2 * QEMU Enhanced Disk Format
4 * Copyright IBM, Corp. 2010
10 * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11 * See the COPYING.LIB file in the top-level directory.
15 #include "qemu/osdep.h"
16 #include "qapi/error.h"
17 #include "qemu/timer.h"
18 #include "qemu/bswap.h"
21 #include "qapi/qmp/qerror.h"
22 #include "sysemu/block-backend.h"
24 static const AIOCBInfo qed_aiocb_info = {
25 .aiocb_size = sizeof(QEDAIOCB),
28 static int bdrv_qed_probe(const uint8_t *buf, int buf_size,
31 const QEDHeader *header = (const QEDHeader *)buf;
33 if (buf_size < sizeof(*header)) {
36 if (le32_to_cpu(header->magic) != QED_MAGIC) {
43 * Check whether an image format is raw
45 * @fmt: Backing file format, may be NULL
47 static bool qed_fmt_is_raw(const char *fmt)
49 return fmt && strcmp(fmt, "raw") == 0;
52 static void qed_header_le_to_cpu(const QEDHeader *le, QEDHeader *cpu)
54 cpu->magic = le32_to_cpu(le->magic);
55 cpu->cluster_size = le32_to_cpu(le->cluster_size);
56 cpu->table_size = le32_to_cpu(le->table_size);
57 cpu->header_size = le32_to_cpu(le->header_size);
58 cpu->features = le64_to_cpu(le->features);
59 cpu->compat_features = le64_to_cpu(le->compat_features);
60 cpu->autoclear_features = le64_to_cpu(le->autoclear_features);
61 cpu->l1_table_offset = le64_to_cpu(le->l1_table_offset);
62 cpu->image_size = le64_to_cpu(le->image_size);
63 cpu->backing_filename_offset = le32_to_cpu(le->backing_filename_offset);
64 cpu->backing_filename_size = le32_to_cpu(le->backing_filename_size);
67 static void qed_header_cpu_to_le(const QEDHeader *cpu, QEDHeader *le)
69 le->magic = cpu_to_le32(cpu->magic);
70 le->cluster_size = cpu_to_le32(cpu->cluster_size);
71 le->table_size = cpu_to_le32(cpu->table_size);
72 le->header_size = cpu_to_le32(cpu->header_size);
73 le->features = cpu_to_le64(cpu->features);
74 le->compat_features = cpu_to_le64(cpu->compat_features);
75 le->autoclear_features = cpu_to_le64(cpu->autoclear_features);
76 le->l1_table_offset = cpu_to_le64(cpu->l1_table_offset);
77 le->image_size = cpu_to_le64(cpu->image_size);
78 le->backing_filename_offset = cpu_to_le32(cpu->backing_filename_offset);
79 le->backing_filename_size = cpu_to_le32(cpu->backing_filename_size);
82 int qed_write_header_sync(BDRVQEDState *s)
87 qed_header_cpu_to_le(&s->header, &le);
88 ret = bdrv_pwrite(s->bs->file, 0, &le, sizeof(le));
89 if (ret != sizeof(le)) {
96 * Update header in-place (does not rewrite backing filename or other strings)
98 * This function only updates known header fields in-place and does not affect
99 * extra data after the QED header.
101 static int qed_write_header(BDRVQEDState *s)
103 /* We must write full sectors for O_DIRECT but cannot necessarily generate
104 * the data following the header if an unrecognized compat feature is
105 * active. Therefore, first read the sectors containing the header, update
106 * them, and write back.
109 int nsectors = DIV_ROUND_UP(sizeof(QEDHeader), BDRV_SECTOR_SIZE);
110 size_t len = nsectors * BDRV_SECTOR_SIZE;
116 buf = qemu_blockalign(s->bs, len);
117 iov = (struct iovec) {
121 qemu_iovec_init_external(&qiov, &iov, 1);
123 ret = bdrv_preadv(s->bs->file, 0, &qiov);
129 qed_header_cpu_to_le(&s->header, (QEDHeader *) buf);
131 ret = bdrv_pwritev(s->bs->file, 0, &qiov);
142 static uint64_t qed_max_image_size(uint32_t cluster_size, uint32_t table_size)
144 uint64_t table_entries;
147 table_entries = (table_size * cluster_size) / sizeof(uint64_t);
148 l2_size = table_entries * cluster_size;
150 return l2_size * table_entries;
153 static bool qed_is_cluster_size_valid(uint32_t cluster_size)
155 if (cluster_size < QED_MIN_CLUSTER_SIZE ||
156 cluster_size > QED_MAX_CLUSTER_SIZE) {
159 if (cluster_size & (cluster_size - 1)) {
160 return false; /* not power of 2 */
165 static bool qed_is_table_size_valid(uint32_t table_size)
167 if (table_size < QED_MIN_TABLE_SIZE ||
168 table_size > QED_MAX_TABLE_SIZE) {
171 if (table_size & (table_size - 1)) {
172 return false; /* not power of 2 */
177 static bool qed_is_image_size_valid(uint64_t image_size, uint32_t cluster_size,
180 if (image_size % BDRV_SECTOR_SIZE != 0) {
181 return false; /* not multiple of sector size */
183 if (image_size > qed_max_image_size(cluster_size, table_size)) {
184 return false; /* image is too large */
190 * Read a string of known length from the image file
193 * @offset: File offset to start of string, in bytes
194 * @n: String length in bytes
195 * @buf: Destination buffer
196 * @buflen: Destination buffer length in bytes
197 * @ret: 0 on success, -errno on failure
199 * The string is NUL-terminated.
201 static int qed_read_string(BdrvChild *file, uint64_t offset, size_t n,
202 char *buf, size_t buflen)
208 ret = bdrv_pread(file, offset, buf, n);
217 * Allocate new clusters
220 * @n: Number of contiguous clusters to allocate
221 * @ret: Offset of first allocated cluster
223 * This function only produces the offset where the new clusters should be
224 * written. It updates BDRVQEDState but does not make any changes to the image
227 static uint64_t qed_alloc_clusters(BDRVQEDState *s, unsigned int n)
229 uint64_t offset = s->file_size;
230 s->file_size += n * s->header.cluster_size;
234 QEDTable *qed_alloc_table(BDRVQEDState *s)
236 /* Honor O_DIRECT memory alignment requirements */
237 return qemu_blockalign(s->bs,
238 s->header.cluster_size * s->header.table_size);
242 * Allocate a new zeroed L2 table
244 static CachedL2Table *qed_new_l2_table(BDRVQEDState *s)
246 CachedL2Table *l2_table = qed_alloc_l2_cache_entry(&s->l2_cache);
248 l2_table->table = qed_alloc_table(s);
249 l2_table->offset = qed_alloc_clusters(s, s->header.table_size);
251 memset(l2_table->table->offsets, 0,
252 s->header.cluster_size * s->header.table_size);
256 static void qed_aio_next_io(QEDAIOCB *acb);
258 static void qed_aio_start_io(QEDAIOCB *acb)
260 qed_aio_next_io(acb);
263 static void qed_plug_allocating_write_reqs(BDRVQEDState *s)
265 assert(!s->allocating_write_reqs_plugged);
267 s->allocating_write_reqs_plugged = true;
270 static void qed_unplug_allocating_write_reqs(BDRVQEDState *s)
272 assert(s->allocating_write_reqs_plugged);
274 s->allocating_write_reqs_plugged = false;
275 qemu_co_enter_next(&s->allocating_write_reqs);
278 static void qed_clear_need_check(void *opaque, int ret)
280 BDRVQEDState *s = opaque;
283 qed_unplug_allocating_write_reqs(s);
287 s->header.features &= ~QED_F_NEED_CHECK;
288 ret = qed_write_header(s);
291 qed_unplug_allocating_write_reqs(s);
293 ret = bdrv_flush(s->bs);
297 static void qed_need_check_timer_cb(void *opaque)
299 BDRVQEDState *s = opaque;
301 /* The timer should only fire when allocating writes have drained */
302 assert(!s->allocating_acb);
304 trace_qed_need_check_timer_cb(s);
307 qed_plug_allocating_write_reqs(s);
309 /* Ensure writes are on disk before clearing flag */
310 bdrv_aio_flush(s->bs->file->bs, qed_clear_need_check, s);
314 void qed_acquire(BDRVQEDState *s)
316 aio_context_acquire(bdrv_get_aio_context(s->bs));
319 void qed_release(BDRVQEDState *s)
321 aio_context_release(bdrv_get_aio_context(s->bs));
324 static void qed_start_need_check_timer(BDRVQEDState *s)
326 trace_qed_start_need_check_timer(s);
328 /* Use QEMU_CLOCK_VIRTUAL so we don't alter the image file while suspended for
331 timer_mod(s->need_check_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
332 NANOSECONDS_PER_SECOND * QED_NEED_CHECK_TIMEOUT);
335 /* It's okay to call this multiple times or when no timer is started */
336 static void qed_cancel_need_check_timer(BDRVQEDState *s)
338 trace_qed_cancel_need_check_timer(s);
339 timer_del(s->need_check_timer);
342 static void bdrv_qed_detach_aio_context(BlockDriverState *bs)
344 BDRVQEDState *s = bs->opaque;
346 qed_cancel_need_check_timer(s);
347 timer_free(s->need_check_timer);
350 static void bdrv_qed_attach_aio_context(BlockDriverState *bs,
351 AioContext *new_context)
353 BDRVQEDState *s = bs->opaque;
355 s->need_check_timer = aio_timer_new(new_context,
356 QEMU_CLOCK_VIRTUAL, SCALE_NS,
357 qed_need_check_timer_cb, s);
358 if (s->header.features & QED_F_NEED_CHECK) {
359 qed_start_need_check_timer(s);
363 static void bdrv_qed_drain(BlockDriverState *bs)
365 BDRVQEDState *s = bs->opaque;
367 /* Fire the timer immediately in order to start doing I/O as soon as the
370 if (s->need_check_timer && timer_pending(s->need_check_timer)) {
371 qed_cancel_need_check_timer(s);
372 qed_need_check_timer_cb(s);
376 static int bdrv_qed_do_open(BlockDriverState *bs, QDict *options, int flags,
379 BDRVQEDState *s = bs->opaque;
385 qemu_co_queue_init(&s->allocating_write_reqs);
387 ret = bdrv_pread(bs->file, 0, &le_header, sizeof(le_header));
391 qed_header_le_to_cpu(&le_header, &s->header);
393 if (s->header.magic != QED_MAGIC) {
394 error_setg(errp, "Image not in QED format");
397 if (s->header.features & ~QED_FEATURE_MASK) {
398 /* image uses unsupported feature bits */
399 error_setg(errp, "Unsupported QED features: %" PRIx64,
400 s->header.features & ~QED_FEATURE_MASK);
403 if (!qed_is_cluster_size_valid(s->header.cluster_size)) {
407 /* Round down file size to the last cluster */
408 file_size = bdrv_getlength(bs->file->bs);
412 s->file_size = qed_start_of_cluster(s, file_size);
414 if (!qed_is_table_size_valid(s->header.table_size)) {
417 if (!qed_is_image_size_valid(s->header.image_size,
418 s->header.cluster_size,
419 s->header.table_size)) {
422 if (!qed_check_table_offset(s, s->header.l1_table_offset)) {
426 s->table_nelems = (s->header.cluster_size * s->header.table_size) /
428 s->l2_shift = ctz32(s->header.cluster_size);
429 s->l2_mask = s->table_nelems - 1;
430 s->l1_shift = s->l2_shift + ctz32(s->table_nelems);
432 /* Header size calculation must not overflow uint32_t */
433 if (s->header.header_size > UINT32_MAX / s->header.cluster_size) {
437 if ((s->header.features & QED_F_BACKING_FILE)) {
438 if ((uint64_t)s->header.backing_filename_offset +
439 s->header.backing_filename_size >
440 s->header.cluster_size * s->header.header_size) {
444 ret = qed_read_string(bs->file, s->header.backing_filename_offset,
445 s->header.backing_filename_size, bs->backing_file,
446 sizeof(bs->backing_file));
451 if (s->header.features & QED_F_BACKING_FORMAT_NO_PROBE) {
452 pstrcpy(bs->backing_format, sizeof(bs->backing_format), "raw");
456 /* Reset unknown autoclear feature bits. This is a backwards
457 * compatibility mechanism that allows images to be opened by older
458 * programs, which "knock out" unknown feature bits. When an image is
459 * opened by a newer program again it can detect that the autoclear
460 * feature is no longer valid.
462 if ((s->header.autoclear_features & ~QED_AUTOCLEAR_FEATURE_MASK) != 0 &&
463 !bdrv_is_read_only(bs->file->bs) && !(flags & BDRV_O_INACTIVE)) {
464 s->header.autoclear_features &= QED_AUTOCLEAR_FEATURE_MASK;
466 ret = qed_write_header_sync(s);
471 /* From here on only known autoclear feature bits are valid */
472 bdrv_flush(bs->file->bs);
475 s->l1_table = qed_alloc_table(s);
476 qed_init_l2_cache(&s->l2_cache);
478 ret = qed_read_l1_table_sync(s);
483 /* If image was not closed cleanly, check consistency */
484 if (!(flags & BDRV_O_CHECK) && (s->header.features & QED_F_NEED_CHECK)) {
485 /* Read-only images cannot be fixed. There is no risk of corruption
486 * since write operations are not possible. Therefore, allow
487 * potentially inconsistent images to be opened read-only. This can
488 * aid data recovery from an otherwise inconsistent image.
490 if (!bdrv_is_read_only(bs->file->bs) &&
491 !(flags & BDRV_O_INACTIVE)) {
492 BdrvCheckResult result = {0};
494 ret = qed_check(s, &result, true);
501 bdrv_qed_attach_aio_context(bs, bdrv_get_aio_context(bs));
505 qed_free_l2_cache(&s->l2_cache);
506 qemu_vfree(s->l1_table);
511 static int bdrv_qed_open(BlockDriverState *bs, QDict *options, int flags,
514 bs->file = bdrv_open_child(NULL, options, "file", bs, &child_file,
520 return bdrv_qed_do_open(bs, options, flags, errp);
523 static void bdrv_qed_refresh_limits(BlockDriverState *bs, Error **errp)
525 BDRVQEDState *s = bs->opaque;
527 bs->bl.pwrite_zeroes_alignment = s->header.cluster_size;
530 /* We have nothing to do for QED reopen, stubs just return
532 static int bdrv_qed_reopen_prepare(BDRVReopenState *state,
533 BlockReopenQueue *queue, Error **errp)
538 static void bdrv_qed_close(BlockDriverState *bs)
540 BDRVQEDState *s = bs->opaque;
542 bdrv_qed_detach_aio_context(bs);
544 /* Ensure writes reach stable storage */
545 bdrv_flush(bs->file->bs);
547 /* Clean shutdown, no check required on next open */
548 if (s->header.features & QED_F_NEED_CHECK) {
549 s->header.features &= ~QED_F_NEED_CHECK;
550 qed_write_header_sync(s);
553 qed_free_l2_cache(&s->l2_cache);
554 qemu_vfree(s->l1_table);
557 static int qed_create(const char *filename, uint32_t cluster_size,
558 uint64_t image_size, uint32_t table_size,
559 const char *backing_file, const char *backing_fmt,
560 QemuOpts *opts, Error **errp)
564 .cluster_size = cluster_size,
565 .table_size = table_size,
568 .compat_features = 0,
569 .l1_table_offset = cluster_size,
570 .image_size = image_size,
573 uint8_t *l1_table = NULL;
574 size_t l1_size = header.cluster_size * header.table_size;
575 Error *local_err = NULL;
579 ret = bdrv_create_file(filename, opts, &local_err);
581 error_propagate(errp, local_err);
585 blk = blk_new_open(filename, NULL, NULL,
586 BDRV_O_RDWR | BDRV_O_RESIZE | BDRV_O_PROTOCOL,
589 error_propagate(errp, local_err);
593 blk_set_allow_write_beyond_eof(blk, true);
595 /* File must start empty and grow, check truncate is supported */
596 ret = blk_truncate(blk, 0, errp);
602 header.features |= QED_F_BACKING_FILE;
603 header.backing_filename_offset = sizeof(le_header);
604 header.backing_filename_size = strlen(backing_file);
606 if (qed_fmt_is_raw(backing_fmt)) {
607 header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
611 qed_header_cpu_to_le(&header, &le_header);
612 ret = blk_pwrite(blk, 0, &le_header, sizeof(le_header), 0);
616 ret = blk_pwrite(blk, sizeof(le_header), backing_file,
617 header.backing_filename_size, 0);
622 l1_table = g_malloc0(l1_size);
623 ret = blk_pwrite(blk, header.l1_table_offset, l1_table, l1_size, 0);
628 ret = 0; /* success */
635 static int bdrv_qed_create(const char *filename, QemuOpts *opts, Error **errp)
637 uint64_t image_size = 0;
638 uint32_t cluster_size = QED_DEFAULT_CLUSTER_SIZE;
639 uint32_t table_size = QED_DEFAULT_TABLE_SIZE;
640 char *backing_file = NULL;
641 char *backing_fmt = NULL;
644 image_size = ROUND_UP(qemu_opt_get_size_del(opts, BLOCK_OPT_SIZE, 0),
646 backing_file = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FILE);
647 backing_fmt = qemu_opt_get_del(opts, BLOCK_OPT_BACKING_FMT);
648 cluster_size = qemu_opt_get_size_del(opts,
649 BLOCK_OPT_CLUSTER_SIZE,
650 QED_DEFAULT_CLUSTER_SIZE);
651 table_size = qemu_opt_get_size_del(opts, BLOCK_OPT_TABLE_SIZE,
652 QED_DEFAULT_TABLE_SIZE);
654 if (!qed_is_cluster_size_valid(cluster_size)) {
655 error_setg(errp, "QED cluster size must be within range [%u, %u] "
657 QED_MIN_CLUSTER_SIZE, QED_MAX_CLUSTER_SIZE);
661 if (!qed_is_table_size_valid(table_size)) {
662 error_setg(errp, "QED table size must be within range [%u, %u] "
664 QED_MIN_TABLE_SIZE, QED_MAX_TABLE_SIZE);
668 if (!qed_is_image_size_valid(image_size, cluster_size, table_size)) {
669 error_setg(errp, "QED image size must be a non-zero multiple of "
670 "cluster size and less than %" PRIu64 " bytes",
671 qed_max_image_size(cluster_size, table_size));
676 ret = qed_create(filename, cluster_size, image_size, table_size,
677 backing_file, backing_fmt, opts, errp);
680 g_free(backing_file);
686 BlockDriverState *bs;
691 BlockDriverState **file;
694 static void qed_is_allocated_cb(void *opaque, int ret, uint64_t offset, size_t len)
696 QEDIsAllocatedCB *cb = opaque;
697 BDRVQEDState *s = cb->bs->opaque;
698 *cb->pnum = len / BDRV_SECTOR_SIZE;
700 case QED_CLUSTER_FOUND:
701 offset |= qed_offset_into_cluster(s, cb->pos);
702 cb->status = BDRV_BLOCK_DATA | BDRV_BLOCK_OFFSET_VALID | offset;
703 *cb->file = cb->bs->file->bs;
705 case QED_CLUSTER_ZERO:
706 cb->status = BDRV_BLOCK_ZERO;
723 static int64_t coroutine_fn bdrv_qed_co_get_block_status(BlockDriverState *bs,
725 int nb_sectors, int *pnum,
726 BlockDriverState **file)
728 BDRVQEDState *s = bs->opaque;
729 size_t len = (size_t)nb_sectors * BDRV_SECTOR_SIZE;
730 QEDIsAllocatedCB cb = {
732 .pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE,
733 .status = BDRV_BLOCK_OFFSET_MASK,
737 QEDRequest request = { .l2_table = NULL };
741 ret = qed_find_cluster(s, &request, cb.pos, &len, &offset);
742 qed_is_allocated_cb(&cb, ret, offset, len);
744 /* The callback was invoked immediately */
745 assert(cb.status != BDRV_BLOCK_OFFSET_MASK);
747 qed_unref_l2_cache_entry(request.l2_table);
752 static BDRVQEDState *acb_to_s(QEDAIOCB *acb)
754 return acb->common.bs->opaque;
758 * Read from the backing file or zero-fill if no backing file
761 * @pos: Byte position in device
762 * @qiov: Destination I/O vector
763 * @backing_qiov: Possibly shortened copy of qiov, to be allocated here
764 * @cb: Completion function
765 * @opaque: User data for completion function
767 * This function reads qiov->size bytes starting at pos from the backing file.
768 * If there is no backing file then zeroes are read.
770 static int qed_read_backing_file(BDRVQEDState *s, uint64_t pos,
772 QEMUIOVector **backing_qiov)
774 uint64_t backing_length = 0;
778 /* If there is a backing file, get its length. Treat the absence of a
779 * backing file like a zero length backing file.
781 if (s->bs->backing) {
782 int64_t l = bdrv_getlength(s->bs->backing->bs);
789 /* Zero all sectors if reading beyond the end of the backing file */
790 if (pos >= backing_length ||
791 pos + qiov->size > backing_length) {
792 qemu_iovec_memset(qiov, 0, 0, qiov->size);
795 /* Complete now if there are no backing file sectors to read */
796 if (pos >= backing_length) {
800 /* If the read straddles the end of the backing file, shorten it */
801 size = MIN((uint64_t)backing_length - pos, qiov->size);
803 assert(*backing_qiov == NULL);
804 *backing_qiov = g_new(QEMUIOVector, 1);
805 qemu_iovec_init(*backing_qiov, qiov->niov);
806 qemu_iovec_concat(*backing_qiov, qiov, 0, size);
808 BLKDBG_EVENT(s->bs->file, BLKDBG_READ_BACKING_AIO);
809 ret = bdrv_preadv(s->bs->backing, pos, *backing_qiov);
817 * Copy data from backing file into the image
820 * @pos: Byte position in device
821 * @len: Number of bytes
822 * @offset: Byte offset in image file
824 static int qed_copy_from_backing_file(BDRVQEDState *s, uint64_t pos,
825 uint64_t len, uint64_t offset)
828 QEMUIOVector *backing_qiov = NULL;
832 /* Skip copy entirely if there is no work to do */
837 iov = (struct iovec) {
838 .iov_base = qemu_blockalign(s->bs, len),
841 qemu_iovec_init_external(&qiov, &iov, 1);
843 ret = qed_read_backing_file(s, pos, &qiov, &backing_qiov);
846 qemu_iovec_destroy(backing_qiov);
847 g_free(backing_qiov);
855 BLKDBG_EVENT(s->bs->file, BLKDBG_COW_WRITE);
856 ret = bdrv_pwritev(s->bs->file, offset, &qiov);
862 qemu_vfree(iov.iov_base);
867 * Link one or more contiguous clusters into a table
871 * @index: First cluster index
872 * @n: Number of contiguous clusters
873 * @cluster: First cluster offset
875 * The cluster offset may be an allocated byte offset in the image file, the
876 * zero cluster marker, or the unallocated cluster marker.
878 static void qed_update_l2_table(BDRVQEDState *s, QEDTable *table, int index,
879 unsigned int n, uint64_t cluster)
882 for (i = index; i < index + n; i++) {
883 table->offsets[i] = cluster;
884 if (!qed_offset_is_unalloc_cluster(cluster) &&
885 !qed_offset_is_zero_cluster(cluster)) {
886 cluster += s->header.cluster_size;
891 static void qed_aio_complete_bh(void *opaque)
893 QEDAIOCB *acb = opaque;
894 BDRVQEDState *s = acb_to_s(acb);
895 BlockCompletionFunc *cb = acb->common.cb;
896 void *user_opaque = acb->common.opaque;
897 int ret = acb->bh_ret;
901 /* Invoke callback */
903 cb(user_opaque, ret);
907 static void qed_aio_complete(QEDAIOCB *acb, int ret)
909 BDRVQEDState *s = acb_to_s(acb);
911 trace_qed_aio_complete(s, acb, ret);
914 qemu_iovec_destroy(&acb->cur_qiov);
915 qed_unref_l2_cache_entry(acb->request.l2_table);
917 /* Free the buffer we may have allocated for zero writes */
918 if (acb->flags & QED_AIOCB_ZERO) {
919 qemu_vfree(acb->qiov->iov[0].iov_base);
920 acb->qiov->iov[0].iov_base = NULL;
923 /* Arrange for a bh to invoke the completion function */
925 aio_bh_schedule_oneshot(bdrv_get_aio_context(acb->common.bs),
926 qed_aio_complete_bh, acb);
928 /* Start next allocating write request waiting behind this one. Note that
929 * requests enqueue themselves when they first hit an unallocated cluster
930 * but they wait until the entire request is finished before waking up the
931 * next request in the queue. This ensures that we don't cycle through
932 * requests multiple times but rather finish one at a time completely.
934 if (acb == s->allocating_acb) {
935 s->allocating_acb = NULL;
936 if (!qemu_co_queue_empty(&s->allocating_write_reqs)) {
937 qemu_co_enter_next(&s->allocating_write_reqs);
938 } else if (s->header.features & QED_F_NEED_CHECK) {
939 qed_start_need_check_timer(s);
945 * Update L1 table with new L2 table offset and write it out
947 static int qed_aio_write_l1_update(QEDAIOCB *acb)
949 BDRVQEDState *s = acb_to_s(acb);
950 CachedL2Table *l2_table = acb->request.l2_table;
951 uint64_t l2_offset = l2_table->offset;
954 index = qed_l1_index(s, acb->cur_pos);
955 s->l1_table->offsets[index] = l2_table->offset;
957 ret = qed_write_l1_table(s, index, 1);
959 /* Commit the current L2 table to the cache */
960 qed_commit_l2_cache_entry(&s->l2_cache, l2_table);
962 /* This is guaranteed to succeed because we just committed the entry to the
965 acb->request.l2_table = qed_find_l2_cache_entry(&s->l2_cache, l2_offset);
966 assert(acb->request.l2_table != NULL);
973 * Update L2 table with new cluster offsets and write them out
975 static int qed_aio_write_l2_update(QEDAIOCB *acb, uint64_t offset)
977 BDRVQEDState *s = acb_to_s(acb);
978 bool need_alloc = acb->find_cluster_ret == QED_CLUSTER_L1;
982 qed_unref_l2_cache_entry(acb->request.l2_table);
983 acb->request.l2_table = qed_new_l2_table(s);
986 index = qed_l2_index(s, acb->cur_pos);
987 qed_update_l2_table(s, acb->request.l2_table->table, index, acb->cur_nclusters,
991 /* Write out the whole new L2 table */
992 ret = qed_write_l2_table(s, &acb->request, 0, s->table_nelems, true);
996 return qed_aio_write_l1_update(acb);
998 /* Write out only the updated part of the L2 table */
999 ret = qed_write_l2_table(s, &acb->request, index, acb->cur_nclusters,
1009 * Write data to the image file
1011 static int qed_aio_write_main(QEDAIOCB *acb)
1013 BDRVQEDState *s = acb_to_s(acb);
1014 uint64_t offset = acb->cur_cluster +
1015 qed_offset_into_cluster(s, acb->cur_pos);
1018 trace_qed_aio_write_main(s, acb, 0, offset, acb->cur_qiov.size);
1020 BLKDBG_EVENT(s->bs->file, BLKDBG_WRITE_AIO);
1021 ret = bdrv_pwritev(s->bs->file, offset, &acb->cur_qiov);
1026 if (acb->find_cluster_ret != QED_CLUSTER_FOUND) {
1027 if (s->bs->backing) {
1029 * Flush new data clusters before updating the L2 table
1031 * This flush is necessary when a backing file is in use. A crash
1032 * during an allocating write could result in empty clusters in the
1033 * image. If the write only touched a subregion of the cluster,
1034 * then backing image sectors have been lost in the untouched
1035 * region. The solution is to flush after writing a new data
1036 * cluster and before updating the L2 table.
1038 ret = bdrv_flush(s->bs->file->bs);
1043 ret = qed_aio_write_l2_update(acb, acb->cur_cluster);
1052 * Populate untouched regions of new data cluster
1054 static int qed_aio_write_cow(QEDAIOCB *acb)
1056 BDRVQEDState *s = acb_to_s(acb);
1057 uint64_t start, len, offset;
1060 /* Populate front untouched region of new data cluster */
1061 start = qed_start_of_cluster(s, acb->cur_pos);
1062 len = qed_offset_into_cluster(s, acb->cur_pos);
1064 trace_qed_aio_write_prefill(s, acb, start, len, acb->cur_cluster);
1065 ret = qed_copy_from_backing_file(s, start, len, acb->cur_cluster);
1070 /* Populate back untouched region of new data cluster */
1071 start = acb->cur_pos + acb->cur_qiov.size;
1072 len = qed_start_of_cluster(s, start + s->header.cluster_size - 1) - start;
1073 offset = acb->cur_cluster +
1074 qed_offset_into_cluster(s, acb->cur_pos) +
1077 trace_qed_aio_write_postfill(s, acb, start, len, offset);
1078 ret = qed_copy_from_backing_file(s, start, len, offset);
1083 return qed_aio_write_main(acb);
1087 * Check if the QED_F_NEED_CHECK bit should be set during allocating write
1089 static bool qed_should_set_need_check(BDRVQEDState *s)
1091 /* The flush before L2 update path ensures consistency */
1092 if (s->bs->backing) {
1096 return !(s->header.features & QED_F_NEED_CHECK);
1100 * Write new data cluster
1102 * @acb: Write request
1103 * @len: Length in bytes
1105 * This path is taken when writing to previously unallocated clusters.
1107 static int qed_aio_write_alloc(QEDAIOCB *acb, size_t len)
1109 BDRVQEDState *s = acb_to_s(acb);
1112 /* Cancel timer when the first allocating request comes in */
1113 if (s->allocating_acb == NULL) {
1114 qed_cancel_need_check_timer(s);
1117 /* Freeze this request if another allocating write is in progress */
1118 if (s->allocating_acb != acb || s->allocating_write_reqs_plugged) {
1119 if (s->allocating_acb != NULL) {
1120 qemu_co_queue_wait(&s->allocating_write_reqs, NULL);
1121 assert(s->allocating_acb == NULL);
1123 s->allocating_acb = acb;
1124 return -EAGAIN; /* start over with looking up table entries */
1127 acb->cur_nclusters = qed_bytes_to_clusters(s,
1128 qed_offset_into_cluster(s, acb->cur_pos) + len);
1129 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1131 if (acb->flags & QED_AIOCB_ZERO) {
1132 /* Skip ahead if the clusters are already zero */
1133 if (acb->find_cluster_ret == QED_CLUSTER_ZERO) {
1137 acb->cur_cluster = qed_alloc_clusters(s, acb->cur_nclusters);
1140 if (qed_should_set_need_check(s)) {
1141 s->header.features |= QED_F_NEED_CHECK;
1142 ret = qed_write_header(s);
1148 if (acb->flags & QED_AIOCB_ZERO) {
1149 ret = qed_aio_write_l2_update(acb, 1);
1151 ret = qed_aio_write_cow(acb);
1160 * Write data cluster in place
1162 * @acb: Write request
1163 * @offset: Cluster offset in bytes
1164 * @len: Length in bytes
1166 * This path is taken when writing to already allocated clusters.
1168 static int qed_aio_write_inplace(QEDAIOCB *acb, uint64_t offset, size_t len)
1170 /* Allocate buffer for zero writes */
1171 if (acb->flags & QED_AIOCB_ZERO) {
1172 struct iovec *iov = acb->qiov->iov;
1174 if (!iov->iov_base) {
1175 iov->iov_base = qemu_try_blockalign(acb->common.bs, iov->iov_len);
1176 if (iov->iov_base == NULL) {
1179 memset(iov->iov_base, 0, iov->iov_len);
1183 /* Calculate the I/O vector */
1184 acb->cur_cluster = offset;
1185 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1187 /* Do the actual write */
1188 return qed_aio_write_main(acb);
1192 * Write data cluster
1194 * @opaque: Write request
1195 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1196 * @offset: Cluster offset in bytes
1197 * @len: Length in bytes
1199 static int qed_aio_write_data(void *opaque, int ret,
1200 uint64_t offset, size_t len)
1202 QEDAIOCB *acb = opaque;
1204 trace_qed_aio_write_data(acb_to_s(acb), acb, ret, offset, len);
1206 acb->find_cluster_ret = ret;
1209 case QED_CLUSTER_FOUND:
1210 return qed_aio_write_inplace(acb, offset, len);
1212 case QED_CLUSTER_L2:
1213 case QED_CLUSTER_L1:
1214 case QED_CLUSTER_ZERO:
1215 return qed_aio_write_alloc(acb, len);
1218 g_assert_not_reached();
1225 * @opaque: Read request
1226 * @ret: QED_CLUSTER_FOUND, QED_CLUSTER_L2 or QED_CLUSTER_L1
1227 * @offset: Cluster offset in bytes
1228 * @len: Length in bytes
1230 static int qed_aio_read_data(void *opaque, int ret, uint64_t offset, size_t len)
1232 QEDAIOCB *acb = opaque;
1233 BDRVQEDState *s = acb_to_s(acb);
1234 BlockDriverState *bs = acb->common.bs;
1236 /* Adjust offset into cluster */
1237 offset += qed_offset_into_cluster(s, acb->cur_pos);
1239 trace_qed_aio_read_data(s, acb, ret, offset, len);
1241 qemu_iovec_concat(&acb->cur_qiov, acb->qiov, acb->qiov_offset, len);
1243 /* Handle zero cluster and backing file reads */
1244 if (ret == QED_CLUSTER_ZERO) {
1245 qemu_iovec_memset(&acb->cur_qiov, 0, 0, acb->cur_qiov.size);
1247 } else if (ret != QED_CLUSTER_FOUND) {
1248 return qed_read_backing_file(s, acb->cur_pos, &acb->cur_qiov,
1249 &acb->backing_qiov);
1252 BLKDBG_EVENT(bs->file, BLKDBG_READ_AIO);
1253 ret = bdrv_preadv(bs->file, offset, &acb->cur_qiov);
1261 * Begin next I/O or complete the request
1263 static void qed_aio_next_io(QEDAIOCB *acb)
1265 BDRVQEDState *s = acb_to_s(acb);
1271 trace_qed_aio_next_io(s, acb, 0, acb->cur_pos + acb->cur_qiov.size);
1273 if (acb->backing_qiov) {
1274 qemu_iovec_destroy(acb->backing_qiov);
1275 g_free(acb->backing_qiov);
1276 acb->backing_qiov = NULL;
1279 acb->qiov_offset += acb->cur_qiov.size;
1280 acb->cur_pos += acb->cur_qiov.size;
1281 qemu_iovec_reset(&acb->cur_qiov);
1283 /* Complete request */
1284 if (acb->cur_pos >= acb->end_pos) {
1285 qed_aio_complete(acb, 0);
1289 /* Find next cluster and start I/O */
1290 len = acb->end_pos - acb->cur_pos;
1291 ret = qed_find_cluster(s, &acb->request, acb->cur_pos, &len, &offset);
1293 qed_aio_complete(acb, ret);
1297 if (acb->flags & QED_AIOCB_WRITE) {
1298 ret = qed_aio_write_data(acb, ret, offset, len);
1300 ret = qed_aio_read_data(acb, ret, offset, len);
1303 if (ret < 0 && ret != -EAGAIN) {
1304 qed_aio_complete(acb, ret);
1310 typedef struct QEDRequestCo {
1316 static void qed_co_request_cb(void *opaque, int ret)
1318 QEDRequestCo *co = opaque;
1322 qemu_coroutine_enter_if_inactive(co->co);
1325 static int coroutine_fn qed_co_request(BlockDriverState *bs, int64_t sector_num,
1326 QEMUIOVector *qiov, int nb_sectors,
1330 .co = qemu_coroutine_self(),
1333 QEDAIOCB *acb = qemu_aio_get(&qed_aiocb_info, bs, qed_co_request_cb, &co);
1335 trace_qed_aio_setup(bs->opaque, acb, sector_num, nb_sectors, &co, flags);
1339 acb->qiov_offset = 0;
1340 acb->cur_pos = (uint64_t)sector_num * BDRV_SECTOR_SIZE;
1341 acb->end_pos = acb->cur_pos + nb_sectors * BDRV_SECTOR_SIZE;
1342 acb->backing_qiov = NULL;
1343 acb->request.l2_table = NULL;
1344 qemu_iovec_init(&acb->cur_qiov, qiov->niov);
1347 qed_aio_start_io(acb);
1350 qemu_coroutine_yield();
1356 static int coroutine_fn bdrv_qed_co_readv(BlockDriverState *bs,
1357 int64_t sector_num, int nb_sectors,
1360 return qed_co_request(bs, sector_num, qiov, nb_sectors, 0);
1363 static int coroutine_fn bdrv_qed_co_writev(BlockDriverState *bs,
1364 int64_t sector_num, int nb_sectors,
1367 return qed_co_request(bs, sector_num, qiov, nb_sectors, QED_AIOCB_WRITE);
1370 static int coroutine_fn bdrv_qed_co_pwrite_zeroes(BlockDriverState *bs,
1373 BdrvRequestFlags flags)
1375 BDRVQEDState *s = bs->opaque;
1379 /* Fall back if the request is not aligned */
1380 if (qed_offset_into_cluster(s, offset) ||
1381 qed_offset_into_cluster(s, count)) {
1385 /* Zero writes start without an I/O buffer. If a buffer becomes necessary
1386 * then it will be allocated during request processing.
1388 iov.iov_base = NULL;
1389 iov.iov_len = count;
1391 qemu_iovec_init_external(&qiov, &iov, 1);
1392 return qed_co_request(bs, offset >> BDRV_SECTOR_BITS, &qiov,
1393 count >> BDRV_SECTOR_BITS,
1394 QED_AIOCB_WRITE | QED_AIOCB_ZERO);
1397 static int bdrv_qed_truncate(BlockDriverState *bs, int64_t offset, Error **errp)
1399 BDRVQEDState *s = bs->opaque;
1400 uint64_t old_image_size;
1403 if (!qed_is_image_size_valid(offset, s->header.cluster_size,
1404 s->header.table_size)) {
1405 error_setg(errp, "Invalid image size specified");
1409 if ((uint64_t)offset < s->header.image_size) {
1410 error_setg(errp, "Shrinking images is currently not supported");
1414 old_image_size = s->header.image_size;
1415 s->header.image_size = offset;
1416 ret = qed_write_header_sync(s);
1418 s->header.image_size = old_image_size;
1419 error_setg_errno(errp, -ret, "Failed to update the image size");
1424 static int64_t bdrv_qed_getlength(BlockDriverState *bs)
1426 BDRVQEDState *s = bs->opaque;
1427 return s->header.image_size;
1430 static int bdrv_qed_get_info(BlockDriverState *bs, BlockDriverInfo *bdi)
1432 BDRVQEDState *s = bs->opaque;
1434 memset(bdi, 0, sizeof(*bdi));
1435 bdi->cluster_size = s->header.cluster_size;
1436 bdi->is_dirty = s->header.features & QED_F_NEED_CHECK;
1437 bdi->unallocated_blocks_are_zero = true;
1438 bdi->can_write_zeroes_with_unmap = true;
1442 static int bdrv_qed_change_backing_file(BlockDriverState *bs,
1443 const char *backing_file,
1444 const char *backing_fmt)
1446 BDRVQEDState *s = bs->opaque;
1447 QEDHeader new_header, le_header;
1449 size_t buffer_len, backing_file_len;
1452 /* Refuse to set backing filename if unknown compat feature bits are
1453 * active. If the image uses an unknown compat feature then we may not
1454 * know the layout of data following the header structure and cannot safely
1457 if (backing_file && (s->header.compat_features &
1458 ~QED_COMPAT_FEATURE_MASK)) {
1462 memcpy(&new_header, &s->header, sizeof(new_header));
1464 new_header.features &= ~(QED_F_BACKING_FILE |
1465 QED_F_BACKING_FORMAT_NO_PROBE);
1467 /* Adjust feature flags */
1469 new_header.features |= QED_F_BACKING_FILE;
1471 if (qed_fmt_is_raw(backing_fmt)) {
1472 new_header.features |= QED_F_BACKING_FORMAT_NO_PROBE;
1476 /* Calculate new header size */
1477 backing_file_len = 0;
1480 backing_file_len = strlen(backing_file);
1483 buffer_len = sizeof(new_header);
1484 new_header.backing_filename_offset = buffer_len;
1485 new_header.backing_filename_size = backing_file_len;
1486 buffer_len += backing_file_len;
1488 /* Make sure we can rewrite header without failing */
1489 if (buffer_len > new_header.header_size * new_header.cluster_size) {
1493 /* Prepare new header */
1494 buffer = g_malloc(buffer_len);
1496 qed_header_cpu_to_le(&new_header, &le_header);
1497 memcpy(buffer, &le_header, sizeof(le_header));
1498 buffer_len = sizeof(le_header);
1501 memcpy(buffer + buffer_len, backing_file, backing_file_len);
1502 buffer_len += backing_file_len;
1505 /* Write new header */
1506 ret = bdrv_pwrite_sync(bs->file, 0, buffer, buffer_len);
1509 memcpy(&s->header, &new_header, sizeof(new_header));
1514 static void bdrv_qed_invalidate_cache(BlockDriverState *bs, Error **errp)
1516 BDRVQEDState *s = bs->opaque;
1517 Error *local_err = NULL;
1522 memset(s, 0, sizeof(BDRVQEDState));
1523 ret = bdrv_qed_do_open(bs, NULL, bs->open_flags, &local_err);
1525 error_propagate(errp, local_err);
1526 error_prepend(errp, "Could not reopen qed layer: ");
1528 } else if (ret < 0) {
1529 error_setg_errno(errp, -ret, "Could not reopen qed layer");
1534 static int bdrv_qed_check(BlockDriverState *bs, BdrvCheckResult *result,
1537 BDRVQEDState *s = bs->opaque;
1539 return qed_check(s, result, !!fix);
1542 static QemuOptsList qed_create_opts = {
1543 .name = "qed-create-opts",
1544 .head = QTAILQ_HEAD_INITIALIZER(qed_create_opts.head),
1547 .name = BLOCK_OPT_SIZE,
1548 .type = QEMU_OPT_SIZE,
1549 .help = "Virtual disk size"
1552 .name = BLOCK_OPT_BACKING_FILE,
1553 .type = QEMU_OPT_STRING,
1554 .help = "File name of a base image"
1557 .name = BLOCK_OPT_BACKING_FMT,
1558 .type = QEMU_OPT_STRING,
1559 .help = "Image format of the base image"
1562 .name = BLOCK_OPT_CLUSTER_SIZE,
1563 .type = QEMU_OPT_SIZE,
1564 .help = "Cluster size (in bytes)",
1565 .def_value_str = stringify(QED_DEFAULT_CLUSTER_SIZE)
1568 .name = BLOCK_OPT_TABLE_SIZE,
1569 .type = QEMU_OPT_SIZE,
1570 .help = "L1/L2 table size (in clusters)"
1572 { /* end of list */ }
1576 static BlockDriver bdrv_qed = {
1577 .format_name = "qed",
1578 .instance_size = sizeof(BDRVQEDState),
1579 .create_opts = &qed_create_opts,
1580 .supports_backing = true,
1582 .bdrv_probe = bdrv_qed_probe,
1583 .bdrv_open = bdrv_qed_open,
1584 .bdrv_close = bdrv_qed_close,
1585 .bdrv_reopen_prepare = bdrv_qed_reopen_prepare,
1586 .bdrv_child_perm = bdrv_format_default_perms,
1587 .bdrv_create = bdrv_qed_create,
1588 .bdrv_has_zero_init = bdrv_has_zero_init_1,
1589 .bdrv_co_get_block_status = bdrv_qed_co_get_block_status,
1590 .bdrv_co_readv = bdrv_qed_co_readv,
1591 .bdrv_co_writev = bdrv_qed_co_writev,
1592 .bdrv_co_pwrite_zeroes = bdrv_qed_co_pwrite_zeroes,
1593 .bdrv_truncate = bdrv_qed_truncate,
1594 .bdrv_getlength = bdrv_qed_getlength,
1595 .bdrv_get_info = bdrv_qed_get_info,
1596 .bdrv_refresh_limits = bdrv_qed_refresh_limits,
1597 .bdrv_change_backing_file = bdrv_qed_change_backing_file,
1598 .bdrv_invalidate_cache = bdrv_qed_invalidate_cache,
1599 .bdrv_check = bdrv_qed_check,
1600 .bdrv_detach_aio_context = bdrv_qed_detach_aio_context,
1601 .bdrv_attach_aio_context = bdrv_qed_attach_aio_context,
1602 .bdrv_drain = bdrv_qed_drain,
1605 static void bdrv_qed_init(void)
1607 bdrv_register(&bdrv_qed);
1610 block_init(bdrv_qed_init);