2 * QEMU PC System Emulator
4 * Copyright (c) 2003-2004 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/char/parallel.h"
30 #include "hw/i386/apic.h"
31 #include "hw/i386/topology.h"
32 #include "hw/i386/fw_cfg.h"
33 #include "sysemu/cpus.h"
34 #include "hw/block/fdc.h"
36 #include "hw/pci/pci.h"
37 #include "hw/pci/pci_bus.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/timer/hpet.h"
40 #include "hw/firmware/smbios.h"
41 #include "hw/loader.h"
43 #include "migration/vmstate.h"
44 #include "multiboot.h"
45 #include "hw/timer/mc146818rtc.h"
46 #include "hw/dma/i8257.h"
47 #include "hw/timer/i8254.h"
48 #include "hw/input/i8042.h"
50 #include "hw/audio/pcspk.h"
51 #include "hw/pci/msi.h"
52 #include "hw/sysbus.h"
53 #include "sysemu/sysemu.h"
54 #include "sysemu/tcg.h"
55 #include "sysemu/numa.h"
56 #include "sysemu/kvm.h"
57 #include "sysemu/qtest.h"
58 #include "sysemu/reset.h"
59 #include "sysemu/runstate.h"
61 #include "hw/xen/xen.h"
62 #include "hw/xen/start_info.h"
63 #include "ui/qemu-spice.h"
64 #include "exec/memory.h"
65 #include "exec/address-spaces.h"
66 #include "sysemu/arch_init.h"
67 #include "qemu/bitmap.h"
68 #include "qemu/config-file.h"
69 #include "qemu/error-report.h"
70 #include "qemu/option.h"
71 #include "hw/acpi/acpi.h"
72 #include "hw/acpi/cpu_hotplug.h"
73 #include "hw/boards.h"
74 #include "acpi-build.h"
75 #include "hw/mem/pc-dimm.h"
76 #include "qapi/error.h"
77 #include "qapi/qapi-visit-common.h"
78 #include "qapi/visitor.h"
82 #include "hw/i386/intel_iommu.h"
83 #include "hw/net/ne2000-isa.h"
84 #include "standard-headers/asm-x86/bootparam.h"
85 #include "hw/virtio/virtio-pmem-pci.h"
86 #include "hw/mem/memory-device.h"
87 #include "sysemu/replay.h"
88 #include "qapi/qmp/qerror.h"
89 #include "config-devices.h"
91 /* debug PC/ISA interrupts */
95 #define DPRINTF(fmt, ...) \
96 do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
98 #define DPRINTF(fmt, ...)
101 #define E820_NR_ENTRIES 16
107 } QEMU_PACKED __attribute((__aligned__(4)));
111 struct e820_entry entry[E820_NR_ENTRIES];
112 } QEMU_PACKED __attribute((__aligned__(4)));
114 static struct e820_table e820_reserve;
115 static struct e820_entry *e820_table;
116 static unsigned e820_entries;
117 struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX};
119 /* Physical Address of PVH entry point read from kernel ELF NOTE */
120 static size_t pvh_start_addr;
122 GlobalProperty pc_compat_4_0[] = {};
123 const size_t pc_compat_4_0_len = G_N_ELEMENTS(pc_compat_4_0);
125 GlobalProperty pc_compat_3_1[] = {
126 { "intel-iommu", "dma-drain", "off" },
127 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "off" },
128 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "off" },
129 { "Opteron_G4" "-" TYPE_X86_CPU, "npt", "off" },
130 { "Opteron_G4" "-" TYPE_X86_CPU, "nrip-save", "off" },
131 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "off" },
132 { "Opteron_G5" "-" TYPE_X86_CPU, "npt", "off" },
133 { "Opteron_G5" "-" TYPE_X86_CPU, "nrip-save", "off" },
134 { "EPYC" "-" TYPE_X86_CPU, "npt", "off" },
135 { "EPYC" "-" TYPE_X86_CPU, "nrip-save", "off" },
136 { "EPYC-IBPB" "-" TYPE_X86_CPU, "npt", "off" },
137 { "EPYC-IBPB" "-" TYPE_X86_CPU, "nrip-save", "off" },
138 { "Skylake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
139 { "Skylake-Client-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
140 { "Skylake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
141 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "mpx", "on" },
142 { "Cascadelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
143 { "Icelake-Client" "-" TYPE_X86_CPU, "mpx", "on" },
144 { "Icelake-Server" "-" TYPE_X86_CPU, "mpx", "on" },
145 { "Cascadelake-Server" "-" TYPE_X86_CPU, "stepping", "5" },
146 { TYPE_X86_CPU, "x-intel-pt-auto-level", "off" },
148 const size_t pc_compat_3_1_len = G_N_ELEMENTS(pc_compat_3_1);
150 GlobalProperty pc_compat_3_0[] = {
151 { TYPE_X86_CPU, "x-hv-synic-kvm-only", "on" },
152 { "Skylake-Server" "-" TYPE_X86_CPU, "pku", "off" },
153 { "Skylake-Server-IBRS" "-" TYPE_X86_CPU, "pku", "off" },
155 const size_t pc_compat_3_0_len = G_N_ELEMENTS(pc_compat_3_0);
157 GlobalProperty pc_compat_2_12[] = {
158 { TYPE_X86_CPU, "legacy-cache", "on" },
159 { TYPE_X86_CPU, "topoext", "off" },
160 { "EPYC-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
161 { "EPYC-IBPB-" TYPE_X86_CPU, "xlevel", "0x8000000a" },
163 const size_t pc_compat_2_12_len = G_N_ELEMENTS(pc_compat_2_12);
165 GlobalProperty pc_compat_2_11[] = {
166 { TYPE_X86_CPU, "x-migrate-smi-count", "off" },
167 { "Skylake-Server" "-" TYPE_X86_CPU, "clflushopt", "off" },
169 const size_t pc_compat_2_11_len = G_N_ELEMENTS(pc_compat_2_11);
171 GlobalProperty pc_compat_2_10[] = {
172 { TYPE_X86_CPU, "x-hv-max-vps", "0x40" },
173 { "i440FX-pcihost", "x-pci-hole64-fix", "off" },
174 { "q35-pcihost", "x-pci-hole64-fix", "off" },
176 const size_t pc_compat_2_10_len = G_N_ELEMENTS(pc_compat_2_10);
178 GlobalProperty pc_compat_2_9[] = {
179 { "mch", "extended-tseg-mbytes", "0" },
181 const size_t pc_compat_2_9_len = G_N_ELEMENTS(pc_compat_2_9);
183 GlobalProperty pc_compat_2_8[] = {
184 { TYPE_X86_CPU, "tcg-cpuid", "off" },
185 { "kvmclock", "x-mach-use-reliable-get-clock", "off" },
186 { "ICH9-LPC", "x-smi-broadcast", "off" },
187 { TYPE_X86_CPU, "vmware-cpuid-freq", "off" },
188 { "Haswell-" TYPE_X86_CPU, "stepping", "1" },
190 const size_t pc_compat_2_8_len = G_N_ELEMENTS(pc_compat_2_8);
192 GlobalProperty pc_compat_2_7[] = {
193 { TYPE_X86_CPU, "l3-cache", "off" },
194 { TYPE_X86_CPU, "full-cpuid-auto-level", "off" },
195 { "Opteron_G3" "-" TYPE_X86_CPU, "family", "15" },
196 { "Opteron_G3" "-" TYPE_X86_CPU, "model", "6" },
197 { "Opteron_G3" "-" TYPE_X86_CPU, "stepping", "1" },
198 { "isa-pcspk", "migrate", "off" },
200 const size_t pc_compat_2_7_len = G_N_ELEMENTS(pc_compat_2_7);
202 GlobalProperty pc_compat_2_6[] = {
203 { TYPE_X86_CPU, "cpuid-0xb", "off" },
204 { "vmxnet3", "romfile", "" },
205 { TYPE_X86_CPU, "fill-mtrr-mask", "off" },
206 { "apic-common", "legacy-instance-id", "on", }
208 const size_t pc_compat_2_6_len = G_N_ELEMENTS(pc_compat_2_6);
210 GlobalProperty pc_compat_2_5[] = {};
211 const size_t pc_compat_2_5_len = G_N_ELEMENTS(pc_compat_2_5);
213 GlobalProperty pc_compat_2_4[] = {
214 PC_CPU_MODEL_IDS("2.4.0")
215 { "Haswell-" TYPE_X86_CPU, "abm", "off" },
216 { "Haswell-noTSX-" TYPE_X86_CPU, "abm", "off" },
217 { "Broadwell-" TYPE_X86_CPU, "abm", "off" },
218 { "Broadwell-noTSX-" TYPE_X86_CPU, "abm", "off" },
219 { "host" "-" TYPE_X86_CPU, "host-cache-info", "on" },
220 { TYPE_X86_CPU, "check", "off" },
221 { "qemu64" "-" TYPE_X86_CPU, "sse4a", "on" },
222 { "qemu64" "-" TYPE_X86_CPU, "abm", "on" },
223 { "qemu64" "-" TYPE_X86_CPU, "popcnt", "on" },
224 { "qemu32" "-" TYPE_X86_CPU, "popcnt", "on" },
225 { "Opteron_G2" "-" TYPE_X86_CPU, "rdtscp", "on" },
226 { "Opteron_G3" "-" TYPE_X86_CPU, "rdtscp", "on" },
227 { "Opteron_G4" "-" TYPE_X86_CPU, "rdtscp", "on" },
228 { "Opteron_G5" "-" TYPE_X86_CPU, "rdtscp", "on", }
230 const size_t pc_compat_2_4_len = G_N_ELEMENTS(pc_compat_2_4);
232 GlobalProperty pc_compat_2_3[] = {
233 PC_CPU_MODEL_IDS("2.3.0")
234 { TYPE_X86_CPU, "arat", "off" },
235 { "qemu64" "-" TYPE_X86_CPU, "min-level", "4" },
236 { "kvm64" "-" TYPE_X86_CPU, "min-level", "5" },
237 { "pentium3" "-" TYPE_X86_CPU, "min-level", "2" },
238 { "n270" "-" TYPE_X86_CPU, "min-level", "5" },
239 { "Conroe" "-" TYPE_X86_CPU, "min-level", "4" },
240 { "Penryn" "-" TYPE_X86_CPU, "min-level", "4" },
241 { "Nehalem" "-" TYPE_X86_CPU, "min-level", "4" },
242 { "n270" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
243 { "Penryn" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
244 { "Conroe" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
245 { "Nehalem" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
246 { "Westmere" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
247 { "SandyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
248 { "IvyBridge" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
249 { "Haswell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
250 { "Haswell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
251 { "Broadwell" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
252 { "Broadwell-noTSX" "-" TYPE_X86_CPU, "min-xlevel", "0x8000000a" },
253 { TYPE_X86_CPU, "kvm-no-smi-migration", "on" },
255 const size_t pc_compat_2_3_len = G_N_ELEMENTS(pc_compat_2_3);
257 GlobalProperty pc_compat_2_2[] = {
258 PC_CPU_MODEL_IDS("2.2.0")
259 { "kvm64" "-" TYPE_X86_CPU, "vme", "off" },
260 { "kvm32" "-" TYPE_X86_CPU, "vme", "off" },
261 { "Conroe" "-" TYPE_X86_CPU, "vme", "off" },
262 { "Penryn" "-" TYPE_X86_CPU, "vme", "off" },
263 { "Nehalem" "-" TYPE_X86_CPU, "vme", "off" },
264 { "Westmere" "-" TYPE_X86_CPU, "vme", "off" },
265 { "SandyBridge" "-" TYPE_X86_CPU, "vme", "off" },
266 { "Haswell" "-" TYPE_X86_CPU, "vme", "off" },
267 { "Broadwell" "-" TYPE_X86_CPU, "vme", "off" },
268 { "Opteron_G1" "-" TYPE_X86_CPU, "vme", "off" },
269 { "Opteron_G2" "-" TYPE_X86_CPU, "vme", "off" },
270 { "Opteron_G3" "-" TYPE_X86_CPU, "vme", "off" },
271 { "Opteron_G4" "-" TYPE_X86_CPU, "vme", "off" },
272 { "Opteron_G5" "-" TYPE_X86_CPU, "vme", "off" },
273 { "Haswell" "-" TYPE_X86_CPU, "f16c", "off" },
274 { "Haswell" "-" TYPE_X86_CPU, "rdrand", "off" },
275 { "Broadwell" "-" TYPE_X86_CPU, "f16c", "off" },
276 { "Broadwell" "-" TYPE_X86_CPU, "rdrand", "off" },
278 const size_t pc_compat_2_2_len = G_N_ELEMENTS(pc_compat_2_2);
280 GlobalProperty pc_compat_2_1[] = {
281 PC_CPU_MODEL_IDS("2.1.0")
282 { "coreduo" "-" TYPE_X86_CPU, "vmx", "on" },
283 { "core2duo" "-" TYPE_X86_CPU, "vmx", "on" },
285 const size_t pc_compat_2_1_len = G_N_ELEMENTS(pc_compat_2_1);
287 GlobalProperty pc_compat_2_0[] = {
288 PC_CPU_MODEL_IDS("2.0.0")
289 { "virtio-scsi-pci", "any_layout", "off" },
290 { "PIIX4_PM", "memory-hotplug-support", "off" },
291 { "apic", "version", "0x11" },
292 { "nec-usb-xhci", "superspeed-ports-first", "off" },
293 { "nec-usb-xhci", "force-pcie-endcap", "on" },
294 { "pci-serial", "prog_if", "0" },
295 { "pci-serial-2x", "prog_if", "0" },
296 { "pci-serial-4x", "prog_if", "0" },
297 { "virtio-net-pci", "guest_announce", "off" },
298 { "ICH9-LPC", "memory-hotplug-support", "off" },
299 { "xio3130-downstream", COMPAT_PROP_PCP, "off" },
300 { "ioh3420", COMPAT_PROP_PCP, "off" },
302 const size_t pc_compat_2_0_len = G_N_ELEMENTS(pc_compat_2_0);
304 GlobalProperty pc_compat_1_7[] = {
305 PC_CPU_MODEL_IDS("1.7.0")
306 { TYPE_USB_DEVICE, "msos-desc", "no" },
307 { "PIIX4_PM", "acpi-pci-hotplug-with-bridge-support", "off" },
308 { "hpet", HPET_INTCAP, "4" },
310 const size_t pc_compat_1_7_len = G_N_ELEMENTS(pc_compat_1_7);
312 GlobalProperty pc_compat_1_6[] = {
313 PC_CPU_MODEL_IDS("1.6.0")
314 { "e1000", "mitigation", "off" },
315 { "qemu64-" TYPE_X86_CPU, "model", "2" },
316 { "qemu32-" TYPE_X86_CPU, "model", "3" },
317 { "i440FX-pcihost", "short_root_bus", "1" },
318 { "q35-pcihost", "short_root_bus", "1" },
320 const size_t pc_compat_1_6_len = G_N_ELEMENTS(pc_compat_1_6);
322 GlobalProperty pc_compat_1_5[] = {
323 PC_CPU_MODEL_IDS("1.5.0")
324 { "Conroe-" TYPE_X86_CPU, "model", "2" },
325 { "Conroe-" TYPE_X86_CPU, "min-level", "2" },
326 { "Penryn-" TYPE_X86_CPU, "model", "2" },
327 { "Penryn-" TYPE_X86_CPU, "min-level", "2" },
328 { "Nehalem-" TYPE_X86_CPU, "model", "2" },
329 { "Nehalem-" TYPE_X86_CPU, "min-level", "2" },
330 { "virtio-net-pci", "any_layout", "off" },
331 { TYPE_X86_CPU, "pmu", "on" },
332 { "i440FX-pcihost", "short_root_bus", "0" },
333 { "q35-pcihost", "short_root_bus", "0" },
335 const size_t pc_compat_1_5_len = G_N_ELEMENTS(pc_compat_1_5);
337 GlobalProperty pc_compat_1_4[] = {
338 PC_CPU_MODEL_IDS("1.4.0")
339 { "scsi-hd", "discard_granularity", "0" },
340 { "scsi-cd", "discard_granularity", "0" },
341 { "scsi-disk", "discard_granularity", "0" },
342 { "ide-hd", "discard_granularity", "0" },
343 { "ide-cd", "discard_granularity", "0" },
344 { "ide-drive", "discard_granularity", "0" },
345 { "virtio-blk-pci", "discard_granularity", "0" },
346 /* DEV_NVECTORS_UNSPECIFIED as a uint32_t string: */
347 { "virtio-serial-pci", "vectors", "0xFFFFFFFF" },
348 { "virtio-net-pci", "ctrl_guest_offloads", "off" },
349 { "e1000", "romfile", "pxe-e1000.rom" },
350 { "ne2k_pci", "romfile", "pxe-ne2k_pci.rom" },
351 { "pcnet", "romfile", "pxe-pcnet.rom" },
352 { "rtl8139", "romfile", "pxe-rtl8139.rom" },
353 { "virtio-net-pci", "romfile", "pxe-virtio.rom" },
354 { "486-" TYPE_X86_CPU, "model", "0" },
355 { "n270" "-" TYPE_X86_CPU, "movbe", "off" },
356 { "Westmere" "-" TYPE_X86_CPU, "pclmulqdq", "off" },
358 const size_t pc_compat_1_4_len = G_N_ELEMENTS(pc_compat_1_4);
360 void gsi_handler(void *opaque, int n, int level)
362 GSIState *s = opaque;
364 DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n);
365 if (n < ISA_NUM_IRQS) {
366 qemu_set_irq(s->i8259_irq[n], level);
368 qemu_set_irq(s->ioapic_irq[n], level);
371 static void ioport80_write(void *opaque, hwaddr addr, uint64_t data,
376 static uint64_t ioport80_read(void *opaque, hwaddr addr, unsigned size)
378 return 0xffffffffffffffffULL;
381 /* MSDOS compatibility mode FPU exception support */
382 static qemu_irq ferr_irq;
384 void pc_register_ferr_irq(qemu_irq irq)
389 /* XXX: add IGNNE support */
390 void cpu_set_ferr(CPUX86State *s)
392 qemu_irq_raise(ferr_irq);
395 static void ioportF0_write(void *opaque, hwaddr addr, uint64_t data,
398 qemu_irq_lower(ferr_irq);
401 static uint64_t ioportF0_read(void *opaque, hwaddr addr, unsigned size)
403 return 0xffffffffffffffffULL;
407 uint64_t cpu_get_tsc(CPUX86State *env)
409 return cpu_get_ticks();
413 int cpu_get_pic_interrupt(CPUX86State *env)
415 X86CPU *cpu = env_archcpu(env);
418 if (!kvm_irqchip_in_kernel()) {
419 intno = apic_get_interrupt(cpu->apic_state);
423 /* read the irq from the PIC */
424 if (!apic_accept_pic_intr(cpu->apic_state)) {
429 intno = pic_read_irq(isa_pic);
433 static void pic_irq_request(void *opaque, int irq, int level)
435 CPUState *cs = first_cpu;
436 X86CPU *cpu = X86_CPU(cs);
438 DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq);
439 if (cpu->apic_state && !kvm_irqchip_in_kernel()) {
442 if (apic_accept_pic_intr(cpu->apic_state)) {
443 apic_deliver_pic_intr(cpu->apic_state, level);
448 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
450 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
455 /* PC cmos mappings */
457 #define REG_EQUIPMENT_BYTE 0x14
459 int cmos_get_fd_drive_type(FloppyDriveType fd0)
464 case FLOPPY_DRIVE_TYPE_144:
465 /* 1.44 Mb 3"5 drive */
468 case FLOPPY_DRIVE_TYPE_288:
469 /* 2.88 Mb 3"5 drive */
472 case FLOPPY_DRIVE_TYPE_120:
473 /* 1.2 Mb 5"5 drive */
476 case FLOPPY_DRIVE_TYPE_NONE:
484 static void cmos_init_hd(ISADevice *s, int type_ofs, int info_ofs,
485 int16_t cylinders, int8_t heads, int8_t sectors)
487 rtc_set_memory(s, type_ofs, 47);
488 rtc_set_memory(s, info_ofs, cylinders);
489 rtc_set_memory(s, info_ofs + 1, cylinders >> 8);
490 rtc_set_memory(s, info_ofs + 2, heads);
491 rtc_set_memory(s, info_ofs + 3, 0xff);
492 rtc_set_memory(s, info_ofs + 4, 0xff);
493 rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3));
494 rtc_set_memory(s, info_ofs + 6, cylinders);
495 rtc_set_memory(s, info_ofs + 7, cylinders >> 8);
496 rtc_set_memory(s, info_ofs + 8, sectors);
499 /* convert boot_device letter to something recognizable by the bios */
500 static int boot_device2nibble(char boot_device)
502 switch(boot_device) {
505 return 0x01; /* floppy boot */
507 return 0x02; /* hard drive boot */
509 return 0x03; /* CD-ROM boot */
511 return 0x04; /* Network boot */
516 static void set_boot_dev(ISADevice *s, const char *boot_device, Error **errp)
518 #define PC_MAX_BOOT_DEVICES 3
519 int nbds, bds[3] = { 0, };
522 nbds = strlen(boot_device);
523 if (nbds > PC_MAX_BOOT_DEVICES) {
524 error_setg(errp, "Too many boot devices for PC");
527 for (i = 0; i < nbds; i++) {
528 bds[i] = boot_device2nibble(boot_device[i]);
530 error_setg(errp, "Invalid boot device for PC: '%c'",
535 rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]);
536 rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1));
539 static void pc_boot_set(void *opaque, const char *boot_device, Error **errp)
541 set_boot_dev(opaque, boot_device, errp);
544 static void pc_cmos_init_floppy(ISADevice *rtc_state, ISADevice *floppy)
547 FloppyDriveType fd_type[2] = { FLOPPY_DRIVE_TYPE_NONE,
548 FLOPPY_DRIVE_TYPE_NONE };
552 for (i = 0; i < 2; i++) {
553 fd_type[i] = isa_fdc_get_drive_type(floppy, i);
556 val = (cmos_get_fd_drive_type(fd_type[0]) << 4) |
557 cmos_get_fd_drive_type(fd_type[1]);
558 rtc_set_memory(rtc_state, 0x10, val);
560 val = rtc_get_memory(rtc_state, REG_EQUIPMENT_BYTE);
562 if (fd_type[0] != FLOPPY_DRIVE_TYPE_NONE) {
565 if (fd_type[1] != FLOPPY_DRIVE_TYPE_NONE) {
572 val |= 0x01; /* 1 drive, ready for boot */
575 val |= 0x41; /* 2 drives, ready for boot */
578 rtc_set_memory(rtc_state, REG_EQUIPMENT_BYTE, val);
581 typedef struct pc_cmos_init_late_arg {
582 ISADevice *rtc_state;
584 } pc_cmos_init_late_arg;
586 typedef struct check_fdc_state {
591 static int check_fdc(Object *obj, void *opaque)
593 CheckFdcState *state = opaque;
596 Error *local_err = NULL;
598 fdc = object_dynamic_cast(obj, TYPE_ISA_FDC);
603 iobase = object_property_get_uint(obj, "iobase", &local_err);
604 if (local_err || iobase != 0x3f0) {
605 error_free(local_err);
610 state->multiple = true;
612 state->floppy = ISA_DEVICE(obj);
617 static const char * const fdc_container_path[] = {
618 "/unattached", "/peripheral", "/peripheral-anon"
622 * Locate the FDC at IO address 0x3f0, in order to configure the CMOS registers
625 ISADevice *pc_find_fdc0(void)
629 CheckFdcState state = { 0 };
631 for (i = 0; i < ARRAY_SIZE(fdc_container_path); i++) {
632 container = container_get(qdev_get_machine(), fdc_container_path[i]);
633 object_child_foreach(container, check_fdc, &state);
636 if (state.multiple) {
637 warn_report("multiple floppy disk controllers with "
638 "iobase=0x3f0 have been found");
639 error_printf("the one being picked for CMOS setup might not reflect "
646 static void pc_cmos_init_late(void *opaque)
648 pc_cmos_init_late_arg *arg = opaque;
649 ISADevice *s = arg->rtc_state;
651 int8_t heads, sectors;
656 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 0,
657 &cylinders, &heads, §ors) >= 0) {
658 cmos_init_hd(s, 0x19, 0x1b, cylinders, heads, sectors);
661 if (arg->idebus[0] && ide_get_geometry(arg->idebus[0], 1,
662 &cylinders, &heads, §ors) >= 0) {
663 cmos_init_hd(s, 0x1a, 0x24, cylinders, heads, sectors);
666 rtc_set_memory(s, 0x12, val);
669 for (i = 0; i < 4; i++) {
670 /* NOTE: ide_get_geometry() returns the physical
671 geometry. It is always such that: 1 <= sects <= 63, 1
672 <= heads <= 16, 1 <= cylinders <= 16383. The BIOS
673 geometry can be different if a translation is done. */
674 if (arg->idebus[i / 2] &&
675 ide_get_geometry(arg->idebus[i / 2], i % 2,
676 &cylinders, &heads, §ors) >= 0) {
677 trans = ide_get_bios_chs_trans(arg->idebus[i / 2], i % 2) - 1;
678 assert((trans & ~3) == 0);
679 val |= trans << (i * 2);
682 rtc_set_memory(s, 0x39, val);
684 pc_cmos_init_floppy(s, pc_find_fdc0());
686 qemu_unregister_reset(pc_cmos_init_late, opaque);
689 void pc_cmos_init(PCMachineState *pcms,
690 BusState *idebus0, BusState *idebus1,
694 static pc_cmos_init_late_arg arg;
696 /* various important CMOS locations needed by PC/Bochs bios */
699 /* base memory (first MiB) */
700 val = MIN(pcms->below_4g_mem_size / KiB, 640);
701 rtc_set_memory(s, 0x15, val);
702 rtc_set_memory(s, 0x16, val >> 8);
703 /* extended memory (next 64MiB) */
704 if (pcms->below_4g_mem_size > 1 * MiB) {
705 val = (pcms->below_4g_mem_size - 1 * MiB) / KiB;
711 rtc_set_memory(s, 0x17, val);
712 rtc_set_memory(s, 0x18, val >> 8);
713 rtc_set_memory(s, 0x30, val);
714 rtc_set_memory(s, 0x31, val >> 8);
715 /* memory between 16MiB and 4GiB */
716 if (pcms->below_4g_mem_size > 16 * MiB) {
717 val = (pcms->below_4g_mem_size - 16 * MiB) / (64 * KiB);
723 rtc_set_memory(s, 0x34, val);
724 rtc_set_memory(s, 0x35, val >> 8);
725 /* memory above 4GiB */
726 val = pcms->above_4g_mem_size / 65536;
727 rtc_set_memory(s, 0x5b, val);
728 rtc_set_memory(s, 0x5c, val >> 8);
729 rtc_set_memory(s, 0x5d, val >> 16);
731 object_property_add_link(OBJECT(pcms), "rtc_state",
733 (Object **)&pcms->rtc,
734 object_property_allow_set_link,
735 OBJ_PROP_LINK_STRONG, &error_abort);
736 object_property_set_link(OBJECT(pcms), OBJECT(s),
737 "rtc_state", &error_abort);
739 set_boot_dev(s, MACHINE(pcms)->boot_order, &error_fatal);
742 val |= 0x02; /* FPU is there */
743 val |= 0x04; /* PS/2 mouse installed */
744 rtc_set_memory(s, REG_EQUIPMENT_BYTE, val);
746 /* hard drives and FDC */
748 arg.idebus[0] = idebus0;
749 arg.idebus[1] = idebus1;
750 qemu_register_reset(pc_cmos_init_late, &arg);
753 #define TYPE_PORT92 "port92"
754 #define PORT92(obj) OBJECT_CHECK(Port92State, (obj), TYPE_PORT92)
756 /* port 92 stuff: could be split off */
757 typedef struct Port92State {
758 ISADevice parent_obj;
765 static void port92_write(void *opaque, hwaddr addr, uint64_t val,
768 Port92State *s = opaque;
769 int oldval = s->outport;
771 DPRINTF("port92: write 0x%02" PRIx64 "\n", val);
773 qemu_set_irq(s->a20_out, (val >> 1) & 1);
774 if ((val & 1) && !(oldval & 1)) {
775 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
779 static uint64_t port92_read(void *opaque, hwaddr addr,
782 Port92State *s = opaque;
786 DPRINTF("port92: read 0x%02x\n", ret);
790 static void port92_init(ISADevice *dev, qemu_irq a20_out)
792 qdev_connect_gpio_out_named(DEVICE(dev), PORT92_A20_LINE, 0, a20_out);
795 static const VMStateDescription vmstate_port92_isa = {
798 .minimum_version_id = 1,
799 .fields = (VMStateField[]) {
800 VMSTATE_UINT8(outport, Port92State),
801 VMSTATE_END_OF_LIST()
805 static void port92_reset(DeviceState *d)
807 Port92State *s = PORT92(d);
812 static const MemoryRegionOps port92_ops = {
814 .write = port92_write,
816 .min_access_size = 1,
817 .max_access_size = 1,
819 .endianness = DEVICE_LITTLE_ENDIAN,
822 static void port92_initfn(Object *obj)
824 Port92State *s = PORT92(obj);
826 memory_region_init_io(&s->io, OBJECT(s), &port92_ops, s, "port92", 1);
830 qdev_init_gpio_out_named(DEVICE(obj), &s->a20_out, PORT92_A20_LINE, 1);
833 static void port92_realizefn(DeviceState *dev, Error **errp)
835 ISADevice *isadev = ISA_DEVICE(dev);
836 Port92State *s = PORT92(dev);
838 isa_register_ioport(isadev, &s->io, 0x92);
841 static void port92_class_initfn(ObjectClass *klass, void *data)
843 DeviceClass *dc = DEVICE_CLASS(klass);
845 dc->realize = port92_realizefn;
846 dc->reset = port92_reset;
847 dc->vmsd = &vmstate_port92_isa;
849 * Reason: unlike ordinary ISA devices, this one needs additional
850 * wiring: its A20 output line needs to be wired up by
853 dc->user_creatable = false;
856 static const TypeInfo port92_info = {
858 .parent = TYPE_ISA_DEVICE,
859 .instance_size = sizeof(Port92State),
860 .instance_init = port92_initfn,
861 .class_init = port92_class_initfn,
864 static void port92_register_types(void)
866 type_register_static(&port92_info);
869 type_init(port92_register_types)
871 static void handle_a20_line_change(void *opaque, int irq, int level)
873 X86CPU *cpu = opaque;
875 /* XXX: send to all CPUs ? */
876 /* XXX: add logic to handle multiple A20 line sources */
877 x86_cpu_set_a20(cpu, level);
880 int e820_add_entry(uint64_t address, uint64_t length, uint32_t type)
882 int index = le32_to_cpu(e820_reserve.count);
883 struct e820_entry *entry;
885 if (type != E820_RAM) {
886 /* old FW_CFG_E820_TABLE entry -- reservations only */
887 if (index >= E820_NR_ENTRIES) {
890 entry = &e820_reserve.entry[index++];
892 entry->address = cpu_to_le64(address);
893 entry->length = cpu_to_le64(length);
894 entry->type = cpu_to_le32(type);
896 e820_reserve.count = cpu_to_le32(index);
899 /* new "etc/e820" file -- include ram too */
900 e820_table = g_renew(struct e820_entry, e820_table, e820_entries + 1);
901 e820_table[e820_entries].address = cpu_to_le64(address);
902 e820_table[e820_entries].length = cpu_to_le64(length);
903 e820_table[e820_entries].type = cpu_to_le32(type);
909 int e820_get_num_entries(void)
914 bool e820_get_entry(int idx, uint32_t type, uint64_t *address, uint64_t *length)
916 if (idx < e820_entries && e820_table[idx].type == cpu_to_le32(type)) {
917 *address = le64_to_cpu(e820_table[idx].address);
918 *length = le64_to_cpu(e820_table[idx].length);
924 /* Calculates initial APIC ID for a specific CPU index
926 * Currently we need to be able to calculate the APIC ID from the CPU index
927 * alone (without requiring a CPU object), as the QEMU<->Seabios interfaces have
928 * no concept of "CPU index", and the NUMA tables on fw_cfg need the APIC ID of
929 * all CPUs up to max_cpus.
931 static uint32_t x86_cpu_apic_id_from_index(PCMachineState *pcms,
932 unsigned int cpu_index)
934 MachineState *ms = MACHINE(pcms);
935 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
939 correct_id = x86_apicid_from_cpu_idx(pcms->smp_dies, ms->smp.cores,
940 ms->smp.threads, cpu_index);
941 if (pcmc->compat_apic_id_mode) {
942 if (cpu_index != correct_id && !warned && !qtest_enabled()) {
943 error_report("APIC IDs set in compatibility mode, "
944 "CPU topology won't match the configuration");
953 static void pc_build_smbios(PCMachineState *pcms)
955 uint8_t *smbios_tables, *smbios_anchor;
956 size_t smbios_tables_len, smbios_anchor_len;
957 struct smbios_phys_mem_area *mem_array;
958 unsigned i, array_count;
959 MachineState *ms = MACHINE(pcms);
960 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
962 /* tell smbios about cpuid version and features */
963 smbios_set_cpuid(cpu->env.cpuid_version, cpu->env.features[FEAT_1_EDX]);
965 smbios_tables = smbios_get_table_legacy(ms, &smbios_tables_len);
967 fw_cfg_add_bytes(pcms->fw_cfg, FW_CFG_SMBIOS_ENTRIES,
968 smbios_tables, smbios_tables_len);
971 /* build the array of physical mem area from e820 table */
972 mem_array = g_malloc0(sizeof(*mem_array) * e820_get_num_entries());
973 for (i = 0, array_count = 0; i < e820_get_num_entries(); i++) {
976 if (e820_get_entry(i, E820_RAM, &addr, &len)) {
977 mem_array[array_count].address = addr;
978 mem_array[array_count].length = len;
982 smbios_get_tables(ms, mem_array, array_count,
983 &smbios_tables, &smbios_tables_len,
984 &smbios_anchor, &smbios_anchor_len);
988 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-tables",
989 smbios_tables, smbios_tables_len);
990 fw_cfg_add_file(pcms->fw_cfg, "etc/smbios/smbios-anchor",
991 smbios_anchor, smbios_anchor_len);
995 static FWCfgState *bochs_bios_init(AddressSpace *as, PCMachineState *pcms)
998 uint64_t *numa_fw_cfg;
1000 const CPUArchIdList *cpus;
1001 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1003 fw_cfg = fw_cfg_init_io_dma(FW_CFG_IO_BASE, FW_CFG_IO_BASE + 4, as);
1004 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1006 /* FW_CFG_MAX_CPUS is a bit confusing/problematic on x86:
1008 * For machine types prior to 1.8, SeaBIOS needs FW_CFG_MAX_CPUS for
1009 * building MPTable, ACPI MADT, ACPI CPU hotplug and ACPI SRAT table,
1010 * that tables are based on xAPIC ID and QEMU<->SeaBIOS interface
1011 * for CPU hotplug also uses APIC ID and not "CPU index".
1012 * This means that FW_CFG_MAX_CPUS is not the "maximum number of CPUs",
1013 * but the "limit to the APIC ID values SeaBIOS may see".
1015 * So for compatibility reasons with old BIOSes we are stuck with
1016 * "etc/max-cpus" actually being apic_id_limit
1018 fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)pcms->apic_id_limit);
1019 fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
1020 fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES,
1021 acpi_tables, acpi_tables_len);
1022 fw_cfg_add_i32(fw_cfg, FW_CFG_IRQ0_OVERRIDE, kvm_allows_irq0_override());
1024 fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE,
1025 &e820_reserve, sizeof(e820_reserve));
1026 fw_cfg_add_file(fw_cfg, "etc/e820", e820_table,
1027 sizeof(struct e820_entry) * e820_entries);
1029 fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, &hpet_cfg, sizeof(hpet_cfg));
1030 /* allocate memory for the NUMA channel: one (64bit) word for the number
1031 * of nodes, one word for each VCPU->node and one word for each node to
1032 * hold the amount of memory.
1034 numa_fw_cfg = g_new0(uint64_t, 1 + pcms->apic_id_limit + nb_numa_nodes);
1035 numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes);
1036 cpus = mc->possible_cpu_arch_ids(MACHINE(pcms));
1037 for (i = 0; i < cpus->len; i++) {
1038 unsigned int apic_id = cpus->cpus[i].arch_id;
1039 assert(apic_id < pcms->apic_id_limit);
1040 numa_fw_cfg[apic_id + 1] = cpu_to_le64(cpus->cpus[i].props.node_id);
1042 for (i = 0; i < nb_numa_nodes; i++) {
1043 numa_fw_cfg[pcms->apic_id_limit + 1 + i] =
1044 cpu_to_le64(numa_info[i].node_mem);
1046 fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, numa_fw_cfg,
1047 (1 + pcms->apic_id_limit + nb_numa_nodes) *
1048 sizeof(*numa_fw_cfg));
1053 static long get_file_size(FILE *f)
1057 /* XXX: on Unix systems, using fstat() probably makes more sense */
1060 fseek(f, 0, SEEK_END);
1062 fseek(f, where, SEEK_SET);
1072 } __attribute__((packed));
1076 * The entry point into the kernel for PVH boot is different from
1077 * the native entry point. The PVH entry is defined by the x86/HVM
1078 * direct boot ABI and is available in an ELFNOTE in the kernel binary.
1080 * This function is passed to load_elf() when it is called from
1081 * load_elfboot() which then additionally checks for an ELF Note of
1082 * type XEN_ELFNOTE_PHYS32_ENTRY and passes it to this function to
1083 * parse the PVH entry address from the ELF Note.
1085 * Due to trickery in elf_opts.h, load_elf() is actually available as
1086 * load_elf32() or load_elf64() and this routine needs to be able
1087 * to deal with being called as 32 or 64 bit.
1089 * The address of the PVH entry point is saved to the 'pvh_start_addr'
1090 * global variable. (although the entry point is 32-bit, the kernel
1091 * binary can be either 32-bit or 64-bit).
1093 static uint64_t read_pvh_start_addr(void *arg1, void *arg2, bool is64)
1095 size_t *elf_note_data_addr;
1097 /* Check if ELF Note header passed in is valid */
1103 struct elf64_note *nhdr64 = (struct elf64_note *)arg1;
1104 uint64_t nhdr_size64 = sizeof(struct elf64_note);
1105 uint64_t phdr_align = *(uint64_t *)arg2;
1106 uint64_t nhdr_namesz = nhdr64->n_namesz;
1108 elf_note_data_addr =
1109 ((void *)nhdr64) + nhdr_size64 +
1110 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1112 struct elf32_note *nhdr32 = (struct elf32_note *)arg1;
1113 uint32_t nhdr_size32 = sizeof(struct elf32_note);
1114 uint32_t phdr_align = *(uint32_t *)arg2;
1115 uint32_t nhdr_namesz = nhdr32->n_namesz;
1117 elf_note_data_addr =
1118 ((void *)nhdr32) + nhdr_size32 +
1119 QEMU_ALIGN_UP(nhdr_namesz, phdr_align);
1122 pvh_start_addr = *elf_note_data_addr;
1124 return pvh_start_addr;
1127 static bool load_elfboot(const char *kernel_filename,
1128 int kernel_file_size,
1130 size_t pvh_xen_start_addr,
1134 uint32_t mh_load_addr = 0;
1135 uint32_t elf_kernel_size = 0;
1137 uint64_t elf_low, elf_high;
1140 if (ldl_p(header) != 0x464c457f) {
1141 return false; /* no elfboot */
1144 bool elf_is64 = header[EI_CLASS] == ELFCLASS64;
1146 ((Elf64_Ehdr *)header)->e_flags : ((Elf32_Ehdr *)header)->e_flags;
1148 if (flags & 0x00010004) { /* LOAD_ELF_HEADER_HAS_ADDR */
1149 error_report("elfboot unsupported flags = %x", flags);
1153 uint64_t elf_note_type = XEN_ELFNOTE_PHYS32_ENTRY;
1154 kernel_size = load_elf(kernel_filename, read_pvh_start_addr,
1155 NULL, &elf_note_type, &elf_entry,
1156 &elf_low, &elf_high, 0, I386_ELF_MACHINE,
1159 if (kernel_size < 0) {
1160 error_report("Error while loading elf kernel");
1163 mh_load_addr = elf_low;
1164 elf_kernel_size = elf_high - elf_low;
1166 if (pvh_start_addr == 0) {
1167 error_report("Error loading uncompressed kernel without PVH ELF Note");
1170 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ENTRY, pvh_start_addr);
1171 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, mh_load_addr);
1172 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, elf_kernel_size);
1177 static void load_linux(PCMachineState *pcms,
1181 int setup_size, kernel_size, cmdline_size;
1182 int dtb_size, setup_data_offset;
1183 uint32_t initrd_max;
1184 uint8_t header[8192], *setup, *kernel;
1185 hwaddr real_addr, prot_addr, cmdline_addr, initrd_addr = 0;
1188 MachineState *machine = MACHINE(pcms);
1189 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1190 struct setup_data *setup_data;
1191 const char *kernel_filename = machine->kernel_filename;
1192 const char *initrd_filename = machine->initrd_filename;
1193 const char *dtb_filename = machine->dtb;
1194 const char *kernel_cmdline = machine->kernel_cmdline;
1196 /* Align to 16 bytes as a paranoia measure */
1197 cmdline_size = (strlen(kernel_cmdline)+16) & ~15;
1199 /* load the kernel header */
1200 f = fopen(kernel_filename, "rb");
1201 if (!f || !(kernel_size = get_file_size(f)) ||
1202 fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) !=
1203 MIN(ARRAY_SIZE(header), kernel_size)) {
1204 fprintf(stderr, "qemu: could not load kernel '%s': %s\n",
1205 kernel_filename, strerror(errno));
1209 /* kernel protocol version */
1211 fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202));
1213 if (ldl_p(header+0x202) == 0x53726448) {
1214 protocol = lduw_p(header+0x206);
1217 * This could be a multiboot kernel. If it is, let's stop treating it
1218 * like a Linux kernel.
1219 * Note: some multiboot images could be in the ELF format (the same of
1220 * PVH), so we try multiboot first since we check the multiboot magic
1221 * header before to load it.
1223 if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename,
1224 kernel_cmdline, kernel_size, header)) {
1228 * Check if the file is an uncompressed kernel file (ELF) and load it,
1229 * saving the PVH entry point used by the x86/HVM direct boot ABI.
1230 * If load_elfboot() is successful, populate the fw_cfg info.
1232 if (pcmc->pvh_enabled &&
1233 load_elfboot(kernel_filename, kernel_size,
1234 header, pvh_start_addr, fw_cfg)) {
1237 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
1238 strlen(kernel_cmdline) + 1);
1239 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1241 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, sizeof(header));
1242 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA,
1243 header, sizeof(header));
1246 if (initrd_filename) {
1247 GMappedFile *mapped_file;
1250 GError *gerr = NULL;
1252 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1254 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1255 initrd_filename, gerr->message);
1258 pcms->initrd_mapped_file = mapped_file;
1260 initrd_data = g_mapped_file_get_contents(mapped_file);
1261 initrd_size = g_mapped_file_get_length(mapped_file);
1262 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1263 if (initrd_size >= initrd_max) {
1264 fprintf(stderr, "qemu: initrd is too large, cannot support."
1265 "(max: %"PRIu32", need %"PRId64")\n",
1266 initrd_max, (uint64_t)initrd_size);
1270 initrd_addr = (initrd_max - initrd_size) & ~4095;
1272 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1273 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1274 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data,
1278 option_rom[nb_option_roms].bootindex = 0;
1279 option_rom[nb_option_roms].name = "pvh.bin";
1287 if (protocol < 0x200 || !(header[0x211] & 0x01)) {
1289 real_addr = 0x90000;
1290 cmdline_addr = 0x9a000 - cmdline_size;
1291 prot_addr = 0x10000;
1292 } else if (protocol < 0x202) {
1293 /* High but ancient kernel */
1294 real_addr = 0x90000;
1295 cmdline_addr = 0x9a000 - cmdline_size;
1296 prot_addr = 0x100000;
1298 /* High and recent kernel */
1299 real_addr = 0x10000;
1300 cmdline_addr = 0x20000;
1301 prot_addr = 0x100000;
1306 "qemu: real_addr = 0x" TARGET_FMT_plx "\n"
1307 "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n"
1308 "qemu: prot_addr = 0x" TARGET_FMT_plx "\n",
1314 /* highest address for loading the initrd */
1315 if (protocol >= 0x20c &&
1316 lduw_p(header+0x236) & XLF_CAN_BE_LOADED_ABOVE_4G) {
1318 * Linux has supported initrd up to 4 GB for a very long time (2007,
1319 * long before XLF_CAN_BE_LOADED_ABOVE_4G which was added in 2013),
1320 * though it only sets initrd_max to 2 GB to "work around bootloader
1321 * bugs". Luckily, QEMU firmware(which does something like bootloader)
1322 * has supported this.
1324 * It's believed that if XLF_CAN_BE_LOADED_ABOVE_4G is set, initrd can
1325 * be loaded into any address.
1327 * In addition, initrd_max is uint32_t simply because QEMU doesn't
1328 * support the 64-bit boot protocol (specifically the ext_ramdisk_image
1331 * Therefore here just limit initrd_max to UINT32_MAX simply as well.
1333 initrd_max = UINT32_MAX;
1334 } else if (protocol >= 0x203) {
1335 initrd_max = ldl_p(header+0x22c);
1337 initrd_max = 0x37ffffff;
1340 if (initrd_max >= pcms->below_4g_mem_size - pcmc->acpi_data_size) {
1341 initrd_max = pcms->below_4g_mem_size - pcmc->acpi_data_size - 1;
1344 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr);
1345 fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1);
1346 fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, kernel_cmdline);
1348 if (protocol >= 0x202) {
1349 stl_p(header+0x228, cmdline_addr);
1351 stw_p(header+0x20, 0xA33F);
1352 stw_p(header+0x22, cmdline_addr-real_addr);
1355 /* handle vga= parameter */
1356 vmode = strstr(kernel_cmdline, "vga=");
1358 unsigned int video_mode;
1361 if (!strncmp(vmode, "normal", 6)) {
1362 video_mode = 0xffff;
1363 } else if (!strncmp(vmode, "ext", 3)) {
1364 video_mode = 0xfffe;
1365 } else if (!strncmp(vmode, "ask", 3)) {
1366 video_mode = 0xfffd;
1368 video_mode = strtol(vmode, NULL, 0);
1370 stw_p(header+0x1fa, video_mode);
1374 /* High nybble = B reserved for QEMU; low nybble is revision number.
1375 If this code is substantially changed, you may want to consider
1376 incrementing the revision. */
1377 if (protocol >= 0x200) {
1378 header[0x210] = 0xB0;
1381 if (protocol >= 0x201) {
1382 header[0x211] |= 0x80; /* CAN_USE_HEAP */
1383 stw_p(header+0x224, cmdline_addr-real_addr-0x200);
1387 if (initrd_filename) {
1388 GMappedFile *mapped_file;
1391 GError *gerr = NULL;
1393 if (protocol < 0x200) {
1394 fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n");
1398 mapped_file = g_mapped_file_new(initrd_filename, false, &gerr);
1400 fprintf(stderr, "qemu: error reading initrd %s: %s\n",
1401 initrd_filename, gerr->message);
1404 pcms->initrd_mapped_file = mapped_file;
1406 initrd_data = g_mapped_file_get_contents(mapped_file);
1407 initrd_size = g_mapped_file_get_length(mapped_file);
1408 if (initrd_size >= initrd_max) {
1409 fprintf(stderr, "qemu: initrd is too large, cannot support."
1410 "(max: %"PRIu32", need %"PRId64")\n",
1411 initrd_max, (uint64_t)initrd_size);
1415 initrd_addr = (initrd_max-initrd_size) & ~4095;
1417 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
1418 fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
1419 fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size);
1421 stl_p(header+0x218, initrd_addr);
1422 stl_p(header+0x21c, initrd_size);
1425 /* load kernel and setup */
1426 setup_size = header[0x1f1];
1427 if (setup_size == 0) {
1430 setup_size = (setup_size+1)*512;
1431 if (setup_size > kernel_size) {
1432 fprintf(stderr, "qemu: invalid kernel header\n");
1435 kernel_size -= setup_size;
1437 setup = g_malloc(setup_size);
1438 kernel = g_malloc(kernel_size);
1439 fseek(f, 0, SEEK_SET);
1440 if (fread(setup, 1, setup_size, f) != setup_size) {
1441 fprintf(stderr, "fread() failed\n");
1444 if (fread(kernel, 1, kernel_size, f) != kernel_size) {
1445 fprintf(stderr, "fread() failed\n");
1450 /* append dtb to kernel */
1452 if (protocol < 0x209) {
1453 fprintf(stderr, "qemu: Linux kernel too old to load a dtb\n");
1457 dtb_size = get_image_size(dtb_filename);
1458 if (dtb_size <= 0) {
1459 fprintf(stderr, "qemu: error reading dtb %s: %s\n",
1460 dtb_filename, strerror(errno));
1464 setup_data_offset = QEMU_ALIGN_UP(kernel_size, 16);
1465 kernel_size = setup_data_offset + sizeof(struct setup_data) + dtb_size;
1466 kernel = g_realloc(kernel, kernel_size);
1468 stq_p(header+0x250, prot_addr + setup_data_offset);
1470 setup_data = (struct setup_data *)(kernel + setup_data_offset);
1471 setup_data->next = 0;
1472 setup_data->type = cpu_to_le32(SETUP_DTB);
1473 setup_data->len = cpu_to_le32(dtb_size);
1475 load_image_size(dtb_filename, setup_data->data, dtb_size);
1478 memcpy(setup, header, MIN(sizeof(header), setup_size));
1480 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr);
1481 fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
1482 fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size);
1484 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr);
1485 fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size);
1486 fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size);
1488 option_rom[nb_option_roms].bootindex = 0;
1489 option_rom[nb_option_roms].name = "linuxboot.bin";
1490 if (pcmc->linuxboot_dma_enabled && fw_cfg_dma_enabled(fw_cfg)) {
1491 option_rom[nb_option_roms].name = "linuxboot_dma.bin";
1496 #define NE2000_NB_MAX 6
1498 static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360,
1500 static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 };
1502 void pc_init_ne2k_isa(ISABus *bus, NICInfo *nd)
1504 static int nb_ne2k = 0;
1506 if (nb_ne2k == NE2000_NB_MAX)
1508 isa_ne2000_init(bus, ne2000_io[nb_ne2k],
1509 ne2000_irq[nb_ne2k], nd);
1513 DeviceState *cpu_get_current_apic(void)
1516 X86CPU *cpu = X86_CPU(current_cpu);
1517 return cpu->apic_state;
1523 void pc_acpi_smi_interrupt(void *opaque, int irq, int level)
1525 X86CPU *cpu = opaque;
1528 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_SMI);
1532 static void pc_new_cpu(PCMachineState *pcms, int64_t apic_id, Error **errp)
1535 Error *local_err = NULL;
1536 CPUX86State *env = NULL;
1538 cpu = object_new(MACHINE(pcms)->cpu_type);
1540 env = &X86_CPU(cpu)->env;
1541 env->nr_dies = pcms->smp_dies;
1543 object_property_set_uint(cpu, apic_id, "apic-id", &local_err);
1544 object_property_set_bool(cpu, true, "realized", &local_err);
1547 error_propagate(errp, local_err);
1551 * This function is very similar to smp_parse()
1552 * in hw/core/machine.c but includes CPU die support.
1554 void pc_smp_parse(MachineState *ms, QemuOpts *opts)
1556 PCMachineState *pcms = PC_MACHINE(ms);
1559 unsigned cpus = qemu_opt_get_number(opts, "cpus", 0);
1560 unsigned sockets = qemu_opt_get_number(opts, "sockets", 0);
1561 unsigned dies = qemu_opt_get_number(opts, "dies", 1);
1562 unsigned cores = qemu_opt_get_number(opts, "cores", 0);
1563 unsigned threads = qemu_opt_get_number(opts, "threads", 0);
1565 /* compute missing values, prefer sockets over cores over threads */
1566 if (cpus == 0 || sockets == 0) {
1567 cores = cores > 0 ? cores : 1;
1568 threads = threads > 0 ? threads : 1;
1570 sockets = sockets > 0 ? sockets : 1;
1571 cpus = cores * threads * dies * sockets;
1574 qemu_opt_get_number(opts, "maxcpus", cpus);
1575 sockets = ms->smp.max_cpus / (cores * threads * dies);
1577 } else if (cores == 0) {
1578 threads = threads > 0 ? threads : 1;
1579 cores = cpus / (sockets * dies * threads);
1580 cores = cores > 0 ? cores : 1;
1581 } else if (threads == 0) {
1582 threads = cpus / (cores * dies * sockets);
1583 threads = threads > 0 ? threads : 1;
1584 } else if (sockets * dies * cores * threads < cpus) {
1585 error_report("cpu topology: "
1586 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) < "
1588 sockets, dies, cores, threads, cpus);
1593 qemu_opt_get_number(opts, "maxcpus", cpus);
1595 if (ms->smp.max_cpus < cpus) {
1596 error_report("maxcpus must be equal to or greater than smp");
1600 if (sockets * dies * cores * threads > ms->smp.max_cpus) {
1601 error_report("cpu topology: "
1602 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) > "
1604 sockets, dies, cores, threads,
1609 if (sockets * dies * cores * threads != ms->smp.max_cpus) {
1610 warn_report("Invalid CPU topology deprecated: "
1611 "sockets (%u) * dies (%u) * cores (%u) * threads (%u) "
1613 sockets, dies, cores, threads,
1617 ms->smp.cpus = cpus;
1618 ms->smp.cores = cores;
1619 ms->smp.threads = threads;
1620 pcms->smp_dies = dies;
1623 if (ms->smp.cpus > 1) {
1624 Error *blocker = NULL;
1625 error_setg(&blocker, QERR_REPLAY_NOT_SUPPORTED, "smp");
1626 replay_add_blocker(blocker);
1630 void pc_hot_add_cpu(MachineState *ms, const int64_t id, Error **errp)
1632 PCMachineState *pcms = PC_MACHINE(ms);
1633 int64_t apic_id = x86_cpu_apic_id_from_index(pcms, id);
1634 Error *local_err = NULL;
1637 error_setg(errp, "Invalid CPU id: %" PRIi64, id);
1641 if (apic_id >= ACPI_CPU_HOTPLUG_ID_LIMIT) {
1642 error_setg(errp, "Unable to add CPU: %" PRIi64
1643 ", resulting APIC ID (%" PRIi64 ") is too large",
1648 pc_new_cpu(PC_MACHINE(ms), apic_id, &local_err);
1650 error_propagate(errp, local_err);
1655 void pc_cpus_init(PCMachineState *pcms)
1658 const CPUArchIdList *possible_cpus;
1659 MachineState *ms = MACHINE(pcms);
1660 MachineClass *mc = MACHINE_GET_CLASS(pcms);
1661 PCMachineClass *pcmc = PC_MACHINE_CLASS(mc);
1663 x86_cpu_set_default_version(pcmc->default_cpu_version);
1665 /* Calculates the limit to CPU APIC ID values
1667 * Limit for the APIC ID value, so that all
1668 * CPU APIC IDs are < pcms->apic_id_limit.
1670 * This is used for FW_CFG_MAX_CPUS. See comments on bochs_bios_init().
1672 pcms->apic_id_limit = x86_cpu_apic_id_from_index(pcms,
1673 ms->smp.max_cpus - 1) + 1;
1674 possible_cpus = mc->possible_cpu_arch_ids(ms);
1675 for (i = 0; i < ms->smp.cpus; i++) {
1676 pc_new_cpu(pcms, possible_cpus->cpus[i].arch_id, &error_fatal);
1680 static void pc_build_feature_control_file(PCMachineState *pcms)
1682 MachineState *ms = MACHINE(pcms);
1683 X86CPU *cpu = X86_CPU(ms->possible_cpus->cpus[0].cpu);
1684 CPUX86State *env = &cpu->env;
1685 uint32_t unused, ecx, edx;
1686 uint64_t feature_control_bits = 0;
1689 cpu_x86_cpuid(env, 1, 0, &unused, &unused, &ecx, &edx);
1690 if (ecx & CPUID_EXT_VMX) {
1691 feature_control_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
1694 if ((edx & (CPUID_EXT2_MCE | CPUID_EXT2_MCA)) ==
1695 (CPUID_EXT2_MCE | CPUID_EXT2_MCA) &&
1696 (env->mcg_cap & MCG_LMCE_P)) {
1697 feature_control_bits |= FEATURE_CONTROL_LMCE;
1700 if (!feature_control_bits) {
1704 val = g_malloc(sizeof(*val));
1705 *val = cpu_to_le64(feature_control_bits | FEATURE_CONTROL_LOCKED);
1706 fw_cfg_add_file(pcms->fw_cfg, "etc/msr_feature_control", val, sizeof(*val));
1709 static void rtc_set_cpus_count(ISADevice *rtc, uint16_t cpus_count)
1711 if (cpus_count > 0xff) {
1712 /* If the number of CPUs can't be represented in 8 bits, the
1713 * BIOS must use "FW_CFG_NB_CPUS". Set RTC field to 0 just
1714 * to make old BIOSes fail more predictably.
1716 rtc_set_memory(rtc, 0x5f, 0);
1718 rtc_set_memory(rtc, 0x5f, cpus_count - 1);
1723 void pc_machine_done(Notifier *notifier, void *data)
1725 PCMachineState *pcms = container_of(notifier,
1726 PCMachineState, machine_done);
1727 PCIBus *bus = pcms->bus;
1729 /* set the number of CPUs */
1730 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
1733 int extra_hosts = 0;
1735 QLIST_FOREACH(bus, &bus->child, sibling) {
1736 /* look for expander root buses */
1737 if (pci_bus_is_root(bus)) {
1741 if (extra_hosts && pcms->fw_cfg) {
1742 uint64_t *val = g_malloc(sizeof(*val));
1743 *val = cpu_to_le64(extra_hosts);
1744 fw_cfg_add_file(pcms->fw_cfg,
1745 "etc/extra-pci-roots", val, sizeof(*val));
1751 pc_build_smbios(pcms);
1752 pc_build_feature_control_file(pcms);
1753 /* update FW_CFG_NB_CPUS to account for -device added CPUs */
1754 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1757 if (pcms->apic_id_limit > 255 && !xen_enabled()) {
1758 IntelIOMMUState *iommu = INTEL_IOMMU_DEVICE(x86_iommu_get_default());
1760 if (!iommu || !x86_iommu_ir_supported(X86_IOMMU_DEVICE(iommu)) ||
1761 iommu->intr_eim != ON_OFF_AUTO_ON) {
1762 error_report("current -smp configuration requires "
1763 "Extended Interrupt Mode enabled. "
1764 "You can add an IOMMU using: "
1765 "-device intel-iommu,intremap=on,eim=on");
1771 void pc_guest_info_init(PCMachineState *pcms)
1775 pcms->apic_xrupt_override = kvm_allows_irq0_override();
1776 pcms->numa_nodes = nb_numa_nodes;
1777 pcms->node_mem = g_malloc0(pcms->numa_nodes *
1778 sizeof *pcms->node_mem);
1779 for (i = 0; i < nb_numa_nodes; i++) {
1780 pcms->node_mem[i] = numa_info[i].node_mem;
1783 pcms->machine_done.notify = pc_machine_done;
1784 qemu_add_machine_init_done_notifier(&pcms->machine_done);
1787 /* setup pci memory address space mapping into system address space */
1788 void pc_pci_as_mapping_init(Object *owner, MemoryRegion *system_memory,
1789 MemoryRegion *pci_address_space)
1791 /* Set to lower priority than RAM */
1792 memory_region_add_subregion_overlap(system_memory, 0x0,
1793 pci_address_space, -1);
1796 void xen_load_linux(PCMachineState *pcms)
1801 assert(MACHINE(pcms)->kernel_filename != NULL);
1803 fw_cfg = fw_cfg_init_io(FW_CFG_IO_BASE);
1804 fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
1807 load_linux(pcms, fw_cfg);
1808 for (i = 0; i < nb_option_roms; i++) {
1809 assert(!strcmp(option_rom[i].name, "linuxboot.bin") ||
1810 !strcmp(option_rom[i].name, "linuxboot_dma.bin") ||
1811 !strcmp(option_rom[i].name, "pvh.bin") ||
1812 !strcmp(option_rom[i].name, "multiboot.bin"));
1813 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1815 pcms->fw_cfg = fw_cfg;
1818 void pc_memory_init(PCMachineState *pcms,
1819 MemoryRegion *system_memory,
1820 MemoryRegion *rom_memory,
1821 MemoryRegion **ram_memory)
1824 MemoryRegion *ram, *option_rom_mr;
1825 MemoryRegion *ram_below_4g, *ram_above_4g;
1827 MachineState *machine = MACHINE(pcms);
1828 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1830 assert(machine->ram_size == pcms->below_4g_mem_size +
1831 pcms->above_4g_mem_size);
1833 linux_boot = (machine->kernel_filename != NULL);
1835 /* Allocate RAM. We allocate it as a single memory region and use
1836 * aliases to address portions of it, mostly for backwards compatibility
1837 * with older qemus that used qemu_ram_alloc().
1839 ram = g_malloc(sizeof(*ram));
1840 memory_region_allocate_system_memory(ram, NULL, "pc.ram",
1843 ram_below_4g = g_malloc(sizeof(*ram_below_4g));
1844 memory_region_init_alias(ram_below_4g, NULL, "ram-below-4g", ram,
1845 0, pcms->below_4g_mem_size);
1846 memory_region_add_subregion(system_memory, 0, ram_below_4g);
1847 e820_add_entry(0, pcms->below_4g_mem_size, E820_RAM);
1848 if (pcms->above_4g_mem_size > 0) {
1849 ram_above_4g = g_malloc(sizeof(*ram_above_4g));
1850 memory_region_init_alias(ram_above_4g, NULL, "ram-above-4g", ram,
1851 pcms->below_4g_mem_size,
1852 pcms->above_4g_mem_size);
1853 memory_region_add_subregion(system_memory, 0x100000000ULL,
1855 e820_add_entry(0x100000000ULL, pcms->above_4g_mem_size, E820_RAM);
1858 if (!pcmc->has_reserved_memory &&
1859 (machine->ram_slots ||
1860 (machine->maxram_size > machine->ram_size))) {
1861 MachineClass *mc = MACHINE_GET_CLASS(machine);
1863 error_report("\"-memory 'slots|maxmem'\" is not supported by: %s",
1868 /* always allocate the device memory information */
1869 machine->device_memory = g_malloc0(sizeof(*machine->device_memory));
1871 /* initialize device memory address space */
1872 if (pcmc->has_reserved_memory &&
1873 (machine->ram_size < machine->maxram_size)) {
1874 ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size;
1876 if (machine->ram_slots > ACPI_MAX_RAM_SLOTS) {
1877 error_report("unsupported amount of memory slots: %"PRIu64,
1878 machine->ram_slots);
1882 if (QEMU_ALIGN_UP(machine->maxram_size,
1883 TARGET_PAGE_SIZE) != machine->maxram_size) {
1884 error_report("maximum memory size must by aligned to multiple of "
1885 "%d bytes", TARGET_PAGE_SIZE);
1889 machine->device_memory->base =
1890 ROUND_UP(0x100000000ULL + pcms->above_4g_mem_size, 1 * GiB);
1892 if (pcmc->enforce_aligned_dimm) {
1893 /* size device region assuming 1G page max alignment per slot */
1894 device_mem_size += (1 * GiB) * machine->ram_slots;
1897 if ((machine->device_memory->base + device_mem_size) <
1899 error_report("unsupported amount of maximum memory: " RAM_ADDR_FMT,
1900 machine->maxram_size);
1904 memory_region_init(&machine->device_memory->mr, OBJECT(pcms),
1905 "device-memory", device_mem_size);
1906 memory_region_add_subregion(system_memory, machine->device_memory->base,
1907 &machine->device_memory->mr);
1910 /* Initialize PC system firmware */
1911 pc_system_firmware_init(pcms, rom_memory);
1913 option_rom_mr = g_malloc(sizeof(*option_rom_mr));
1914 memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE,
1916 if (pcmc->pci_enabled) {
1917 memory_region_set_readonly(option_rom_mr, true);
1919 memory_region_add_subregion_overlap(rom_memory,
1924 fw_cfg = bochs_bios_init(&address_space_memory, pcms);
1928 if (pcmc->has_reserved_memory && machine->device_memory->base) {
1929 uint64_t *val = g_malloc(sizeof(*val));
1930 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1931 uint64_t res_mem_end = machine->device_memory->base;
1933 if (!pcmc->broken_reserved_end) {
1934 res_mem_end += memory_region_size(&machine->device_memory->mr);
1936 *val = cpu_to_le64(ROUND_UP(res_mem_end, 1 * GiB));
1937 fw_cfg_add_file(fw_cfg, "etc/reserved-memory-end", val, sizeof(*val));
1941 load_linux(pcms, fw_cfg);
1944 for (i = 0; i < nb_option_roms; i++) {
1945 rom_add_option(option_rom[i].name, option_rom[i].bootindex);
1947 pcms->fw_cfg = fw_cfg;
1949 /* Init default IOAPIC address space */
1950 pcms->ioapic_as = &address_space_memory;
1954 * The 64bit pci hole starts after "above 4G RAM" and
1955 * potentially the space reserved for memory hotplug.
1957 uint64_t pc_pci_hole64_start(void)
1959 PCMachineState *pcms = PC_MACHINE(qdev_get_machine());
1960 PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
1961 MachineState *ms = MACHINE(pcms);
1962 uint64_t hole64_start = 0;
1964 if (pcmc->has_reserved_memory && ms->device_memory->base) {
1965 hole64_start = ms->device_memory->base;
1966 if (!pcmc->broken_reserved_end) {
1967 hole64_start += memory_region_size(&ms->device_memory->mr);
1970 hole64_start = 0x100000000ULL + pcms->above_4g_mem_size;
1973 return ROUND_UP(hole64_start, 1 * GiB);
1976 qemu_irq pc_allocate_cpu_irq(void)
1978 return qemu_allocate_irq(pic_irq_request, NULL, 0);
1981 DeviceState *pc_vga_init(ISABus *isa_bus, PCIBus *pci_bus)
1983 DeviceState *dev = NULL;
1985 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_VGA);
1987 PCIDevice *pcidev = pci_vga_init(pci_bus);
1988 dev = pcidev ? &pcidev->qdev : NULL;
1989 } else if (isa_bus) {
1990 ISADevice *isadev = isa_vga_init(isa_bus);
1991 dev = isadev ? DEVICE(isadev) : NULL;
1993 rom_reset_order_override();
1997 static const MemoryRegionOps ioport80_io_ops = {
1998 .write = ioport80_write,
1999 .read = ioport80_read,
2000 .endianness = DEVICE_NATIVE_ENDIAN,
2002 .min_access_size = 1,
2003 .max_access_size = 1,
2007 static const MemoryRegionOps ioportF0_io_ops = {
2008 .write = ioportF0_write,
2009 .read = ioportF0_read,
2010 .endianness = DEVICE_NATIVE_ENDIAN,
2012 .min_access_size = 1,
2013 .max_access_size = 1,
2017 static void pc_superio_init(ISABus *isa_bus, bool create_fdctrl, bool no_vmport)
2020 DriveInfo *fd[MAX_FD];
2022 ISADevice *i8042, *port92, *vmmouse;
2024 serial_hds_isa_init(isa_bus, 0, MAX_ISA_SERIAL_PORTS);
2025 parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
2027 for (i = 0; i < MAX_FD; i++) {
2028 fd[i] = drive_get(IF_FLOPPY, 0, i);
2029 create_fdctrl |= !!fd[i];
2031 if (create_fdctrl) {
2032 fdctrl_init_isa(isa_bus, fd);
2035 i8042 = isa_create_simple(isa_bus, "i8042");
2037 vmport_init(isa_bus);
2038 vmmouse = isa_try_create(isa_bus, "vmmouse");
2043 DeviceState *dev = DEVICE(vmmouse);
2044 qdev_prop_set_ptr(dev, "ps2_mouse", i8042);
2045 qdev_init_nofail(dev);
2047 port92 = isa_create_simple(isa_bus, "port92");
2049 a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2);
2050 i8042_setup_a20_line(i8042, a20_line[0]);
2051 port92_init(port92, a20_line[1]);
2055 void pc_basic_device_init(ISABus *isa_bus, qemu_irq *gsi,
2056 ISADevice **rtc_state,
2063 DeviceState *hpet = NULL;
2064 int pit_isa_irq = 0;
2065 qemu_irq pit_alt_irq = NULL;
2066 qemu_irq rtc_irq = NULL;
2067 ISADevice *pit = NULL;
2068 MemoryRegion *ioport80_io = g_new(MemoryRegion, 1);
2069 MemoryRegion *ioportF0_io = g_new(MemoryRegion, 1);
2071 memory_region_init_io(ioport80_io, NULL, &ioport80_io_ops, NULL, "ioport80", 1);
2072 memory_region_add_subregion(isa_bus->address_space_io, 0x80, ioport80_io);
2074 memory_region_init_io(ioportF0_io, NULL, &ioportF0_io_ops, NULL, "ioportF0", 1);
2075 memory_region_add_subregion(isa_bus->address_space_io, 0xf0, ioportF0_io);
2078 * Check if an HPET shall be created.
2080 * Without KVM_CAP_PIT_STATE2, we cannot switch off the in-kernel PIT
2081 * when the HPET wants to take over. Thus we have to disable the latter.
2083 if (!no_hpet && (!kvm_irqchip_in_kernel() || kvm_has_pit_state2())) {
2084 /* In order to set property, here not using sysbus_try_create_simple */
2085 hpet = qdev_try_create(NULL, TYPE_HPET);
2087 /* For pc-piix-*, hpet's intcap is always IRQ2. For pc-q35-1.7
2088 * and earlier, use IRQ2 for compat. Otherwise, use IRQ16~23,
2091 uint8_t compat = object_property_get_uint(OBJECT(hpet),
2094 qdev_prop_set_uint32(hpet, HPET_INTCAP, hpet_irqs);
2096 qdev_init_nofail(hpet);
2097 sysbus_mmio_map(SYS_BUS_DEVICE(hpet), 0, HPET_BASE);
2099 for (i = 0; i < GSI_NUM_PINS; i++) {
2100 sysbus_connect_irq(SYS_BUS_DEVICE(hpet), i, gsi[i]);
2103 pit_alt_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_PIT_INT);
2104 rtc_irq = qdev_get_gpio_in(hpet, HPET_LEGACY_RTC_INT);
2107 *rtc_state = mc146818_rtc_init(isa_bus, 2000, rtc_irq);
2109 qemu_register_boot_set(pc_boot_set, *rtc_state);
2111 if (!xen_enabled() && has_pit) {
2112 if (kvm_pit_in_kernel()) {
2113 pit = kvm_pit_init(isa_bus, 0x40);
2115 pit = i8254_pit_init(isa_bus, 0x40, pit_isa_irq, pit_alt_irq);
2118 /* connect PIT to output control line of the HPET */
2119 qdev_connect_gpio_out(hpet, 0, qdev_get_gpio_in(DEVICE(pit), 0));
2121 pcspk_init(isa_bus, pit);
2124 i8257_dma_init(isa_bus, 0);
2127 pc_superio_init(isa_bus, create_fdctrl, no_vmport);
2130 void pc_nic_init(PCMachineClass *pcmc, ISABus *isa_bus, PCIBus *pci_bus)
2134 rom_set_order_override(FW_CFG_ORDER_OVERRIDE_NIC);
2135 for (i = 0; i < nb_nics; i++) {
2136 NICInfo *nd = &nd_table[i];
2137 const char *model = nd->model ? nd->model : pcmc->default_nic_model;
2139 if (g_str_equal(model, "ne2k_isa")) {
2140 pc_init_ne2k_isa(isa_bus, nd);
2142 pci_nic_init_nofail(nd, pci_bus, model, NULL);
2145 rom_reset_order_override();
2148 void ioapic_init_gsi(GSIState *gsi_state, const char *parent_name)
2154 if (kvm_ioapic_in_kernel()) {
2155 dev = qdev_create(NULL, TYPE_KVM_IOAPIC);
2157 dev = qdev_create(NULL, TYPE_IOAPIC);
2160 object_property_add_child(object_resolve_path(parent_name, NULL),
2161 "ioapic", OBJECT(dev), NULL);
2163 qdev_init_nofail(dev);
2164 d = SYS_BUS_DEVICE(dev);
2165 sysbus_mmio_map(d, 0, IO_APIC_DEFAULT_ADDRESS);
2167 for (i = 0; i < IOAPIC_NUM_PINS; i++) {
2168 gsi_state->ioapic_irq[i] = qdev_get_gpio_in(dev, i);
2172 static void pc_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev,
2175 const PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2176 const PCMachineClass *pcmc = PC_MACHINE_GET_CLASS(pcms);
2177 const MachineState *ms = MACHINE(hotplug_dev);
2178 const bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2179 const uint64_t legacy_align = TARGET_PAGE_SIZE;
2180 Error *local_err = NULL;
2183 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2184 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2185 * addition to cover this case.
2187 if (!pcms->acpi_dev || !acpi_enabled) {
2189 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2193 if (is_nvdimm && !ms->nvdimms_state->is_enabled) {
2194 error_setg(errp, "nvdimm is not enabled: missing 'nvdimm' in '-M'");
2198 hotplug_handler_pre_plug(pcms->acpi_dev, dev, &local_err);
2200 error_propagate(errp, local_err);
2204 pc_dimm_pre_plug(PC_DIMM(dev), MACHINE(hotplug_dev),
2205 pcmc->enforce_aligned_dimm ? NULL : &legacy_align, errp);
2208 static void pc_memory_plug(HotplugHandler *hotplug_dev,
2209 DeviceState *dev, Error **errp)
2211 Error *local_err = NULL;
2212 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2213 MachineState *ms = MACHINE(hotplug_dev);
2214 bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM);
2216 pc_dimm_plug(PC_DIMM(dev), MACHINE(pcms), &local_err);
2222 nvdimm_plug(ms->nvdimms_state);
2225 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &error_abort);
2227 error_propagate(errp, local_err);
2230 static void pc_memory_unplug_request(HotplugHandler *hotplug_dev,
2231 DeviceState *dev, Error **errp)
2233 Error *local_err = NULL;
2234 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2237 * When -no-acpi is used with Q35 machine type, no ACPI is built,
2238 * but pcms->acpi_dev is still created. Check !acpi_enabled in
2239 * addition to cover this case.
2241 if (!pcms->acpi_dev || !acpi_enabled) {
2242 error_setg(&local_err,
2243 "memory hotplug is not enabled: missing acpi device or acpi disabled");
2247 if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) {
2248 error_setg(&local_err,
2249 "nvdimm device hot unplug is not supported yet.");
2253 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2256 error_propagate(errp, local_err);
2259 static void pc_memory_unplug(HotplugHandler *hotplug_dev,
2260 DeviceState *dev, Error **errp)
2262 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2263 Error *local_err = NULL;
2265 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2270 pc_dimm_unplug(PC_DIMM(dev), MACHINE(pcms));
2271 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2273 error_propagate(errp, local_err);
2276 static int pc_apic_cmp(const void *a, const void *b)
2278 CPUArchId *apic_a = (CPUArchId *)a;
2279 CPUArchId *apic_b = (CPUArchId *)b;
2281 return apic_a->arch_id - apic_b->arch_id;
2284 /* returns pointer to CPUArchId descriptor that matches CPU's apic_id
2285 * in ms->possible_cpus->cpus, if ms->possible_cpus->cpus has no
2286 * entry corresponding to CPU's apic_id returns NULL.
2288 static CPUArchId *pc_find_cpu_slot(MachineState *ms, uint32_t id, int *idx)
2290 CPUArchId apic_id, *found_cpu;
2292 apic_id.arch_id = id;
2293 found_cpu = bsearch(&apic_id, ms->possible_cpus->cpus,
2294 ms->possible_cpus->len, sizeof(*ms->possible_cpus->cpus),
2296 if (found_cpu && idx) {
2297 *idx = found_cpu - ms->possible_cpus->cpus;
2302 static void pc_cpu_plug(HotplugHandler *hotplug_dev,
2303 DeviceState *dev, Error **errp)
2305 CPUArchId *found_cpu;
2306 Error *local_err = NULL;
2307 X86CPU *cpu = X86_CPU(dev);
2308 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2310 if (pcms->acpi_dev) {
2311 hotplug_handler_plug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2317 /* increment the number of CPUs */
2320 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2323 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2326 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2327 found_cpu->cpu = OBJECT(dev);
2329 error_propagate(errp, local_err);
2331 static void pc_cpu_unplug_request_cb(HotplugHandler *hotplug_dev,
2332 DeviceState *dev, Error **errp)
2335 Error *local_err = NULL;
2336 X86CPU *cpu = X86_CPU(dev);
2337 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2339 if (!pcms->acpi_dev) {
2340 error_setg(&local_err, "CPU hot unplug not supported without ACPI");
2344 pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2347 error_setg(&local_err, "Boot CPU is unpluggable");
2351 hotplug_handler_unplug_request(HOTPLUG_HANDLER(pcms->acpi_dev), dev,
2358 error_propagate(errp, local_err);
2362 static void pc_cpu_unplug_cb(HotplugHandler *hotplug_dev,
2363 DeviceState *dev, Error **errp)
2365 CPUArchId *found_cpu;
2366 Error *local_err = NULL;
2367 X86CPU *cpu = X86_CPU(dev);
2368 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2370 hotplug_handler_unplug(HOTPLUG_HANDLER(pcms->acpi_dev), dev, &local_err);
2375 found_cpu = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, NULL);
2376 found_cpu->cpu = NULL;
2377 object_property_set_bool(OBJECT(dev), false, "realized", NULL);
2379 /* decrement the number of CPUs */
2381 /* Update the number of CPUs in CMOS */
2382 rtc_set_cpus_count(pcms->rtc, pcms->boot_cpus);
2383 fw_cfg_modify_i16(pcms->fw_cfg, FW_CFG_NB_CPUS, pcms->boot_cpus);
2385 error_propagate(errp, local_err);
2388 static void pc_cpu_pre_plug(HotplugHandler *hotplug_dev,
2389 DeviceState *dev, Error **errp)
2393 CPUArchId *cpu_slot;
2394 X86CPUTopoInfo topo;
2395 X86CPU *cpu = X86_CPU(dev);
2396 CPUX86State *env = &cpu->env;
2397 MachineState *ms = MACHINE(hotplug_dev);
2398 PCMachineState *pcms = PC_MACHINE(hotplug_dev);
2399 unsigned int smp_cores = ms->smp.cores;
2400 unsigned int smp_threads = ms->smp.threads;
2402 if(!object_dynamic_cast(OBJECT(cpu), ms->cpu_type)) {
2403 error_setg(errp, "Invalid CPU type, expected cpu type: '%s'",
2408 env->nr_dies = pcms->smp_dies;
2411 * If APIC ID is not set,
2412 * set it based on socket/die/core/thread properties.
2414 if (cpu->apic_id == UNASSIGNED_APIC_ID) {
2415 int max_socket = (ms->smp.max_cpus - 1) /
2416 smp_threads / smp_cores / pcms->smp_dies;
2418 if (cpu->socket_id < 0) {
2419 error_setg(errp, "CPU socket-id is not set");
2421 } else if (cpu->socket_id > max_socket) {
2422 error_setg(errp, "Invalid CPU socket-id: %u must be in range 0:%u",
2423 cpu->socket_id, max_socket);
2425 } else if (cpu->die_id > pcms->smp_dies - 1) {
2426 error_setg(errp, "Invalid CPU die-id: %u must be in range 0:%u",
2427 cpu->die_id, max_socket);
2430 if (cpu->core_id < 0) {
2431 error_setg(errp, "CPU core-id is not set");
2433 } else if (cpu->core_id > (smp_cores - 1)) {
2434 error_setg(errp, "Invalid CPU core-id: %u must be in range 0:%u",
2435 cpu->core_id, smp_cores - 1);
2438 if (cpu->thread_id < 0) {
2439 error_setg(errp, "CPU thread-id is not set");
2441 } else if (cpu->thread_id > (smp_threads - 1)) {
2442 error_setg(errp, "Invalid CPU thread-id: %u must be in range 0:%u",
2443 cpu->thread_id, smp_threads - 1);
2447 topo.pkg_id = cpu->socket_id;
2448 topo.die_id = cpu->die_id;
2449 topo.core_id = cpu->core_id;
2450 topo.smt_id = cpu->thread_id;
2451 cpu->apic_id = apicid_from_topo_ids(pcms->smp_dies, smp_cores,
2452 smp_threads, &topo);
2455 cpu_slot = pc_find_cpu_slot(MACHINE(pcms), cpu->apic_id, &idx);
2457 MachineState *ms = MACHINE(pcms);
2459 x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2460 smp_cores, smp_threads, &topo);
2462 "Invalid CPU [socket: %u, die: %u, core: %u, thread: %u] with"
2463 " APIC ID %" PRIu32 ", valid index range 0:%d",
2464 topo.pkg_id, topo.die_id, topo.core_id, topo.smt_id,
2465 cpu->apic_id, ms->possible_cpus->len - 1);
2469 if (cpu_slot->cpu) {
2470 error_setg(errp, "CPU[%d] with APIC ID %" PRIu32 " exists",
2475 /* if 'address' properties socket-id/core-id/thread-id are not set, set them
2476 * so that machine_query_hotpluggable_cpus would show correct values
2478 /* TODO: move socket_id/core_id/thread_id checks into x86_cpu_realizefn()
2479 * once -smp refactoring is complete and there will be CPU private
2480 * CPUState::nr_cores and CPUState::nr_threads fields instead of globals */
2481 x86_topo_ids_from_apicid(cpu->apic_id, pcms->smp_dies,
2482 smp_cores, smp_threads, &topo);
2483 if (cpu->socket_id != -1 && cpu->socket_id != topo.pkg_id) {
2484 error_setg(errp, "property socket-id: %u doesn't match set apic-id:"
2485 " 0x%x (socket-id: %u)", cpu->socket_id, cpu->apic_id, topo.pkg_id);
2488 cpu->socket_id = topo.pkg_id;
2490 if (cpu->die_id != -1 && cpu->die_id != topo.die_id) {
2491 error_setg(errp, "property die-id: %u doesn't match set apic-id:"
2492 " 0x%x (die-id: %u)", cpu->die_id, cpu->apic_id, topo.die_id);
2495 cpu->die_id = topo.die_id;
2497 if (cpu->core_id != -1 && cpu->core_id != topo.core_id) {
2498 error_setg(errp, "property core-id: %u doesn't match set apic-id:"
2499 " 0x%x (core-id: %u)", cpu->core_id, cpu->apic_id, topo.core_id);
2502 cpu->core_id = topo.core_id;
2504 if (cpu->thread_id != -1 && cpu->thread_id != topo.smt_id) {
2505 error_setg(errp, "property thread-id: %u doesn't match set apic-id:"
2506 " 0x%x (thread-id: %u)", cpu->thread_id, cpu->apic_id, topo.smt_id);
2509 cpu->thread_id = topo.smt_id;
2511 if (hyperv_feat_enabled(cpu, HYPERV_FEAT_VPINDEX) &&
2512 !kvm_hv_vpindex_settable()) {
2513 error_setg(errp, "kernel doesn't allow setting HyperV VP_INDEX");
2518 cs->cpu_index = idx;
2520 numa_cpu_pre_plug(cpu_slot, dev, errp);
2523 static void pc_virtio_pmem_pci_pre_plug(HotplugHandler *hotplug_dev,
2524 DeviceState *dev, Error **errp)
2526 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2527 Error *local_err = NULL;
2529 if (!hotplug_dev2) {
2531 * Without a bus hotplug handler, we cannot control the plug/unplug
2532 * order. This should never be the case on x86, however better add
2535 error_setg(errp, "virtio-pmem-pci not supported on this bus.");
2539 * First, see if we can plug this memory device at all. If that
2540 * succeeds, branch of to the actual hotplug handler.
2542 memory_device_pre_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev), NULL,
2545 hotplug_handler_pre_plug(hotplug_dev2, dev, &local_err);
2547 error_propagate(errp, local_err);
2550 static void pc_virtio_pmem_pci_plug(HotplugHandler *hotplug_dev,
2551 DeviceState *dev, Error **errp)
2553 HotplugHandler *hotplug_dev2 = qdev_get_bus_hotplug_handler(dev);
2554 Error *local_err = NULL;
2557 * Plug the memory device first and then branch off to the actual
2558 * hotplug handler. If that one fails, we can easily undo the memory
2561 memory_device_plug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2562 hotplug_handler_plug(hotplug_dev2, dev, &local_err);
2564 memory_device_unplug(MEMORY_DEVICE(dev), MACHINE(hotplug_dev));
2566 error_propagate(errp, local_err);
2569 static void pc_virtio_pmem_pci_unplug_request(HotplugHandler *hotplug_dev,
2570 DeviceState *dev, Error **errp)
2572 /* We don't support virtio pmem hot unplug */
2573 error_setg(errp, "virtio pmem device unplug not supported.");
2576 static void pc_virtio_pmem_pci_unplug(HotplugHandler *hotplug_dev,
2577 DeviceState *dev, Error **errp)
2579 /* We don't support virtio pmem hot unplug */
2582 static void pc_machine_device_pre_plug_cb(HotplugHandler *hotplug_dev,
2583 DeviceState *dev, Error **errp)
2585 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2586 pc_memory_pre_plug(hotplug_dev, dev, errp);
2587 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2588 pc_cpu_pre_plug(hotplug_dev, dev, errp);
2589 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2590 pc_virtio_pmem_pci_pre_plug(hotplug_dev, dev, errp);
2594 static void pc_machine_device_plug_cb(HotplugHandler *hotplug_dev,
2595 DeviceState *dev, Error **errp)
2597 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2598 pc_memory_plug(hotplug_dev, dev, errp);
2599 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2600 pc_cpu_plug(hotplug_dev, dev, errp);
2601 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2602 pc_virtio_pmem_pci_plug(hotplug_dev, dev, errp);
2606 static void pc_machine_device_unplug_request_cb(HotplugHandler *hotplug_dev,
2607 DeviceState *dev, Error **errp)
2609 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2610 pc_memory_unplug_request(hotplug_dev, dev, errp);
2611 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2612 pc_cpu_unplug_request_cb(hotplug_dev, dev, errp);
2613 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2614 pc_virtio_pmem_pci_unplug_request(hotplug_dev, dev, errp);
2616 error_setg(errp, "acpi: device unplug request for not supported device"
2617 " type: %s", object_get_typename(OBJECT(dev)));
2621 static void pc_machine_device_unplug_cb(HotplugHandler *hotplug_dev,
2622 DeviceState *dev, Error **errp)
2624 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) {
2625 pc_memory_unplug(hotplug_dev, dev, errp);
2626 } else if (object_dynamic_cast(OBJECT(dev), TYPE_CPU)) {
2627 pc_cpu_unplug_cb(hotplug_dev, dev, errp);
2628 } else if (object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2629 pc_virtio_pmem_pci_unplug(hotplug_dev, dev, errp);
2631 error_setg(errp, "acpi: device unplug for not supported device"
2632 " type: %s", object_get_typename(OBJECT(dev)));
2636 static HotplugHandler *pc_get_hotplug_handler(MachineState *machine,
2639 if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) ||
2640 object_dynamic_cast(OBJECT(dev), TYPE_CPU) ||
2641 object_dynamic_cast(OBJECT(dev), TYPE_VIRTIO_PMEM_PCI)) {
2642 return HOTPLUG_HANDLER(machine);
2649 pc_machine_get_device_memory_region_size(Object *obj, Visitor *v,
2650 const char *name, void *opaque,
2653 MachineState *ms = MACHINE(obj);
2656 if (ms->device_memory) {
2657 value = memory_region_size(&ms->device_memory->mr);
2660 visit_type_int(v, name, &value, errp);
2663 static void pc_machine_get_max_ram_below_4g(Object *obj, Visitor *v,
2664 const char *name, void *opaque,
2667 PCMachineState *pcms = PC_MACHINE(obj);
2668 uint64_t value = pcms->max_ram_below_4g;
2670 visit_type_size(v, name, &value, errp);
2673 static void pc_machine_set_max_ram_below_4g(Object *obj, Visitor *v,
2674 const char *name, void *opaque,
2677 PCMachineState *pcms = PC_MACHINE(obj);
2678 Error *error = NULL;
2681 visit_type_size(v, name, &value, &error);
2683 error_propagate(errp, error);
2686 if (value > 4 * GiB) {
2688 "Machine option 'max-ram-below-4g=%"PRIu64
2689 "' expects size less than or equal to 4G", value);
2690 error_propagate(errp, error);
2694 if (value < 1 * MiB) {
2695 warn_report("Only %" PRIu64 " bytes of RAM below the 4GiB boundary,"
2696 "BIOS may not work with less than 1MiB", value);
2699 pcms->max_ram_below_4g = value;
2702 static void pc_machine_get_vmport(Object *obj, Visitor *v, const char *name,
2703 void *opaque, Error **errp)
2705 PCMachineState *pcms = PC_MACHINE(obj);
2706 OnOffAuto vmport = pcms->vmport;
2708 visit_type_OnOffAuto(v, name, &vmport, errp);
2711 static void pc_machine_set_vmport(Object *obj, Visitor *v, const char *name,
2712 void *opaque, Error **errp)
2714 PCMachineState *pcms = PC_MACHINE(obj);
2716 visit_type_OnOffAuto(v, name, &pcms->vmport, errp);
2719 bool pc_machine_is_smm_enabled(PCMachineState *pcms)
2721 bool smm_available = false;
2723 if (pcms->smm == ON_OFF_AUTO_OFF) {
2727 if (tcg_enabled() || qtest_enabled()) {
2728 smm_available = true;
2729 } else if (kvm_enabled()) {
2730 smm_available = kvm_has_smm();
2733 if (smm_available) {
2737 if (pcms->smm == ON_OFF_AUTO_ON) {
2738 error_report("System Management Mode not supported by this hypervisor.");
2744 static void pc_machine_get_smm(Object *obj, Visitor *v, const char *name,
2745 void *opaque, Error **errp)
2747 PCMachineState *pcms = PC_MACHINE(obj);
2748 OnOffAuto smm = pcms->smm;
2750 visit_type_OnOffAuto(v, name, &smm, errp);
2753 static void pc_machine_set_smm(Object *obj, Visitor *v, const char *name,
2754 void *opaque, Error **errp)
2756 PCMachineState *pcms = PC_MACHINE(obj);
2758 visit_type_OnOffAuto(v, name, &pcms->smm, errp);
2761 static bool pc_machine_get_smbus(Object *obj, Error **errp)
2763 PCMachineState *pcms = PC_MACHINE(obj);
2765 return pcms->smbus_enabled;
2768 static void pc_machine_set_smbus(Object *obj, bool value, Error **errp)
2770 PCMachineState *pcms = PC_MACHINE(obj);
2772 pcms->smbus_enabled = value;
2775 static bool pc_machine_get_sata(Object *obj, Error **errp)
2777 PCMachineState *pcms = PC_MACHINE(obj);
2779 return pcms->sata_enabled;
2782 static void pc_machine_set_sata(Object *obj, bool value, Error **errp)
2784 PCMachineState *pcms = PC_MACHINE(obj);
2786 pcms->sata_enabled = value;
2789 static bool pc_machine_get_pit(Object *obj, Error **errp)
2791 PCMachineState *pcms = PC_MACHINE(obj);
2793 return pcms->pit_enabled;
2796 static void pc_machine_set_pit(Object *obj, bool value, Error **errp)
2798 PCMachineState *pcms = PC_MACHINE(obj);
2800 pcms->pit_enabled = value;
2803 static void pc_machine_initfn(Object *obj)
2805 PCMachineState *pcms = PC_MACHINE(obj);
2807 pcms->max_ram_below_4g = 0; /* use default */
2808 pcms->smm = ON_OFF_AUTO_AUTO;
2809 #ifdef CONFIG_VMPORT
2810 pcms->vmport = ON_OFF_AUTO_AUTO;
2812 pcms->vmport = ON_OFF_AUTO_OFF;
2813 #endif /* CONFIG_VMPORT */
2814 /* acpi build is enabled by default if machine supports it */
2815 pcms->acpi_build_enabled = PC_MACHINE_GET_CLASS(pcms)->has_acpi_build;
2816 pcms->smbus_enabled = true;
2817 pcms->sata_enabled = true;
2818 pcms->pit_enabled = true;
2821 pc_system_flash_create(pcms);
2824 static void pc_machine_reset(MachineState *machine)
2829 qemu_devices_reset();
2831 /* Reset APIC after devices have been reset to cancel
2832 * any changes that qemu_devices_reset() might have done.
2837 if (cpu->apic_state) {
2838 device_reset(cpu->apic_state);
2843 static CpuInstanceProperties
2844 pc_cpu_index_to_props(MachineState *ms, unsigned cpu_index)
2846 MachineClass *mc = MACHINE_GET_CLASS(ms);
2847 const CPUArchIdList *possible_cpus = mc->possible_cpu_arch_ids(ms);
2849 assert(cpu_index < possible_cpus->len);
2850 return possible_cpus->cpus[cpu_index].props;
2853 static int64_t pc_get_default_cpu_node_id(const MachineState *ms, int idx)
2855 X86CPUTopoInfo topo;
2856 PCMachineState *pcms = PC_MACHINE(ms);
2858 assert(idx < ms->possible_cpus->len);
2859 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[idx].arch_id,
2860 pcms->smp_dies, ms->smp.cores,
2861 ms->smp.threads, &topo);
2862 return topo.pkg_id % nb_numa_nodes;
2865 static const CPUArchIdList *pc_possible_cpu_arch_ids(MachineState *ms)
2867 PCMachineState *pcms = PC_MACHINE(ms);
2869 unsigned int max_cpus = ms->smp.max_cpus;
2871 if (ms->possible_cpus) {
2873 * make sure that max_cpus hasn't changed since the first use, i.e.
2874 * -smp hasn't been parsed after it
2876 assert(ms->possible_cpus->len == max_cpus);
2877 return ms->possible_cpus;
2880 ms->possible_cpus = g_malloc0(sizeof(CPUArchIdList) +
2881 sizeof(CPUArchId) * max_cpus);
2882 ms->possible_cpus->len = max_cpus;
2883 for (i = 0; i < ms->possible_cpus->len; i++) {
2884 X86CPUTopoInfo topo;
2886 ms->possible_cpus->cpus[i].type = ms->cpu_type;
2887 ms->possible_cpus->cpus[i].vcpus_count = 1;
2888 ms->possible_cpus->cpus[i].arch_id = x86_cpu_apic_id_from_index(pcms, i);
2889 x86_topo_ids_from_apicid(ms->possible_cpus->cpus[i].arch_id,
2890 pcms->smp_dies, ms->smp.cores,
2891 ms->smp.threads, &topo);
2892 ms->possible_cpus->cpus[i].props.has_socket_id = true;
2893 ms->possible_cpus->cpus[i].props.socket_id = topo.pkg_id;
2894 ms->possible_cpus->cpus[i].props.has_die_id = true;
2895 ms->possible_cpus->cpus[i].props.die_id = topo.die_id;
2896 ms->possible_cpus->cpus[i].props.has_core_id = true;
2897 ms->possible_cpus->cpus[i].props.core_id = topo.core_id;
2898 ms->possible_cpus->cpus[i].props.has_thread_id = true;
2899 ms->possible_cpus->cpus[i].props.thread_id = topo.smt_id;
2901 return ms->possible_cpus;
2904 static void x86_nmi(NMIState *n, int cpu_index, Error **errp)
2906 /* cpu index isn't used */
2910 X86CPU *cpu = X86_CPU(cs);
2912 if (!cpu->apic_state) {
2913 cpu_interrupt(cs, CPU_INTERRUPT_NMI);
2915 apic_deliver_nmi(cpu->apic_state);
2920 static void pc_machine_class_init(ObjectClass *oc, void *data)
2922 MachineClass *mc = MACHINE_CLASS(oc);
2923 PCMachineClass *pcmc = PC_MACHINE_CLASS(oc);
2924 HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc);
2925 NMIClass *nc = NMI_CLASS(oc);
2927 pcmc->pci_enabled = true;
2928 pcmc->has_acpi_build = true;
2929 pcmc->rsdp_in_ram = true;
2930 pcmc->smbios_defaults = true;
2931 pcmc->smbios_uuid_encoded = true;
2932 pcmc->gigabyte_align = true;
2933 pcmc->has_reserved_memory = true;
2934 pcmc->kvmclock_enabled = true;
2935 pcmc->enforce_aligned_dimm = true;
2936 /* BIOS ACPI tables: 128K. Other BIOS datastructures: less than 4K reported
2937 * to be used at the moment, 32K should be enough for a while. */
2938 pcmc->acpi_data_size = 0x20000 + 0x8000;
2939 pcmc->save_tsc_khz = true;
2940 pcmc->linuxboot_dma_enabled = true;
2941 pcmc->pvh_enabled = true;
2942 assert(!mc->get_hotplug_handler);
2943 mc->get_hotplug_handler = pc_get_hotplug_handler;
2944 mc->cpu_index_to_instance_props = pc_cpu_index_to_props;
2945 mc->get_default_cpu_node_id = pc_get_default_cpu_node_id;
2946 mc->possible_cpu_arch_ids = pc_possible_cpu_arch_ids;
2947 mc->auto_enable_numa_with_memhp = true;
2948 mc->has_hotpluggable_cpus = true;
2949 mc->default_boot_order = "cad";
2950 mc->hot_add_cpu = pc_hot_add_cpu;
2951 mc->smp_parse = pc_smp_parse;
2952 mc->block_default_type = IF_IDE;
2954 mc->reset = pc_machine_reset;
2955 hc->pre_plug = pc_machine_device_pre_plug_cb;
2956 hc->plug = pc_machine_device_plug_cb;
2957 hc->unplug_request = pc_machine_device_unplug_request_cb;
2958 hc->unplug = pc_machine_device_unplug_cb;
2959 nc->nmi_monitor_handler = x86_nmi;
2960 mc->default_cpu_type = TARGET_DEFAULT_CPU_TYPE;
2961 mc->nvdimm_supported = true;
2962 mc->numa_mem_supported = true;
2964 object_class_property_add(oc, PC_MACHINE_DEVMEM_REGION_SIZE, "int",
2965 pc_machine_get_device_memory_region_size, NULL,
2966 NULL, NULL, &error_abort);
2968 object_class_property_add(oc, PC_MACHINE_MAX_RAM_BELOW_4G, "size",
2969 pc_machine_get_max_ram_below_4g, pc_machine_set_max_ram_below_4g,
2970 NULL, NULL, &error_abort);
2972 object_class_property_set_description(oc, PC_MACHINE_MAX_RAM_BELOW_4G,
2973 "Maximum ram below the 4G boundary (32bit boundary)", &error_abort);
2975 object_class_property_add(oc, PC_MACHINE_SMM, "OnOffAuto",
2976 pc_machine_get_smm, pc_machine_set_smm,
2977 NULL, NULL, &error_abort);
2978 object_class_property_set_description(oc, PC_MACHINE_SMM,
2979 "Enable SMM (pc & q35)", &error_abort);
2981 object_class_property_add(oc, PC_MACHINE_VMPORT, "OnOffAuto",
2982 pc_machine_get_vmport, pc_machine_set_vmport,
2983 NULL, NULL, &error_abort);
2984 object_class_property_set_description(oc, PC_MACHINE_VMPORT,
2985 "Enable vmport (pc & q35)", &error_abort);
2987 object_class_property_add_bool(oc, PC_MACHINE_SMBUS,
2988 pc_machine_get_smbus, pc_machine_set_smbus, &error_abort);
2990 object_class_property_add_bool(oc, PC_MACHINE_SATA,
2991 pc_machine_get_sata, pc_machine_set_sata, &error_abort);
2993 object_class_property_add_bool(oc, PC_MACHINE_PIT,
2994 pc_machine_get_pit, pc_machine_set_pit, &error_abort);
2997 static const TypeInfo pc_machine_info = {
2998 .name = TYPE_PC_MACHINE,
2999 .parent = TYPE_MACHINE,
3001 .instance_size = sizeof(PCMachineState),
3002 .instance_init = pc_machine_initfn,
3003 .class_size = sizeof(PCMachineClass),
3004 .class_init = pc_machine_class_init,
3005 .interfaces = (InterfaceInfo[]) {
3006 { TYPE_HOTPLUG_HANDLER },
3012 static void pc_machine_register_types(void)
3014 type_register_static(&pc_machine_info);
3017 type_init(pc_machine_register_types)