10 typedef uint32_t abi_ulong;
11 typedef int32_t abi_long;
12 #define TARGET_ABI_BITS 32
14 typedef target_ulong abi_ulong;
15 typedef target_long abi_long;
16 #define TARGET_ABI_BITS TARGET_LONG_BITS
20 #include "syscall_defs.h"
22 #include "target_signal.h"
25 /* This struct is used to hold certain information about the image.
26 * Basically, it replicates in user space what would be certain
27 * task_struct fields in the kernel
40 abi_ulong start_stack;
42 abi_ulong code_offset;
43 abi_ulong data_offset;
49 /* Information about the current linux thread */
50 struct vm86_saved_state {
51 uint32_t eax; /* return code */
61 uint16_t cs, ss, ds, es, fs, gs;
67 #include "nwfpe/fpa11.h"
70 /* NOTE: we force a big alignment so that the stack stored after is
72 typedef struct TaskState {
73 struct TaskState *next;
79 #if defined(TARGET_I386) && !defined(TARGET_X86_64)
81 struct vm86_saved_state vm86_saved_regs;
82 struct target_vm86plus_struct vm86plus;
89 #if defined(TARGET_ARM) || defined(TARGET_M68K)
90 /* Extra fields for semihosted binaries. */
95 int used; /* non zero if used */
96 struct image_info *info;
98 } __attribute__((aligned(16))) TaskState;
100 extern TaskState *first_task_state;
101 extern const char *qemu_uname_release;
103 /* ??? See if we can avoid exposing so much of the loader internals. */
105 * MAX_ARG_PAGES defines the number of pages allocated for arguments
106 * and envelope for the new program. 32 should suffice, this gives
107 * a maximum env+arg of 128kB w/4KB pages!
109 #define MAX_ARG_PAGES 32
112 * This structure is used to hold the arguments that are
113 * used when loading binaries.
115 struct linux_binprm {
117 void *page[MAX_ARG_PAGES];
124 char * filename; /* Name of binary */
127 void do_init_thread(struct target_pt_regs *regs, struct image_info *infop);
128 abi_ulong loader_build_argptr(int envc, int argc, abi_ulong sp,
129 abi_ulong stringp, int push_ptr);
130 int loader_exec(const char * filename, char ** argv, char ** envp,
131 struct target_pt_regs * regs, struct image_info *infop);
133 int load_elf_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
134 struct image_info * info);
135 int load_flt_binary(struct linux_binprm * bprm, struct target_pt_regs * regs,
136 struct image_info * info);
137 #ifdef TARGET_HAS_ELFLOAD32
138 int load_elf_binary_multi(struct linux_binprm *bprm,
139 struct target_pt_regs *regs,
140 struct image_info *info);
143 void memcpy_to_target(abi_ulong dest, const void *src,
145 void target_set_brk(abi_ulong new_brk);
146 abi_long do_brk(abi_ulong new_brk);
147 void syscall_init(void);
148 abi_long do_syscall(void *cpu_env, int num, abi_long arg1,
149 abi_long arg2, abi_long arg3, abi_long arg4,
150 abi_long arg5, abi_long arg6);
151 void gemu_log(const char *fmt, ...) __attribute__((format(printf,1,2)));
152 extern CPUState *global_env;
153 void cpu_loop(CPUState *env);
154 void init_paths(const char *prefix);
155 const char *path(const char *pathname);
156 char *target_strerror(int err);
159 extern FILE *logfile;
162 void print_syscall(int num,
163 target_long arg1, target_long arg2, target_long arg3,
164 target_long arg4, target_long arg5, target_long arg6);
165 void print_syscall_ret(int num, target_long arg1);
166 extern int do_strace;
169 void process_pending_signals(void *cpu_env);
170 void signal_init(void);
171 int queue_signal(int sig, target_siginfo_t *info);
172 void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info);
173 void target_to_host_siginfo(siginfo_t *info, const target_siginfo_t *tinfo);
174 long do_sigreturn(CPUState *env);
175 long do_rt_sigreturn(CPUState *env);
176 int do_sigaltstack(const struct target_sigaltstack *uss,
177 struct target_sigaltstack *uoss,
182 void save_v86_state(CPUX86State *env);
183 void handle_vm86_trap(CPUX86State *env, int trapno);
184 void handle_vm86_fault(CPUX86State *env);
185 int do_vm86(CPUX86State *env, long subfunction, abi_ulong v86_addr);
186 #elif defined(TARGET_SPARC64)
187 void sparc64_set_context(CPUSPARCState *env);
188 void sparc64_get_context(CPUSPARCState *env);
192 int target_mprotect(abi_ulong start, abi_ulong len, int prot);
193 abi_long target_mmap(abi_ulong start, abi_ulong len, int prot,
194 int flags, int fd, abi_ulong offset);
195 int target_munmap(abi_ulong start, abi_ulong len);
196 abi_long target_mremap(abi_ulong old_addr, abi_ulong old_size,
197 abi_ulong new_size, unsigned long flags,
199 int target_msync(abi_ulong start, abi_ulong len, int flags);
203 #define VERIFY_READ 0
204 #define VERIFY_WRITE 1
206 #define access_ok(type,addr,size) \
207 (page_check_range((target_ulong)addr,size,(type==VERIFY_READ)?PAGE_READ:PAGE_WRITE)==0)
209 /* NOTE __get_user and __put_user use host pointers and don't check access. */
210 #define __put_user(x, hptr)\
212 int size = sizeof(*hptr);\
215 *(uint8_t *)(hptr) = (typeof(*hptr))(x);\
218 *(uint16_t *)(hptr) = tswap16((typeof(*hptr))(x));\
221 *(uint32_t *)(hptr) = tswap32((typeof(*hptr))(x));\
224 *(uint64_t *)(hptr) = tswap64((typeof(*hptr))(x));\
232 #define __get_user(x, hptr) \
234 int size = sizeof(*hptr);\
237 x = (typeof(*hptr))*(uint8_t *)(hptr);\
240 x = (typeof(*hptr))tswap16(*(uint16_t *)(hptr));\
243 x = (typeof(*hptr))tswap32(*(uint32_t *)(hptr));\
246 x = (typeof(*hptr))tswap64(*(uint64_t *)(hptr));\
254 #define put_user(x,ptr)\
257 if (access_ok(VERIFY_WRITE, ptr, sizeof(*ptr)))\
258 __ret = __put_user(x, ptr);\
264 #define get_user(x,ptr)\
267 if (access_ok(VERIFY_READ, ptr, sizeof(*ptr)))\
268 __ret = __get_user(x, ptr);\
274 /* Functions for accessing guest memory. The tget and tput functions
275 read/write single values, byteswapping as neccessary. The lock_user
276 gets a pointer to a contiguous area of guest memory, but does not perform
277 and byteswapping. lock_user may return either a pointer to the guest
278 memory, or a temporary buffer. */
280 /* Lock an area of guest memory into the host. If copy is true then the
281 host area will have the same contents as the guest. */
282 static inline void *lock_user(abi_ulong guest_addr, long len, int copy)
288 memcpy(addr, g2h(guest_addr), len);
290 memset(addr, 0, len);
293 return g2h(guest_addr);
297 /* Unlock an area of guest memory. The first LEN bytes must be flushed back
299 static inline void unlock_user(void *host_addr, abi_ulong guest_addr,
303 if (host_addr == g2h(guest_addr))
306 memcpy(g2h(guest_addr), host_addr, len);
311 /* Return the length of a string in target memory. */
312 static inline int target_strlen(abi_ulong ptr)
314 return strlen(g2h(ptr));
317 /* Like lock_user but for null terminated strings. */
318 static inline void *lock_user_string(abi_ulong guest_addr)
321 len = target_strlen(guest_addr) + 1;
322 return lock_user(guest_addr, len, 1);
325 /* Helper macros for locking/ulocking a target struct. */
326 #define lock_user_struct(host_ptr, guest_addr, copy) \
327 host_ptr = lock_user(guest_addr, sizeof(*host_ptr), copy)
328 #define unlock_user_struct(host_ptr, guest_addr, copy) \
329 unlock_user(host_ptr, guest_addr, (copy) ? sizeof(*host_ptr) : 0)
331 #define tget8(addr) ldub(addr)
332 #define tput8(addr, val) stb(addr, val)
333 #define tget16(addr) lduw(addr)
334 #define tput16(addr, val) stw(addr, val)
335 #define tget32(addr) ldl(addr)
336 #define tput32(addr, val) stl(addr, val)
337 #define tget64(addr) ldq(addr)
338 #define tput64(addr, val) stq(addr, val)
339 #if TARGET_ABI_BITS == 64
340 #define tgetl(addr) ldq(addr)
341 #define tputl(addr, val) stq(addr, val)
343 #define tgetl(addr) ldl(addr)
344 #define tputl(addr, val) stl(addr, val)