1 // Copyright 2013, ARM Limited
2 // All rights reserved.
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are met:
7 // * Redistributions of source code must retain the above copyright notice,
8 // this list of conditions and the following disclaimer.
9 // * Redistributions in binary form must reproduce the above copyright notice,
10 // this list of conditions and the following disclaimer in the documentation
11 // and/or other materials provided with the distribution.
12 // * Neither the name of ARM Limited nor the names of its contributors may be
13 // used to endorse or promote products derived from this software without
14 // specific prior written permission.
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND
17 // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
18 // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
19 // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
20 // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
22 // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
23 // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
25 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 #ifndef VIXL_A64_INSTRUCTIONS_A64_H_
28 #define VIXL_A64_INSTRUCTIONS_A64_H_
32 #include "a64/constants-a64.h"
35 // ISA constants. --------------------------------------------------------------
37 typedef uint32_t Instr;
38 const unsigned kInstructionSize = 4;
39 const unsigned kInstructionSizeLog2 = 2;
40 const unsigned kLiteralEntrySize = 4;
41 const unsigned kLiteralEntrySizeLog2 = 2;
42 const unsigned kMaxLoadLiteralRange = 1 * MBytes;
44 const unsigned kWRegSize = 32;
45 const unsigned kWRegSizeLog2 = 5;
46 const unsigned kWRegSizeInBytes = kWRegSize / 8;
47 const unsigned kXRegSize = 64;
48 const unsigned kXRegSizeLog2 = 6;
49 const unsigned kXRegSizeInBytes = kXRegSize / 8;
50 const unsigned kSRegSize = 32;
51 const unsigned kSRegSizeLog2 = 5;
52 const unsigned kSRegSizeInBytes = kSRegSize / 8;
53 const unsigned kDRegSize = 64;
54 const unsigned kDRegSizeLog2 = 6;
55 const unsigned kDRegSizeInBytes = kDRegSize / 8;
56 const int64_t kWRegMask = 0x00000000ffffffffLL;
57 const int64_t kXRegMask = 0xffffffffffffffffLL;
58 const int64_t kSRegMask = 0x00000000ffffffffLL;
59 const int64_t kDRegMask = 0xffffffffffffffffLL;
60 const int64_t kXSignMask = 0x1LL << 63;
61 const int64_t kWSignMask = 0x1LL << 31;
62 const int64_t kByteMask = 0xffL;
63 const int64_t kHalfWordMask = 0xffffL;
64 const int64_t kWordMask = 0xffffffffLL;
65 const uint64_t kXMaxUInt = 0xffffffffffffffffULL;
66 const uint64_t kWMaxUInt = 0xffffffffULL;
67 const int64_t kXMaxInt = 0x7fffffffffffffffLL;
68 const int64_t kXMinInt = 0x8000000000000000LL;
69 const int32_t kWMaxInt = 0x7fffffff;
70 const int32_t kWMinInt = 0x80000000;
71 const unsigned kLinkRegCode = 30;
72 const unsigned kZeroRegCode = 31;
73 const unsigned kSPRegInternalCode = 63;
74 const unsigned kRegCodeMask = 0x1f;
76 // AArch64 floating-point specifics. These match IEEE-754.
77 const unsigned kDoubleMantissaBits = 52;
78 const unsigned kDoubleExponentBits = 11;
79 const unsigned kFloatMantissaBits = 23;
80 const unsigned kFloatExponentBits = 8;
82 const float kFP32PositiveInfinity = rawbits_to_float(0x7f800000);
83 const float kFP32NegativeInfinity = rawbits_to_float(0xff800000);
84 const double kFP64PositiveInfinity = rawbits_to_double(0x7ff0000000000000ULL);
85 const double kFP64NegativeInfinity = rawbits_to_double(0xfff0000000000000ULL);
87 // This value is a signalling NaN as both a double and as a float (taking the
88 // least-significant word).
89 static const double kFP64SignallingNaN = rawbits_to_double(0x7ff000007f800001ULL);
90 static const float kFP32SignallingNaN = rawbits_to_float(0x7f800001);
92 // A similar value, but as a quiet NaN.
93 static const double kFP64QuietNaN = rawbits_to_double(0x7ff800007fc00001ULL);
94 static const float kFP32QuietNaN = rawbits_to_float(0x7fc00001);
103 LSDataSize CalcLSPairDataSize(LoadStorePairOp op);
106 UnknownBranchType = 0,
108 UncondBranchType = 2,
109 CompareBranchType = 3,
120 // The first four values are encodable directly by FPCR<RMode>.
122 FPPositiveInfinity = 0x1,
123 FPNegativeInfinity = 0x2,
126 // The final rounding mode is only available when explicitly specified by the
127 // instruction (such as with fcvta). It cannot be set in FPCR.
136 // Instructions. ---------------------------------------------------------------
140 inline Instr InstructionBits() const {
141 return *(reinterpret_cast<const Instr*>(this));
144 inline void SetInstructionBits(Instr new_instr) {
145 *(reinterpret_cast<Instr*>(this)) = new_instr;
148 inline int Bit(int pos) const {
149 return (InstructionBits() >> pos) & 1;
152 inline uint32_t Bits(int msb, int lsb) const {
153 return unsigned_bitextract_32(msb, lsb, InstructionBits());
156 inline int32_t SignedBits(int msb, int lsb) const {
157 int32_t bits = *(reinterpret_cast<const int32_t*>(this));
158 return signed_bitextract_32(msb, lsb, bits);
161 inline Instr Mask(uint32_t mask) const {
162 return InstructionBits() & mask;
165 #define DEFINE_GETTER(Name, HighBit, LowBit, Func) \
166 inline int64_t Name() const { return Func(HighBit, LowBit); }
167 INSTRUCTION_FIELDS_LIST(DEFINE_GETTER)
170 // ImmPCRel is a compound field (not present in INSTRUCTION_FIELDS_LIST),
171 // formed from ImmPCRelLo and ImmPCRelHi.
172 int ImmPCRel() const {
173 int const offset = ((ImmPCRelHi() << ImmPCRelLo_width) | ImmPCRelLo());
174 int const width = ImmPCRelLo_width + ImmPCRelHi_width;
175 return signed_bitextract_32(width-1, 0, offset);
178 uint64_t ImmLogical();
182 inline LSDataSize SizeLSPair() const {
183 return CalcLSPairDataSize(
184 static_cast<LoadStorePairOp>(Mask(LoadStorePairMask)));
188 inline bool IsCondBranchImm() const {
189 return Mask(ConditionalBranchFMask) == ConditionalBranchFixed;
192 inline bool IsUncondBranchImm() const {
193 return Mask(UnconditionalBranchFMask) == UnconditionalBranchFixed;
196 inline bool IsCompareBranch() const {
197 return Mask(CompareBranchFMask) == CompareBranchFixed;
200 inline bool IsTestBranch() const {
201 return Mask(TestBranchFMask) == TestBranchFixed;
204 inline bool IsPCRelAddressing() const {
205 return Mask(PCRelAddressingFMask) == PCRelAddressingFixed;
208 inline bool IsLogicalImmediate() const {
209 return Mask(LogicalImmediateFMask) == LogicalImmediateFixed;
212 inline bool IsAddSubImmediate() const {
213 return Mask(AddSubImmediateFMask) == AddSubImmediateFixed;
216 inline bool IsAddSubExtended() const {
217 return Mask(AddSubExtendedFMask) == AddSubExtendedFixed;
220 inline bool IsLoadOrStore() const {
221 return Mask(LoadStoreAnyFMask) == LoadStoreAnyFixed;
224 inline bool IsMovn() const {
225 return (Mask(MoveWideImmediateMask) == MOVN_x) ||
226 (Mask(MoveWideImmediateMask) == MOVN_w);
229 // Indicate whether Rd can be the stack pointer or the zero register. This
230 // does not check that the instruction actually has an Rd field.
231 inline Reg31Mode RdMode() const {
232 // The following instructions use sp or wsp as Rd:
233 // Add/sub (immediate) when not setting the flags.
234 // Add/sub (extended) when not setting the flags.
235 // Logical (immediate) when not setting the flags.
236 // Otherwise, r31 is the zero register.
237 if (IsAddSubImmediate() || IsAddSubExtended()) {
238 if (Mask(AddSubSetFlagsBit)) {
239 return Reg31IsZeroRegister;
241 return Reg31IsStackPointer;
244 if (IsLogicalImmediate()) {
245 // Of the logical (immediate) instructions, only ANDS (and its aliases)
246 // can set the flags. The others can all write into sp.
247 // Note that some logical operations are not available to
248 // immediate-operand instructions, so we have to combine two masks here.
249 if (Mask(LogicalImmediateMask & LogicalOpMask) == ANDS) {
250 return Reg31IsZeroRegister;
252 return Reg31IsStackPointer;
255 return Reg31IsZeroRegister;
258 // Indicate whether Rn can be the stack pointer or the zero register. This
259 // does not check that the instruction actually has an Rn field.
260 inline Reg31Mode RnMode() const {
261 // The following instructions use sp or wsp as Rn:
262 // All loads and stores.
263 // Add/sub (immediate).
264 // Add/sub (extended).
265 // Otherwise, r31 is the zero register.
266 if (IsLoadOrStore() || IsAddSubImmediate() || IsAddSubExtended()) {
267 return Reg31IsStackPointer;
269 return Reg31IsZeroRegister;
272 inline ImmBranchType BranchType() const {
273 if (IsCondBranchImm()) {
274 return CondBranchType;
275 } else if (IsUncondBranchImm()) {
276 return UncondBranchType;
277 } else if (IsCompareBranch()) {
278 return CompareBranchType;
279 } else if (IsTestBranch()) {
280 return TestBranchType;
282 return UnknownBranchType;
286 // Find the target of this instruction. 'this' may be a branch or a
287 // PC-relative addressing instruction.
288 Instruction* ImmPCOffsetTarget();
290 // Patch a PC-relative offset to refer to 'target'. 'this' may be a branch or
291 // a PC-relative addressing instruction.
292 void SetImmPCOffsetTarget(Instruction* target);
293 // Patch a literal load instruction to load from 'source'.
294 void SetImmLLiteral(Instruction* source);
296 inline uint8_t* LiteralAddress() {
297 int offset = ImmLLiteral() << kLiteralEntrySizeLog2;
298 return reinterpret_cast<uint8_t*>(this) + offset;
301 inline uint32_t Literal32() {
303 memcpy(&literal, LiteralAddress(), sizeof(literal));
308 inline uint64_t Literal64() {
310 memcpy(&literal, LiteralAddress(), sizeof(literal));
315 inline float LiteralFP32() {
316 return rawbits_to_float(Literal32());
319 inline double LiteralFP64() {
320 return rawbits_to_double(Literal64());
323 inline Instruction* NextInstruction() {
324 return this + kInstructionSize;
327 inline Instruction* InstructionAtOffset(int64_t offset) {
328 ASSERT(IsWordAligned(this + offset));
329 return this + offset;
332 template<typename T> static inline Instruction* Cast(T src) {
333 return reinterpret_cast<Instruction*>(src);
337 inline int ImmBranch() const;
339 void SetPCRelImmTarget(Instruction* target);
340 void SetBranchImmTarget(Instruction* target);
344 #endif // VIXL_A64_INSTRUCTIONS_A64_H_