do_clz8(uint8_t x)
1085 {
1086     int n;
1087     for (n = 8; x; n--)
1088         x >>= 1;
1089     return n;
1090 }
1091
1092 static inline int do_clz16(uint16_t x)
1093 {
1094     int n;
1095     for (n = 16; x; n--)
1096         x >>= 1;
1097     return n;
1098 }
1099
1100 #define NEON_FN(dest, src, dummy) dest = do_clz8(src)
1101 NEON_VOP1(clz_u8, neon_u8, 4)
1102 #undef NEON_FN
1103
1104 #define NEON_FN(dest, src, dummy) dest = do_clz16(src)
1105 NEON_VOP1(clz_u16, neon_u16, 2)
1106 #undef NEON_FN
1107
1108 #define NEON_FN(dest, src, dummy) dest = do_clz8((src < 0) ? ~src : src) - 1
1109 NEON_VOP1(cls_s8, neon_s8, 4)
1110 #undef NEON_FN
1111
1112 #define NEON_FN(dest, src, dummy) dest = do_clz16((src < 0) ? ~src : src) - 1
1113 NEON_VOP1(cls_s16, neon_s16, 2)
1114 #undef NEON_FN
1115
1116 uint32_t HELPER(neon_cls_s32)(uint32_t x)
1117 {
1118     int count;
1119     if ((int32_t)x < 0)
1120         x = ~x;
1121     for (count = 32; x; count--)
1122         x = x >> 1;
1123     return count - 1;
1124 }
1125
1126 /* Bit count.  */
1127 uint32_t HELPER(neon_cnt_u8)(uint32_t x)
1128 {
1129     x = (x & 0x55555555) + ((x >>  1) & 0x55555555);
1130     x = (x & 0x33333333) + ((x >>  2) & 0x33333333);
1131     x = (x & 0x0f0f0f0f) + ((x >>  4) & 0x0f0f0f0f);
1132     return x;
1133 }
1134
1135 #define NEON_QDMULH16(dest, src1, src2, round) do { \
1136     uint32_t tmp = (int32_t)(int16_t) src1 * (int16_t) src2; \
1137     if ((tmp ^ (tmp << 1)) & SIGNBIT) { \
1138         SET_QC(); \
1139         tmp = (tmp >> 31) ^ ~SIGNBIT; \
1140     } else { \
1141         tmp <<= 1; \
1142     } \
1143     if (round) { \
1144         int32_t old = tmp; \
1145         tmp += 1 << 15; \
1146         if ((int32_t)tmp < old) { \
1147             SET_QC(); \
1148             tmp = SIGNBIT - 1; \
1149         } \
1150     } \
1151     dest = tmp >> 16; \
1152     } while(0)
1153 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 0)
1154 NEON_VOP(qdmulh_s16, neon_s16, 2)
1155 #undef NEON_FN
1156 #define NEON_FN(dest, src1, src2) NEON_QDMULH16(dest, src1, src2, 1)
1157 NEON_VOP(qrdmulh_s16, neon_s16, 2)
1158 #undef NEON_FN
1159 #undef NEON_QDMULH16
1160
1161 #define NEON_QDMULH32(dest, src1, src2, round) do { \
1162     uint64_t tmp = (int64_t)(int32_t) src1 * (int32_t) src2; \
1163     if ((tmp ^ (tmp << 1)) & SIGNBIT64) { \
1164         SET_QC(); \
1165         tmp = (tmp >> 63) ^ ~SIGNBIT64; \
1166     } else { \
1167         tmp <<= 1; \
1168     } \
1169     if (round) { \
1170         int64_t old = tmp; \
1171         tmp += (int64_t)1 << 31; \
1172         if ((int64_t)tmp < old) { \
1173             SET_QC(); \
1174             tmp = SIGNBIT64 - 1; \
1175         } \
1176     } \
1177     dest = tmp >> 32; \
1178     } while(0)
1179 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 0)
1180 NEON_VOP(qdmulh_s32, neon_s32, 1)
1181 #undef NEON_FN
1182 #define NEON_FN(dest, src1, src2) NEON_QDMULH32(dest, src1, src2, 1)
1183 NEON_VOP(qrdmulh_s32, neon_s32, 1)
1184 #undef NEON_FN
1185 #undef NEON_QDMULH32
1186
1187 uint32_t HELPER(neon_narrow_u8)(uint64_t x)
1188 {
1189     return (x & 0xffu) | ((x >> 8) & 0xff00u) | ((x >> 16) & 0xff0000u)
1190            | ((x >> 24) & 0xff000000u);
1191 }
1192
1193 uint32_t HELPER(neon_narrow_u16)(uint64_t x)
1194 {
1195     return (x & 0xffffu) | ((x >> 16) & 0xffff0000u);
1196 }
1197
1198 uint32_t HELPER(neon_narrow_high_u8)(uint64_t x)
1199 {
1200     return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1201             | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1202 }
1203
1204 uint32_t HELPER(neon_narrow_high_u16)(uint64_t x)
1205 {
1206     return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1207 }
1208
1209 uint32_t HELPER(neon_narrow_round_high_u8)(uint64_t x)
1210 {
1211     x &= 0xff80ff80ff80ff80ull;
1212     x += 0x0080008000800080ull;
1213     return ((x >> 8) & 0xff) | ((x >> 16) & 0xff00)
1214             | ((x >> 24) & 0xff0000) | ((x >> 32) & 0xff000000);
1215 }
1216
1217 uint32_t HELPER(neon_narrow_round_high_u16)(uint64_t x)
1218 {
1219     x &= 0xffff8000ffff8000ull;
1220     x += 0x0000800000008000ull;
1221     return ((x >> 16) & 0xffff) | ((x >> 32) & 0xffff0000);
1222 }
1223
1224 uint32_t HELPER(neon_unarrow_sat8)(uint64_t x)
1225 {
1226     uint16_t s;
1227     uint8_t d;
1228     uint32_t res = 0;
1229 #define SAT8(n) \
1230     s = x >> n; \
1231     if (s & 0x8000) { \
1232         SET_QC(); \
1233     } else { \
1234         if (s > 0xff) { \
1235             d = 0xff; \
1236             SET_QC(); \
1237         } else  { \
1238             d = s; \
1239         } \
1240         res |= (uint32_t)d << (n / 2); \
1241     }
1242
1243     SAT8(0);
1244     SAT8(16);
1245     SAT8(32);
1246     SAT8(48);
1247 #undef SAT8
1248     return res;
1249 }
1250
1251 uint32_t HELPER(neon_narrow_sat_u8)(uint64_t x)
1252 {
1253     uint16_t s;
1254     uint8_t d;
1255     uint32_t res = 0;
1256 #define SAT8(n) \
1257     s = x >> n; \
1258     if (s > 0xff) { \
1259         d = 0xff; \
1260         SET_QC(); \
1261     } else  { \
1262         d = s; \
1263     } \
1264     res |= (uint32_t)d << (n / 2);
1265
1266     SAT8(0);
1267     SAT8(16);
1268     SAT8(32);
1269     SAT8(48);
1270 #undef SAT8
1271     return res;
1272 }
1273
1274 uint32_t HELPER(neon_narrow_sat_s8)(uint64_t x)
1275 {
1276     int16_t s;
1277     uint8_t d;
1278     uint32_t res = 0;
1279 #define SAT8(n) \
1280     s = x >> n; \
1281     if (s != (int8_t)s) { \
1282         d = (s >> 15) ^ 0x7f; \
1283         SET_QC(); \
1284     } else  { \
1285         d = s; \
1286     } \
1287     res |= (uint32_t)d << (n / 2);
1288
1289     SAT8(0);
1290     SAT8(16);
1291     SAT8(32);
1292     SAT8(48);
1293 #undef SAT8
1294     return res;
1295 }
1296
1297 uint32_t HELPER(neon_unarrow_sat16)(uint64_t x)
1298 {
1299     uint32_t high;
1300     uint32_t low;
1301     low = x;
1302     if (low & 0x80000000) {
1303         low = 0;
1304         SET_QC();
1305     } else if (low > 0xffff) {
1306         low = 0xffff;
1307         SET_QC();
1308     }
1309     high = x >> 32;
1310     if (high & 0x80000000) {
1311         high = 0;
1312         SET_QC();
1313     } else if (high > 0xffff) {
1314         high = 0xffff;
1315         SET_QC();
1316     }
1317     return low | (high << 16);
1318 }
1319
1320 uint32_t HELPER(neon_narrow_sat_u16)(uint64_t x)
1321 {
1322     uint32_t high;
1323     uint32_t low;
1324     low = x;
1325     if (low > 0xffff) {
1326         low = 0xffff;
1327         SET_QC();
1328     }
1329     high = x >> 32;
1330     if (high > 0xffff) {
1331         high = 0xffff;
1332         SET_QC();
1333     }
1334     return low | (high << 16);
1335 }
1336
1337 uint32_t HELPER(neon_narrow_sat_s16)(uint64_t x)
1338 {
1339     int32_t low;
1340     int32_t high;
1341     low = x;
1342     if (low != (int16_t)low) {
1343         low = (low >> 31) ^ 0x7fff;
1344         SET_QC();
1345     }
1346     high = x >> 32;
1347     if (high != (int16_t)high) {
1348         high = (high >> 31) ^ 0x7fff;
1349         SET_QC();
1350     }
1351     return (uint16_t)low | (high << 16);
1352 }
1353
1354 uint32_t HELPER(neon_unarrow_sat32)(uint64_t x)
1355 {
1356     if (x & 0x8000000000000000ull) {
1357         SET_QC();
1358         return 0;
1359     }
1360     if (x > 0xffffffffu) {
1361         SET_QC();
1362         return 0xffffffffu;
1363     }
1364     return x;
1365 }
1366
1367 uint32_t HELPER(neon_narrow_sat_u32)(uint64_t x)
1368 {
1369     if (x > 0xffffffffu) {
1370         SET_QC();
1371         return 0xffffffffu;
1372     }
1373     return x;
1374 }
1375
1376 uint32_t HELPER(neon_narrow_sat_s32)(uint64_t x)
1377 {
1378     if ((int64_t)x != (int32_t)x) {
1379         SET_QC();
1380         return ((int64_t)x >> 63) ^ 0x7fffffff;
1381     }
1382     return x;
1383 }
1384
1385 uint64_t HELPER(neon_widen_u8)(uint32_t x)
1386 {
1387     uint64_t tmp;
1388     uint64_t ret;
1389     ret = (uint8_t)x;
1390     tmp = (uint8_t)(x >> 8);
1391     ret |= tmp << 16;
1392     tmp = (uint8_t)(x >> 16);
1393     ret |= tmp << 32;
1394     tmp = (uint8_t)(x >> 24);
1395     ret |= tmp << 48;
1396     return ret;
1397 }
1398
1399 uint64_t HELPER(neon_widen_s8)(uint32_t x)
1400 {
1401     uint64_t tmp;
1402     uint64_t ret;
1403     ret = (uint16_t)(int8_t)x;
1404     tmp = (uint16_t)(int8_t)(x >> 8);
1405     ret |= tmp << 16;
1406     tmp = (uint16_t)(int8_t)(x >> 16);
1407     ret |= tmp << 32;
1408     tmp = (uint16_t)(int8_t)(x >> 24);
1409     ret |= tmp << 48;
1410     return ret;
1411 }
1412
1413 uint64_t HELPER(neon_widen_u16)(uint32_t x)
1414 {
1415     uint64_t high = (uint16_t)(x >> 16);
1416     return ((uint16_t)x) | (high << 32);
1417 }
1418
1419 uint64_t HELPER(neon_widen_s16)(uint32_t x)
1420 {
1421     uint64_t high = (int16_t)(x >> 16);
1422     return ((uint32_t)(int16_t)x) | (high << 32);
1423 }
1424
1425 uint64_t HELPER(neon_addl_u16)(uint64_t a, uint64_t b)
1426 {
1427     uint64_t mask;
1428     mask = (a ^ b) & 0x8000800080008000ull;
1429     a &= ~0x8000800080008000ull;
1430     b &= ~0x8000800080008000ull;
1431     return (a + b) ^ mask;
1432 }
1433
1434 uint64_t HELPER(neon_addl_u32)(uint64_t a, uint64_t b)
1435 {
1436     uint64_t mask;
1437     mask = (a ^ b) & 0x8000000080000000ull;
1438     a &= ~0x8000000080000000ull;
1439     b &= ~0x8000000080000000ull;
1440     return (a + b) ^ mask;
1441 }
1442
1443 uint64_t HELPER(neon_paddl_u16)(uint64_t a, uint64_t b)
1444 {
1445     uint64_t tmp;
1446     uint64_t tmp2;
1447
1448     tmp = a & 0x0000ffff0000ffffull;
1449     tmp += (a >> 16) & 0x0000ffff0000ffffull;
1450     tmp2 = b & 0xffff0000ffff0000ull;
1451     tmp2 += (b << 16) & 0xffff0000ffff0000ull;
1452     return    ( tmp         & 0xffff)
1453             | ((tmp  >> 16) & 0xffff0000ull)
1454             | ((tmp2 << 16) & 0xffff00000000ull)
1455             | ( tmp2        & 0xffff000000000000ull);
1456 }
1457
1458 uint64_t HELPER(neon_paddl_u32)(uint64_t a, uint64_t b)
1459 {
1460     uint32_t low = a + (a >> 32);
1461     uint32_t high = b + (b >> 32);
1462     return low + ((uint64_t)high << 32);
1463 }
1464
1465 uint64_t HELPER(neon_subl_u16)(uint64_t a, uint64_t b)
1466 {
1467     uint64_t mask;
1468     mask = (a ^ ~b) & 0x8000800080008000ull;
1469     a |= 0x8000800080008000ull;
1470     b &= ~0x8000800080008000ull;
1471     return (a - b) ^ mask;
1472 }
1473
1474 uint64_t HELPER(neon_subl_u32)(uint64_t a, uint64_t b)
1475 {
1476     uint64_t mask;
1477     mask = (a ^ ~b) & 0x8000000080000000ull;
1478     a |= 0x8000000080000000ull;
1479     b &= ~0x8000000080000000ull;
1480     return (a - b) ^ mask;
1481 }
1482
1483 uint64_t HELPER(neon_addl_saturate_s32)(uint64_t a, uint64_t b)
1484 {
1485     uint32_t x, y;
1486     uint32_t low, high;
1487
1488     x = a;
1489     y = b;
1490     low = x + y;
1491     if (((low ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1492         SET_QC();
1493         low = ((int32_t)x >> 31) ^ ~SIGNBIT;
1494     }
1495     x = a >> 32;
1496     y = b >> 32;
1497     high = x + y;
1498     if (((high ^ x) & SIGNBIT) && !((x ^ y) & SIGNBIT)) {
1499         SET_QC();
1500         high = ((int32_t)x >> 31) ^ ~SIGNBIT;
1501     }
1502     return low | ((uint64_t)high << 32);
1503 }
1504
1505 uint64_t HELPER(neon_addl_saturate_s64)(uint64_t a, uint64_t b)
1506 {
1507     uint64_t result;
1508
1509     result = a + b;
1510     if (((result ^ a) & SIGNBIT64) && !((a ^ b) & SIGNBIT64)) {
1511         SET_QC();
1512         result = ((int64_t)a >> 63) ^ ~SIGNBIT64;
1513     }
1514     return result;
1515 }
1516
1517 /* We have to do the arithmetic in a larger type than
1518  * the input type, because for example with a signed 32 bit
1519  * op the absolute difference can overflow a signed 32 bit value.
1520  */
1521 #define DO_ABD(dest, x, y, intype, arithtype) do {            \
1522     arithtype tmp_x = (intype)(x);                            \
1523     arithtype tmp_y = (intype)(y);                            \
1524     dest = ((tmp_x > tmp_y) ? tmp_x - tmp_y : tmp_y - tmp_x); \
1525     } while(0)
1526
1527 uint64_t HELPER(neon_abdl_u16)(uint32_t a, uint32_t b)
1528 {
1529     uint64_t tmp;
1530     uint64_t result;
1531     DO_ABD(result, a, b, uint8_t, uint32_t);
1532     DO_ABD(tmp, a >> 8, b >> 8, uint8_t, uint32_t);
1533     result |= tmp << 16;
1534     DO_ABD(tmp, a >> 16, b >> 16, uint8_t, uint32_t);
1535     result |= tmp << 32;
1536     DO_ABD(tmp, a >> 24, b >> 24, uint8_t, uint32_t);
1537     result |= tmp << 48;
1538     return result;
1539 }
1540
1541 uint64_t HELPER(neon_abdl_s16)(uint32_t a, uint32_t b)
1542 {
1543     uint64_t tmp;
1544     uint64_t result;
1545     DO_ABD(result, a, b, int8_t, int32_t);
1546     DO_ABD(tmp, a >> 8, b >> 8, int8_t, int32_t);
1547     result |= tmp << 16;
1548     DO_ABD(tmp, a >> 16, b >> 16, int8_t, int32_t);
1549     result |= tmp << 32;
1550     DO_ABD(tmp, a >> 24, b >> 24, int8_t, int32_t);
1551     result |= tmp << 48;
1552     return result;
1553 }
1554
1555 uint64_t HELPER(neon_abdl_u32)(uint32_t a, uint32_t b)
1556 {
1557     uint64_t tmp;
1558     uint64_t result;
1559     DO_ABD(result, a, b, uint16_t, uint32_t);
1560     DO_ABD(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1561     return result | (tmp << 32);
1562 }
1563
1564 uint64_t HELPER(neon_abdl_s32)(uint32_t a, uint32_t b)
1565 {
1566     uint64_t tmp;
1567     uint64_t result;
1568     DO_ABD(result, a, b, int16_t, int32_t);
1569     DO_ABD(tmp, a >> 16, b >> 16, int16_t, int32_t);
1570     return result | (tmp << 32);
1571 }
1572
1573 uint64_t HELPER(neon_abdl_u64)(uint32_t a, uint32_t b)
1574 {
1575     uint64_t result;
1576     DO_ABD(result, a, b, uint32_t, uint64_t);
1577     return result;
1578 }
1579
1580 uint64_t HELPER(neon_abdl_s64)(uint32_t a, uint32_t b)
1581 {
1582     uint64_t result;
1583     DO_ABD(result, a, b, int32_t, int64_t);
1584     return result;
1585 }
1586 #undef DO_ABD
1587
1588 /* Widening multiply. Named type is the source type.  */
1589 #define DO_MULL(dest, x, y, type1, type2) do { \
1590     type1 tmp_x = x; \
1591     type1 tmp_y = y; \
1592     dest = (type2)((type2)tmp_x * (type2)tmp_y); \
1593     } while(0)
1594
1595 uint64_t HELPER(neon_mull_u8)(uint32_t a, uint32_t b)
1596 {
1597     uint64_t tmp;
1598     uint64_t result;
1599
1600     DO_MULL(result, a, b, uint8_t, uint16_t);
1601     DO_MULL(tmp, a >> 8, b >> 8, uint8_t, uint16_t);
1602     result |= tmp << 16;
1603     DO_MULL(tmp, a >> 16, b >> 16, uint8_t, uint16_t);
1604     result |= tmp << 32;
1605     DO_MULL(tmp, a >> 24, b >> 24, uint8_t, uint16_t);
1606     result |= tmp << 48;
1607     return result;
1608 }
1609
1610 uint64_t HELPER(neon_mull_s8)(uint32_t a, uint32_t b)
1611 {
1612     uint64_t tmp;
1613     uint64_t result;
1614
1615     DO_MULL(result, a, b, int8_t, uint16_t);
1616     DO_MULL(tmp, a >> 8, b >> 8, int8_t, uint16_t);
1617     result |= tmp << 16;
1618     DO_MULL(tmp, a >> 16, b >> 16, int8_t, uint16_t);
1619     result |= tmp << 32;
1620     DO_MULL(tmp, a >> 24, b >> 24, int8_t, uint16_t);
1621     result |= tmp << 48;
1622     return result;
1623 }
1624
1625 uint64_t HELPER(neon_mull_u16)(uint32_t a, uint32_t b)
1626 {
1627     uint64_t tmp;
1628     uint64_t result;
1629
1630     DO_MULL(result, a, b, uint16_t, uint32_t);
1631     DO_MULL(tmp, a >> 16, b >> 16, uint16_t, uint32_t);
1632     return result | (tmp << 32);
1633 }
1634
1635 uint64_t HELPER(neon_mull_s16)(uint32_t a, uint32_t b)
1636 {
1637     uint64_t tmp;
1638     uint64_t result;
1639
1640     DO_MULL(result, a, b, int16_t, uint32_t);
1641     DO_MULL(tmp, a >> 16, b >> 16, int16_t, uint32_t);
1642     return result | (tmp << 32);
1643 }
1644
1645 uint64_t HELPER(neon_negl_u16)(uint64_t x)
1646 {
1647     uint16_t tmp;
1648     uint64_t result;
1649     result = (uint16_t)-x;
1650     tmp = -(x >> 16);
1651     result |= (uint64_t)tmp << 16;
1652     tmp = -(x >> 32);
1653     result |= (uint64_t)tmp << 32;
1654     tmp = -(x >> 48);
1655     result |= (uint64_t)tmp << 48;
1656     return result;
1657 }
1658
1659 uint64_t HELPER(neon_negl_u32)(uint64_t x)
1660 {
1661     uint32_t low = -x;
1662     uint32_t high = -(x >> 32);
1663     return low | ((uint64_t)high << 32);
1664 }
1665
1666 /* FIXME:  There should be a native op for this.  */
1667 uint64_t HELPER(neon_negl_u64)(uint64_t x)
1668 {
1669     return -x;
1670 }
1671
1672 /* Saturnating sign manuipulation.  */
1673 /* ??? Make these use NEON_VOP1 */
1674 #define DO_QABS8(x) do { \
1675     if (x == (int8_t)0x80) { \
1676         x = 0x7f; \
1677         SET_QC(); \
1678     } else if (x < 0) { \
1679         x = -x; \
1680     }} while (0)
1681 uint32_t HELPER(neon_qabs_s8)(uint32_t x)
1682 {
1683     neon_s8 vec;
1684     NEON_UNPACK(neon_s8, vec, x);
1685     DO_QABS8(vec.v1);
1686     DO_QABS8(vec.v2);
1687     DO_QABS8(vec.v3);
1688     DO_QABS8(vec.v4);
1689     NEON_PACK(neon_s8, x, vec);
1690     return x;
1691 }
1692 #undef DO_QABS8
1693
1694 #define DO_QNEG8(x) do { \
1695     if (x == (int8_t)0x80) { \
1696         x = 0x7f; \
1697         SET_QC(); \
1698     } else { \
1699         x = -x; \
1700     }} while (0)
1701 uint32_t HELPER(neon_qneg_s8)(uint32_t x)
1702 {
1703     neon_s8 vec;
1704     NEON_UNPACK(neon_s8, vec, x);
1705     DO_QNEG8(vec.v1);
1706     DO_QNEG8(vec.v2);
1707     DO_QNEG8(vec.v3);
1708     DO_QNEG8(vec.v4);
1709     NEON_PACK(neon_s8, x, vec);
1710     return x;
1711 }
1712 #undef DO_QNEG8
1713
1714 #define DO_QABS16(x) do { \
1715     if (x == (int16_t)0x8000) { \
1716         x = 0x7fff; \
1717         SET_QC(); \
1718     } else if (x < 0) { \
1719         x = -x; \
1720     }} while (0)
1721 uint32_t HELPER(neon_qabs_s16)(uint32_t x)
1722 {
1723     neon_s16 vec;
1724     NEON_UNPACK(neon_s16, vec, x);
1725     DO_QABS16(vec.v1);
1726     DO_QABS16(vec.v2);
1727     NEON_PACK(neon_s16, x, vec);
1728     return x;
1729 }
1730 #undef DO_QABS16
1731
1732 #define DO_QNEG16(x) do { \
1733     if (x == (int16_t)0x8000) { \
1734         x = 0x7fff; \
1735         SET_QC(); \
1736     } else { \
1737         x = -x; \
1738     }} while (0)
1739 uint32_t HELPER(neon_qneg_s16)(uint32_t x)
1740 {
1741     neon_s16 vec;
1742     NEON_UNPACK(neon_s16, vec, x);
1743     DO_QNEG16(vec.v1);
1744     DO_QNEG16(vec.v2);
1745     NEON_PACK(neon_s16, x, vec);
1746     return x;
1747 }
1748 #undef DO_QNEG16
1749
1750 uint32_t HELPER(neon_qabs_s32)(uint32_t x)
1751 {
1752     if (x == SIGNBIT) {
1753         SET_QC();
1754         x = ~SIGNBIT;
1755     } else if ((int32_t)x < 0) {
1756         x = -x;
1757     }
1758     return x;
1759 }
1760
1761 uint32_t HELPER(neon_qneg_s32)(uint32_t x)
1762 {
1763     if (x == SIGNBIT) {
1764         SET_QC();
1765         x = ~SIGNBIT;
1766     } else {
1767         x = -x;
1768     }
1769     return x;
1770 }
1771
1772 /* NEON Float helpers.  */
1773 uint32_t HELPER(neon_min_f32)(uint32_t a, uint32_t b)
1774 {
1775     return float32_val(float32_min(make_float32(a), make_float32(b), NFS));
1776 }
1777
1778 uint32_t HELPER(neon_max_f32)(uint32_t a, uint32_t b)
1779 {
1780     return float32_val(float32_max(make_float32(a), make_float32(b), NFS));
1781 }
1782
1783 uint32_t HELPER(neon_abd_f32)(uint32_t a, uint32_t b)
1784 {
1785     float32 f0 = make_float32(a);
1786     float32 f1 = make_float32(b);
1787     return float32_val(float32_abs(float32_sub(f0, f1, NFS)));
1788 }
1789
1790 uint32_t HELPER(neon_add_f32)(uint32_t a, uint32_t b)
1791 {
1792     return float32_val(float32_add(make_float32(a), make_float32(b), NFS));
1793 }
1794
1795 uint32_t HELPER(neon_sub_f32)(uint32_t a, uint32_t b)
1796 {
1797     return float32_val(float32_sub(make_float32(a), make_float32(b), NFS));
1798 }
1799
1800 uint32_t HELPER(neon_mul_f32)(uint32_t a, uint32_t b)
1801 {
1802     return float32_val(float32_mul(make_float32(a), make_float32(b), NFS));
1803 }
1804
1805 /* Floating point comparisons produce an integer result.  */
1806 #define NEON_VOP_FCMP(name, ok) \
1807 uint32_t HELPER(neon_##name)(uint32_t a, uint32_t b) \
1808 { \
1809     switch (float32_compare_quiet(make_float32(a), make_float32(b), NFS)) { \
1810     ok return ~0; \
1811     default: return 0; \
1812     } \
1813 }
1814
1815 NEON_VOP_FCMP(ceq_f32, case float_relation_equal:)
1816 NEON_VOP_FCMP(cge_f32, case float_relation_equal: case float_relation_greater:)
1817 NEON_VOP_FCMP(cgt_f32, case float_relation_greater:)
1818
1819 uint32_t HELPER(neon_acge_f32)(uint32_t a, uint32_t b)
1820 {
1821     float32 f0 = float32_abs(make_float32(a));
1822     float32 f1 = float32_abs(make_float32(b));
1823     switch (float32_compare_quiet(f0, f1, NFS)) {
1824     case float_relation_equal:
1825     case float_relation_greater:
1826         return ~0;
1827     default:
1828         return 0;
1829     }
1830 }
1831
1832 uint32_t HELPER(neon_acgt_f32)(uint32_t a, uint32_t b)
1833 {
1834     float32 f0 = float32_abs(make_float32(a));
1835     float32 f1 = float32_abs(make_float32(b));
1836     if (float32_compare_quiet(f0, f1, NFS) == float_relation_greater) {
1837         return ~0;
1838     }
1839     return 0;
1840 }
1841
1842 #define ELEM(V, N, SIZE) (((V) >> ((N) * (SIZE))) & ((1ull << (SIZE)) - 1))
1843
1844 void HELPER(neon_qunzip8)(uint32_t rd, uint32_t rm)
1845 {
1846     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1847     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1848     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1849     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1850     uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zd0, 2, 8) << 8)
1851         | (ELEM(zd0, 4, 8) << 16) | (ELEM(zd0, 6, 8) << 24)
1852         | (ELEM(zd1, 0, 8) << 32) | (ELEM(zd1, 2, 8) << 40)
1853         | (ELEM(zd1, 4, 8) << 48) | (ELEM(zd1, 6, 8) << 56);
1854     uint64_t d1 = ELEM(zm0, 0, 8) | (ELEM(zm0, 2, 8) << 8)
1855         | (ELEM(zm0, 4, 8) << 16) | (ELEM(zm0, 6, 8) << 24)
1856         | (ELEM(zm1, 0, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1857         | (ELEM(zm1, 4, 8) << 48) | (ELEM(zm1, 6, 8) << 56);
1858     uint64_t m0 = ELEM(zd0, 1, 8) | (ELEM(zd0, 3, 8) << 8)
1859         | (ELEM(zd0, 5, 8) << 16) | (ELEM(zd0, 7, 8) << 24)
1860         | (ELEM(zd1, 1, 8) << 32) | (ELEM(zd1, 3, 8) << 40)
1861         | (ELEM(zd1, 5, 8) << 48) | (ELEM(zd1, 7, 8) << 56);
1862     uint64_t m1 = ELEM(zm0, 1, 8) | (ELEM(zm0, 3, 8) << 8)
1863         | (ELEM(zm0, 5, 8) << 16) | (ELEM(zm0, 7, 8) << 24)
1864         | (ELEM(zm1, 1, 8) << 32) | (ELEM(zm1, 3, 8) << 40)
1865         | (ELEM(zm1, 5, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1866     env->vfp.regs[rm] = make_float64(m0);
1867     env->vfp.regs[rm + 1] = make_float64(m1);
1868     env->vfp.regs[rd] = make_float64(d0);
1869     env->vfp.regs[rd + 1] = make_float64(d1);
1870 }
1871
1872 void HELPER(neon_qunzip16)(uint32_t rd, uint32_t rm)
1873 {
1874     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1875     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1876     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1877     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1878     uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zd0, 2, 16) << 16)
1879         | (ELEM(zd1, 0, 16) << 32) | (ELEM(zd1, 2, 16) << 48);
1880     uint64_t d1 = ELEM(zm0, 0, 16) | (ELEM(zm0, 2, 16) << 16)
1881         | (ELEM(zm1, 0, 16) << 32) | (ELEM(zm1, 2, 16) << 48);
1882     uint64_t m0 = ELEM(zd0, 1, 16) | (ELEM(zd0, 3, 16) << 16)
1883         | (ELEM(zd1, 1, 16) << 32) | (ELEM(zd1, 3, 16) << 48);
1884     uint64_t m1 = ELEM(zm0, 1, 16) | (ELEM(zm0, 3, 16) << 16)
1885         | (ELEM(zm1, 1, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1886     env->vfp.regs[rm] = make_float64(m0);
1887     env->vfp.regs[rm + 1] = make_float64(m1);
1888     env->vfp.regs[rd] = make_float64(d0);
1889     env->vfp.regs[rd + 1] = make_float64(d1);
1890 }
1891
1892 void HELPER(neon_qunzip32)(uint32_t rd, uint32_t rm)
1893 {
1894     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1895     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1896     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1897     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1898     uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zd1, 0, 32) << 32);
1899     uint64_t d1 = ELEM(zm0, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1900     uint64_t m0 = ELEM(zd0, 1, 32) | (ELEM(zd1, 1, 32) << 32);
1901     uint64_t m1 = ELEM(zm0, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1902     env->vfp.regs[rm] = make_float64(m0);
1903     env->vfp.regs[rm + 1] = make_float64(m1);
1904     env->vfp.regs[rd] = make_float64(d0);
1905     env->vfp.regs[rd + 1] = make_float64(d1);
1906 }
1907
1908 void HELPER(neon_unzip8)(uint32_t rd, uint32_t rm)
1909 {
1910     uint64_t zm = float64_val(env->vfp.regs[rm]);
1911     uint64_t zd = float64_val(env->vfp.regs[rd]);
1912     uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zd, 2, 8) << 8)
1913         | (ELEM(zd, 4, 8) << 16) | (ELEM(zd, 6, 8) << 24)
1914         | (ELEM(zm, 0, 8) << 32) | (ELEM(zm, 2, 8) << 40)
1915         | (ELEM(zm, 4, 8) << 48) | (ELEM(zm, 6, 8) << 56);
1916     uint64_t m0 = ELEM(zd, 1, 8) | (ELEM(zd, 3, 8) << 8)
1917         | (ELEM(zd, 5, 8) << 16) | (ELEM(zd, 7, 8) << 24)
1918         | (ELEM(zm, 1, 8) << 32) | (ELEM(zm, 3, 8) << 40)
1919         | (ELEM(zm, 5, 8) << 48) | (ELEM(zm, 7, 8) << 56);
1920     env->vfp.regs[rm] = make_float64(m0);
1921     env->vfp.regs[rd] = make_float64(d0);
1922 }
1923
1924 void HELPER(neon_unzip16)(uint32_t rd, uint32_t rm)
1925 {
1926     uint64_t zm = float64_val(env->vfp.regs[rm]);
1927     uint64_t zd = float64_val(env->vfp.regs[rd]);
1928     uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zd, 2, 16) << 16)
1929         | (ELEM(zm, 0, 16) << 32) | (ELEM(zm, 2, 16) << 48);
1930     uint64_t m0 = ELEM(zd, 1, 16) | (ELEM(zd, 3, 16) << 16)
1931         | (ELEM(zm, 1, 16) << 32) | (ELEM(zm, 3, 16) << 48);
1932     env->vfp.regs[rm] = make_float64(m0);
1933     env->vfp.regs[rd] = make_float64(d0);
1934 }
1935
1936 void HELPER(neon_qzip8)(uint32_t rd, uint32_t rm)
1937 {
1938     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1939     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1940     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1941     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1942     uint64_t d0 = ELEM(zd0, 0, 8) | (ELEM(zm0, 0, 8) << 8)
1943         | (ELEM(zd0, 1, 8) << 16) | (ELEM(zm0, 1, 8) << 24)
1944         | (ELEM(zd0, 2, 8) << 32) | (ELEM(zm0, 2, 8) << 40)
1945         | (ELEM(zd0, 3, 8) << 48) | (ELEM(zm0, 3, 8) << 56);
1946     uint64_t d1 = ELEM(zd0, 4, 8) | (ELEM(zm0, 4, 8) << 8)
1947         | (ELEM(zd0, 5, 8) << 16) | (ELEM(zm0, 5, 8) << 24)
1948         | (ELEM(zd0, 6, 8) << 32) | (ELEM(zm0, 6, 8) << 40)
1949         | (ELEM(zd0, 7, 8) << 48) | (ELEM(zm0, 7, 8) << 56);
1950     uint64_t m0 = ELEM(zd1, 0, 8) | (ELEM(zm1, 0, 8) << 8)
1951         | (ELEM(zd1, 1, 8) << 16) | (ELEM(zm1, 1, 8) << 24)
1952         | (ELEM(zd1, 2, 8) << 32) | (ELEM(zm1, 2, 8) << 40)
1953         | (ELEM(zd1, 3, 8) << 48) | (ELEM(zm1, 3, 8) << 56);
1954     uint64_t m1 = ELEM(zd1, 4, 8) | (ELEM(zm1, 4, 8) << 8)
1955         | (ELEM(zd1, 5, 8) << 16) | (ELEM(zm1, 5, 8) << 24)
1956         | (ELEM(zd1, 6, 8) << 32) | (ELEM(zm1, 6, 8) << 40)
1957         | (ELEM(zd1, 7, 8) << 48) | (ELEM(zm1, 7, 8) << 56);
1958     env->vfp.regs[rm] = make_float64(m0);
1959     env->vfp.regs[rm + 1] = make_float64(m1);
1960     env->vfp.regs[rd] = make_float64(d0);
1961     env->vfp.regs[rd + 1] = make_float64(d1);
1962 }
1963
1964 void HELPER(neon_qzip16)(uint32_t rd, uint32_t rm)
1965 {
1966     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1967     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1968     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1969     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1970     uint64_t d0 = ELEM(zd0, 0, 16) | (ELEM(zm0, 0, 16) << 16)
1971         | (ELEM(zd0, 1, 16) << 32) | (ELEM(zm0, 1, 16) << 48);
1972     uint64_t d1 = ELEM(zd0, 2, 16) | (ELEM(zm0, 2, 16) << 16)
1973         | (ELEM(zd0, 3, 16) << 32) | (ELEM(zm0, 3, 16) << 48);
1974     uint64_t m0 = ELEM(zd1, 0, 16) | (ELEM(zm1, 0, 16) << 16)
1975         | (ELEM(zd1, 1, 16) << 32) | (ELEM(zm1, 1, 16) << 48);
1976     uint64_t m1 = ELEM(zd1, 2, 16) | (ELEM(zm1, 2, 16) << 16)
1977         | (ELEM(zd1, 3, 16) << 32) | (ELEM(zm1, 3, 16) << 48);
1978     env->vfp.regs[rm] = make_float64(m0);
1979     env->vfp.regs[rm + 1] = make_float64(m1);
1980     env->vfp.regs[rd] = make_float64(d0);
1981     env->vfp.regs[rd + 1] = make_float64(d1);
1982 }
1983
1984 void HELPER(neon_qzip32)(uint32_t rd, uint32_t rm)
1985 {
1986     uint64_t zm0 = float64_val(env->vfp.regs[rm]);
1987     uint64_t zm1 = float64_val(env->vfp.regs[rm + 1]);
1988     uint64_t zd0 = float64_val(env->vfp.regs[rd]);
1989     uint64_t zd1 = float64_val(env->vfp.regs[rd + 1]);
1990     uint64_t d0 = ELEM(zd0, 0, 32) | (ELEM(zm0, 0, 32) << 32);
1991     uint64_t d1 = ELEM(zd0, 1, 32) | (ELEM(zm0, 1, 32) << 32);
1992     uint64_t m0 = ELEM(zd1, 0, 32) | (ELEM(zm1, 0, 32) << 32);
1993     uint64_t m1 = ELEM(zd1, 1, 32) | (ELEM(zm1, 1, 32) << 32);
1994     env->vfp.regs[rm] = make_float64(m0);
1995     env->vfp.regs[rm + 1] = make_float64(m1);
1996     env->vfp.regs[rd] = make_float64(d0);
1997     env->vfp.regs[rd + 1] = make_float64(d1);
1998 }
1999
2000 void HELPER(neon_zip8)(uint32_t rd, uint32_t rm)
2001 {
2002     uint64_t zm = float64_val(env->vfp.regs[rm]);
2003     uint64_t zd = float64_val(env->vfp.regs[rd]);
2004     uint64_t d0 = ELEM(zd, 0, 8) | (ELEM(zm, 0, 8) << 8)
2005         | (ELEM(zd, 1, 8) << 16) | (ELEM(zm, 1, 8) << 24)
2006         | (ELEM(zd, 2, 8) << 32) | (ELEM(zm, 2, 8) << 40)
2007         | (ELEM(zd, 3, 8) << 48) | (ELEM(zm, 3, 8) << 56);
2008     uint64_t m0 = ELEM(zd, 4, 8) | (ELEM(zm, 4, 8) << 8)
2009         | (ELEM(zd, 5, 8) << 16) | (ELEM(zm, 5, 8) << 24)
2010         | (ELEM(zd, 6, 8) << 32) | (ELEM(zm, 6, 8) << 40)
2011         | (ELEM(zd, 7, 8) << 48) | (ELEM(zm, 7, 8) << 56);
2012     env->vfp.regs[rm] = make_float64(m0);
2013     env->vfp.regs[rd] = make_float64(d0);
2014 }
2015
2016 void HELPER(neon_zip16)(uint32_t rd, uint32_t rm)
2017 {
2018     uint64_t zm = float64_val(env->vfp.regs[rm]);
2019     uint64_t zd = float64_val(env->vfp.regs[rd]);
2020     uint64_t d0 = ELEM(zd, 0, 16) | (ELEM(zm, 0, 16) << 16)
2021         | (ELEM(zd, 1, 16) << 32) | (ELEM(zm, 1, 16) << 48);
2022     uint64_t m0 = ELEM(zd, 2, 16) | (ELEM(zm, 2, 16) << 16)
2023         | (ELEM(zd, 3, 16) << 32) | (ELEM(zm, 3, 16) << 48);
2024     env->vfp.regs[rm] = make_float64(m0);
2025     env->vfp.regs[rd] = make_float64(d0);
2026 }
This page took 0.137722 seconds and 4 git commands to generate.