2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25 #include "qemu/osdep.h"
27 #include "hw/ppc/ppc.h"
28 #include "hw/ppc/ppc_e500.h"
29 #include "qemu/timer.h"
30 #include "sysemu/cpus.h"
32 #include "qemu/main-loop.h"
33 #include "qemu/error-report.h"
34 #include "sysemu/kvm.h"
35 #include "sysemu/runstate.h"
37 #include "migration/vmstate.h"
40 static void cpu_ppc_tb_stop (CPUPPCState *env);
41 static void cpu_ppc_tb_start (CPUPPCState *env);
43 void ppc_set_irq(PowerPCCPU *cpu, int n_IRQ, int level)
45 CPUState *cs = CPU(cpu);
46 CPUPPCState *env = &cpu->env;
47 unsigned int old_pending;
50 /* We may already have the BQL if coming from the reset path */
51 if (!qemu_mutex_iothread_locked()) {
53 qemu_mutex_lock_iothread();
56 old_pending = env->pending_interrupts;
59 env->pending_interrupts |= 1 << n_IRQ;
60 cpu_interrupt(cs, CPU_INTERRUPT_HARD);
62 env->pending_interrupts &= ~(1 << n_IRQ);
63 if (env->pending_interrupts == 0) {
64 cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
68 if (old_pending != env->pending_interrupts) {
69 kvmppc_set_interrupt(cpu, n_IRQ, level);
73 trace_ppc_irq_set_exit(env, n_IRQ, level, env->pending_interrupts,
74 CPU(cpu)->interrupt_request);
77 qemu_mutex_unlock_iothread();
81 /* PowerPC 6xx / 7xx internal IRQ controller */
82 static void ppc6xx_set_irq(void *opaque, int pin, int level)
84 PowerPCCPU *cpu = opaque;
85 CPUPPCState *env = &cpu->env;
88 trace_ppc_irq_set(env, pin, level);
90 cur_level = (env->irq_input_state >> pin) & 1;
91 /* Don't generate spurious events */
92 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
93 CPUState *cs = CPU(cpu);
96 case PPC6xx_INPUT_TBEN:
97 /* Level sensitive - active high */
98 trace_ppc_irq_set_state("time base", level);
100 cpu_ppc_tb_start(env);
102 cpu_ppc_tb_stop(env);
105 case PPC6xx_INPUT_INT:
106 /* Level sensitive - active high */
107 trace_ppc_irq_set_state("external IRQ", level);
108 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
110 case PPC6xx_INPUT_SMI:
111 /* Level sensitive - active high */
112 trace_ppc_irq_set_state("SMI IRQ", level);
113 ppc_set_irq(cpu, PPC_INTERRUPT_SMI, level);
115 case PPC6xx_INPUT_MCP:
116 /* Negative edge sensitive */
117 /* XXX: TODO: actual reaction may depends on HID0 status
118 * 603/604/740/750: check HID0[EMCP]
120 if (cur_level == 1 && level == 0) {
121 trace_ppc_irq_set_state("machine check", 1);
122 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
125 case PPC6xx_INPUT_CKSTP_IN:
126 /* Level sensitive - active low */
127 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
128 /* XXX: Note that the only way to restart the CPU is to reset it */
130 trace_ppc_irq_cpu("stop");
134 case PPC6xx_INPUT_HRESET:
135 /* Level sensitive - active low */
137 trace_ppc_irq_reset("CPU");
138 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
141 case PPC6xx_INPUT_SRESET:
142 trace_ppc_irq_set_state("RESET IRQ", level);
143 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
146 g_assert_not_reached();
149 env->irq_input_state |= 1 << pin;
151 env->irq_input_state &= ~(1 << pin);
155 void ppc6xx_irq_init(PowerPCCPU *cpu)
157 CPUPPCState *env = &cpu->env;
159 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, cpu,
163 #if defined(TARGET_PPC64)
164 /* PowerPC 970 internal IRQ controller */
165 static void ppc970_set_irq(void *opaque, int pin, int level)
167 PowerPCCPU *cpu = opaque;
168 CPUPPCState *env = &cpu->env;
171 trace_ppc_irq_set(env, pin, level);
173 cur_level = (env->irq_input_state >> pin) & 1;
174 /* Don't generate spurious events */
175 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
176 CPUState *cs = CPU(cpu);
179 case PPC970_INPUT_INT:
180 /* Level sensitive - active high */
181 trace_ppc_irq_set_state("external IRQ", level);
182 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
184 case PPC970_INPUT_THINT:
185 /* Level sensitive - active high */
186 trace_ppc_irq_set_state("SMI IRQ", level);
187 ppc_set_irq(cpu, PPC_INTERRUPT_THERM, level);
189 case PPC970_INPUT_MCP:
190 /* Negative edge sensitive */
191 /* XXX: TODO: actual reaction may depends on HID0 status
192 * 603/604/740/750: check HID0[EMCP]
194 if (cur_level == 1 && level == 0) {
195 trace_ppc_irq_set_state("machine check", 1);
196 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, 1);
199 case PPC970_INPUT_CKSTP:
200 /* Level sensitive - active low */
201 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
203 trace_ppc_irq_cpu("stop");
206 trace_ppc_irq_cpu("restart");
211 case PPC970_INPUT_HRESET:
212 /* Level sensitive - active low */
214 cpu_interrupt(cs, CPU_INTERRUPT_RESET);
217 case PPC970_INPUT_SRESET:
218 trace_ppc_irq_set_state("RESET IRQ", level);
219 ppc_set_irq(cpu, PPC_INTERRUPT_RESET, level);
221 case PPC970_INPUT_TBEN:
222 trace_ppc_irq_set_state("TBEN IRQ", level);
226 g_assert_not_reached();
229 env->irq_input_state |= 1 << pin;
231 env->irq_input_state &= ~(1 << pin);
235 void ppc970_irq_init(PowerPCCPU *cpu)
237 CPUPPCState *env = &cpu->env;
239 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, cpu,
243 /* POWER7 internal IRQ controller */
244 static void power7_set_irq(void *opaque, int pin, int level)
246 PowerPCCPU *cpu = opaque;
248 trace_ppc_irq_set(&cpu->env, pin, level);
251 case POWER7_INPUT_INT:
252 /* Level sensitive - active high */
253 trace_ppc_irq_set_state("external IRQ", level);
254 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
257 g_assert_not_reached();
261 void ppcPOWER7_irq_init(PowerPCCPU *cpu)
263 CPUPPCState *env = &cpu->env;
265 env->irq_inputs = (void **)qemu_allocate_irqs(&power7_set_irq, cpu,
269 /* POWER9 internal IRQ controller */
270 static void power9_set_irq(void *opaque, int pin, int level)
272 PowerPCCPU *cpu = opaque;
274 trace_ppc_irq_set(&cpu->env, pin, level);
277 case POWER9_INPUT_INT:
278 /* Level sensitive - active high */
279 trace_ppc_irq_set_state("external IRQ", level);
280 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
282 case POWER9_INPUT_HINT:
283 /* Level sensitive - active high */
284 trace_ppc_irq_set_state("HV external IRQ", level);
285 ppc_set_irq(cpu, PPC_INTERRUPT_HVIRT, level);
288 g_assert_not_reached();
293 void ppcPOWER9_irq_init(PowerPCCPU *cpu)
295 CPUPPCState *env = &cpu->env;
297 env->irq_inputs = (void **)qemu_allocate_irqs(&power9_set_irq, cpu,
300 #endif /* defined(TARGET_PPC64) */
302 void ppc40x_core_reset(PowerPCCPU *cpu)
304 CPUPPCState *env = &cpu->env;
307 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC core\n");
308 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
309 dbsr = env->spr[SPR_40x_DBSR];
312 env->spr[SPR_40x_DBSR] = dbsr;
315 void ppc40x_chip_reset(PowerPCCPU *cpu)
317 CPUPPCState *env = &cpu->env;
320 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC chip\n");
321 cpu_interrupt(CPU(cpu), CPU_INTERRUPT_RESET);
322 /* XXX: TODO reset all internal peripherals */
323 dbsr = env->spr[SPR_40x_DBSR];
326 env->spr[SPR_40x_DBSR] = dbsr;
329 void ppc40x_system_reset(PowerPCCPU *cpu)
331 qemu_log_mask(CPU_LOG_RESET, "Reset PowerPC system\n");
332 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
335 void store_40x_dbcr0(CPUPPCState *env, uint32_t val)
337 PowerPCCPU *cpu = env_archcpu(env);
339 switch ((val >> 28) & 0x3) {
345 ppc40x_core_reset(cpu);
349 ppc40x_chip_reset(cpu);
353 ppc40x_system_reset(cpu);
358 /* PowerPC 40x internal IRQ controller */
359 static void ppc40x_set_irq(void *opaque, int pin, int level)
361 PowerPCCPU *cpu = opaque;
362 CPUPPCState *env = &cpu->env;
365 trace_ppc_irq_set(env, pin, level);
367 cur_level = (env->irq_input_state >> pin) & 1;
368 /* Don't generate spurious events */
369 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
370 CPUState *cs = CPU(cpu);
373 case PPC40x_INPUT_RESET_SYS:
375 trace_ppc_irq_reset("system");
376 ppc40x_system_reset(cpu);
379 case PPC40x_INPUT_RESET_CHIP:
381 trace_ppc_irq_reset("chip");
382 ppc40x_chip_reset(cpu);
385 case PPC40x_INPUT_RESET_CORE:
386 /* XXX: TODO: update DBSR[MRR] */
388 trace_ppc_irq_reset("core");
389 ppc40x_core_reset(cpu);
392 case PPC40x_INPUT_CINT:
393 /* Level sensitive - active high */
394 trace_ppc_irq_set_state("critical IRQ", level);
395 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
397 case PPC40x_INPUT_INT:
398 /* Level sensitive - active high */
399 trace_ppc_irq_set_state("external IRQ", level);
400 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
402 case PPC40x_INPUT_HALT:
403 /* Level sensitive - active low */
405 trace_ppc_irq_cpu("stop");
408 trace_ppc_irq_cpu("restart");
413 case PPC40x_INPUT_DEBUG:
414 /* Level sensitive - active high */
415 trace_ppc_irq_set_state("debug pin", level);
416 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
419 g_assert_not_reached();
422 env->irq_input_state |= 1 << pin;
424 env->irq_input_state &= ~(1 << pin);
428 void ppc40x_irq_init(PowerPCCPU *cpu)
430 CPUPPCState *env = &cpu->env;
432 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
433 cpu, PPC40x_INPUT_NB);
436 /* PowerPC E500 internal IRQ controller */
437 static void ppce500_set_irq(void *opaque, int pin, int level)
439 PowerPCCPU *cpu = opaque;
440 CPUPPCState *env = &cpu->env;
443 trace_ppc_irq_set(env, pin, level);
445 cur_level = (env->irq_input_state >> pin) & 1;
446 /* Don't generate spurious events */
447 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
449 case PPCE500_INPUT_MCK:
451 trace_ppc_irq_reset("system");
452 qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET);
455 case PPCE500_INPUT_RESET_CORE:
457 trace_ppc_irq_reset("core");
458 ppc_set_irq(cpu, PPC_INTERRUPT_MCK, level);
461 case PPCE500_INPUT_CINT:
462 /* Level sensitive - active high */
463 trace_ppc_irq_set_state("critical IRQ", level);
464 ppc_set_irq(cpu, PPC_INTERRUPT_CEXT, level);
466 case PPCE500_INPUT_INT:
467 /* Level sensitive - active high */
468 trace_ppc_irq_set_state("core IRQ", level);
469 ppc_set_irq(cpu, PPC_INTERRUPT_EXT, level);
471 case PPCE500_INPUT_DEBUG:
472 /* Level sensitive - active high */
473 trace_ppc_irq_set_state("debug pin", level);
474 ppc_set_irq(cpu, PPC_INTERRUPT_DEBUG, level);
477 g_assert_not_reached();
480 env->irq_input_state |= 1 << pin;
482 env->irq_input_state &= ~(1 << pin);
486 void ppce500_irq_init(PowerPCCPU *cpu)
488 CPUPPCState *env = &cpu->env;
490 env->irq_inputs = (void **)qemu_allocate_irqs(&ppce500_set_irq,
491 cpu, PPCE500_INPUT_NB);
494 /* Enable or Disable the E500 EPR capability */
495 void ppce500_set_mpic_proxy(bool enabled)
500 PowerPCCPU *cpu = POWERPC_CPU(cs);
502 cpu->env.mpic_proxy = enabled;
504 kvmppc_set_mpic_proxy(cpu, enabled);
509 /*****************************************************************************/
510 /* PowerPC time base and decrementer emulation */
512 uint64_t cpu_ppc_get_tb(ppc_tb_t *tb_env, uint64_t vmclk, int64_t tb_offset)
514 /* TB time in tb periods */
515 return muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND) + tb_offset;
518 uint64_t cpu_ppc_load_tbl (CPUPPCState *env)
520 ppc_tb_t *tb_env = env->tb_env;
524 return env->spr[SPR_TBL];
527 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
528 trace_ppc_tb_load(tb);
533 static inline uint32_t _cpu_ppc_load_tbu(CPUPPCState *env)
535 ppc_tb_t *tb_env = env->tb_env;
538 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
539 trace_ppc_tb_load(tb);
544 uint32_t cpu_ppc_load_tbu (CPUPPCState *env)
547 return env->spr[SPR_TBU];
550 return _cpu_ppc_load_tbu(env);
553 static inline void cpu_ppc_store_tb(ppc_tb_t *tb_env, uint64_t vmclk,
554 int64_t *tb_offsetp, uint64_t value)
556 *tb_offsetp = value -
557 muldiv64(vmclk, tb_env->tb_freq, NANOSECONDS_PER_SECOND);
559 trace_ppc_tb_store(value, *tb_offsetp);
562 void cpu_ppc_store_tbl (CPUPPCState *env, uint32_t value)
564 ppc_tb_t *tb_env = env->tb_env;
567 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
568 tb &= 0xFFFFFFFF00000000ULL;
569 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
570 &tb_env->tb_offset, tb | (uint64_t)value);
573 static inline void _cpu_ppc_store_tbu(CPUPPCState *env, uint32_t value)
575 ppc_tb_t *tb_env = env->tb_env;
578 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->tb_offset);
579 tb &= 0x00000000FFFFFFFFULL;
580 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
581 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
584 void cpu_ppc_store_tbu (CPUPPCState *env, uint32_t value)
586 _cpu_ppc_store_tbu(env, value);
589 uint64_t cpu_ppc_load_atbl (CPUPPCState *env)
591 ppc_tb_t *tb_env = env->tb_env;
594 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
595 trace_ppc_tb_load(tb);
600 uint32_t cpu_ppc_load_atbu (CPUPPCState *env)
602 ppc_tb_t *tb_env = env->tb_env;
605 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
606 trace_ppc_tb_load(tb);
611 void cpu_ppc_store_atbl (CPUPPCState *env, uint32_t value)
613 ppc_tb_t *tb_env = env->tb_env;
616 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
617 tb &= 0xFFFFFFFF00000000ULL;
618 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
619 &tb_env->atb_offset, tb | (uint64_t)value);
622 void cpu_ppc_store_atbu (CPUPPCState *env, uint32_t value)
624 ppc_tb_t *tb_env = env->tb_env;
627 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL), tb_env->atb_offset);
628 tb &= 0x00000000FFFFFFFFULL;
629 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
630 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
633 uint64_t cpu_ppc_load_vtb(CPUPPCState *env)
635 ppc_tb_t *tb_env = env->tb_env;
637 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
641 void cpu_ppc_store_vtb(CPUPPCState *env, uint64_t value)
643 ppc_tb_t *tb_env = env->tb_env;
645 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
646 &tb_env->vtb_offset, value);
649 void cpu_ppc_store_tbu40(CPUPPCState *env, uint64_t value)
651 ppc_tb_t *tb_env = env->tb_env;
654 tb = cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
657 tb |= (value & ~0xFFFFFFUL);
658 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
659 &tb_env->tb_offset, tb);
662 static void cpu_ppc_tb_stop (CPUPPCState *env)
664 ppc_tb_t *tb_env = env->tb_env;
665 uint64_t tb, atb, vmclk;
667 /* If the time base is already frozen, do nothing */
668 if (tb_env->tb_freq != 0) {
669 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
670 /* Get the time base */
671 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
672 /* Get the alternate time base */
673 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
674 /* Store the time base value (ie compute the current offset) */
675 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
676 /* Store the alternate time base value (compute the current offset) */
677 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
678 /* Set the time base frequency to zero */
680 /* Now, the time bases are frozen to tb_offset / atb_offset value */
684 static void cpu_ppc_tb_start (CPUPPCState *env)
686 ppc_tb_t *tb_env = env->tb_env;
687 uint64_t tb, atb, vmclk;
689 /* If the time base is not frozen, do nothing */
690 if (tb_env->tb_freq == 0) {
691 vmclk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
692 /* Get the time base from tb_offset */
693 tb = tb_env->tb_offset;
694 /* Get the alternate time base from atb_offset */
695 atb = tb_env->atb_offset;
696 /* Restore the tb frequency from the decrementer frequency */
697 tb_env->tb_freq = tb_env->decr_freq;
698 /* Store the time base value */
699 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
700 /* Store the alternate time base value */
701 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
705 bool ppc_decr_clear_on_delivery(CPUPPCState *env)
707 ppc_tb_t *tb_env = env->tb_env;
708 int flags = PPC_DECR_UNDERFLOW_TRIGGERED | PPC_DECR_UNDERFLOW_LEVEL;
709 return ((tb_env->flags & flags) == PPC_DECR_UNDERFLOW_TRIGGERED);
712 static inline int64_t _cpu_ppc_load_decr(CPUPPCState *env, uint64_t next)
714 ppc_tb_t *tb_env = env->tb_env;
717 diff = next - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
719 decr = muldiv64(diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
720 } else if (tb_env->flags & PPC_TIMER_BOOKE) {
723 decr = -muldiv64(-diff, tb_env->decr_freq, NANOSECONDS_PER_SECOND);
725 trace_ppc_decr_load(decr);
730 target_ulong cpu_ppc_load_decr(CPUPPCState *env)
732 ppc_tb_t *tb_env = env->tb_env;
736 return env->spr[SPR_DECR];
739 decr = _cpu_ppc_load_decr(env, tb_env->decr_next);
742 * If large decrementer is enabled then the decrementer is signed extened
743 * to 64 bits, otherwise it is a 32 bit value.
745 if (env->spr[SPR_LPCR] & LPCR_LD) {
748 return (uint32_t) decr;
751 target_ulong cpu_ppc_load_hdecr(CPUPPCState *env)
753 PowerPCCPU *cpu = env_archcpu(env);
754 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
755 ppc_tb_t *tb_env = env->tb_env;
758 hdecr = _cpu_ppc_load_decr(env, tb_env->hdecr_next);
761 * If we have a large decrementer (POWER9 or later) then hdecr is sign
762 * extended to 64 bits, otherwise it is 32 bits.
764 if (pcc->lrg_decr_bits > 32) {
767 return (uint32_t) hdecr;
770 uint64_t cpu_ppc_load_purr (CPUPPCState *env)
772 ppc_tb_t *tb_env = env->tb_env;
774 return cpu_ppc_get_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
775 tb_env->purr_offset);
778 /* When decrementer expires,
779 * all we need to do is generate or queue a CPU exception
781 static inline void cpu_ppc_decr_excp(PowerPCCPU *cpu)
784 trace_ppc_decr_excp("raise");
785 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 1);
788 static inline void cpu_ppc_decr_lower(PowerPCCPU *cpu)
790 ppc_set_irq(cpu, PPC_INTERRUPT_DECR, 0);
793 static inline void cpu_ppc_hdecr_excp(PowerPCCPU *cpu)
795 CPUPPCState *env = &cpu->env;
798 trace_ppc_decr_excp("raise HV");
800 /* The architecture specifies that we don't deliver HDEC
801 * interrupts in a PM state. Not only they don't cause a
802 * wakeup but they also get effectively discarded.
804 if (!env->resume_as_sreset) {
805 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 1);
809 static inline void cpu_ppc_hdecr_lower(PowerPCCPU *cpu)
811 ppc_set_irq(cpu, PPC_INTERRUPT_HDECR, 0);
814 static void __cpu_ppc_store_decr(PowerPCCPU *cpu, uint64_t *nextp,
816 void (*raise_excp)(void *),
817 void (*lower_excp)(PowerPCCPU *),
818 target_ulong decr, target_ulong value,
821 CPUPPCState *env = &cpu->env;
822 ppc_tb_t *tb_env = env->tb_env;
824 int64_t signed_value;
827 /* Truncate value to decr_width and sign extend for simplicity */
828 signed_value = sextract64(value, 0, nr_bits);
829 signed_decr = sextract64(decr, 0, nr_bits);
831 trace_ppc_decr_store(nr_bits, decr, value);
834 /* KVM handles decrementer exceptions, we don't need our own timer */
839 * Going from 2 -> 1, 1 -> 0 or 0 -> -1 is the event to generate a DEC
842 * If we get a really small DEC value, we can assume that by the time we
843 * handled it we should inject an interrupt already.
845 * On MSB level based DEC implementations the MSB always means the interrupt
846 * is pending, so raise it on those.
848 * On MSB edge based DEC implementations the MSB going from 0 -> 1 triggers
849 * an edge interrupt, so raise it here too.
852 ((tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL) && signed_value < 0) ||
853 ((tb_env->flags & PPC_DECR_UNDERFLOW_TRIGGERED) && signed_value < 0
854 && signed_decr >= 0)) {
859 /* On MSB level based systems a 0 for the MSB stops interrupt delivery */
860 if (signed_value >= 0 && (tb_env->flags & PPC_DECR_UNDERFLOW_LEVEL)) {
864 /* Calculate the next timer event */
865 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
866 next = now + muldiv64(value, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
870 timer_mod(timer, next);
873 static inline void _cpu_ppc_store_decr(PowerPCCPU *cpu, target_ulong decr,
874 target_ulong value, int nr_bits)
876 ppc_tb_t *tb_env = cpu->env.tb_env;
878 __cpu_ppc_store_decr(cpu, &tb_env->decr_next, tb_env->decr_timer,
879 tb_env->decr_timer->cb, &cpu_ppc_decr_lower, decr,
883 void cpu_ppc_store_decr(CPUPPCState *env, target_ulong value)
885 PowerPCCPU *cpu = env_archcpu(env);
886 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
889 if (env->spr[SPR_LPCR] & LPCR_LD) {
890 nr_bits = pcc->lrg_decr_bits;
893 _cpu_ppc_store_decr(cpu, cpu_ppc_load_decr(env), value, nr_bits);
896 static void cpu_ppc_decr_cb(void *opaque)
898 PowerPCCPU *cpu = opaque;
900 cpu_ppc_decr_excp(cpu);
903 static inline void _cpu_ppc_store_hdecr(PowerPCCPU *cpu, target_ulong hdecr,
904 target_ulong value, int nr_bits)
906 ppc_tb_t *tb_env = cpu->env.tb_env;
908 if (tb_env->hdecr_timer != NULL) {
909 __cpu_ppc_store_decr(cpu, &tb_env->hdecr_next, tb_env->hdecr_timer,
910 tb_env->hdecr_timer->cb, &cpu_ppc_hdecr_lower,
911 hdecr, value, nr_bits);
915 void cpu_ppc_store_hdecr(CPUPPCState *env, target_ulong value)
917 PowerPCCPU *cpu = env_archcpu(env);
918 PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
920 _cpu_ppc_store_hdecr(cpu, cpu_ppc_load_hdecr(env), value,
924 static void cpu_ppc_hdecr_cb(void *opaque)
926 PowerPCCPU *cpu = opaque;
928 cpu_ppc_hdecr_excp(cpu);
931 void cpu_ppc_store_purr(CPUPPCState *env, uint64_t value)
933 ppc_tb_t *tb_env = env->tb_env;
935 cpu_ppc_store_tb(tb_env, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL),
936 &tb_env->purr_offset, value);
939 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
941 CPUPPCState *env = opaque;
942 PowerPCCPU *cpu = env_archcpu(env);
943 ppc_tb_t *tb_env = env->tb_env;
945 tb_env->tb_freq = freq;
946 tb_env->decr_freq = freq;
947 /* There is a bug in Linux 2.4 kernels:
948 * if a decrementer exception is pending when it enables msr_ee at startup,
949 * it's not ready to handle it...
951 _cpu_ppc_store_decr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
952 _cpu_ppc_store_hdecr(cpu, 0xFFFFFFFF, 0xFFFFFFFF, 32);
953 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
956 static void timebase_save(PPCTimebase *tb)
958 uint64_t ticks = cpu_get_host_ticks();
959 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
961 if (!first_ppc_cpu->env.tb_env) {
962 error_report("No timebase object");
966 /* not used anymore, we keep it for compatibility */
967 tb->time_of_the_day_ns = qemu_clock_get_ns(QEMU_CLOCK_HOST);
969 * tb_offset is only expected to be changed by QEMU so
970 * there is no need to update it from KVM here
972 tb->guest_timebase = ticks + first_ppc_cpu->env.tb_env->tb_offset;
974 tb->runstate_paused =
975 runstate_check(RUN_STATE_PAUSED) || runstate_check(RUN_STATE_SAVE_VM);
978 static void timebase_load(PPCTimebase *tb)
981 PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu);
982 int64_t tb_off_adj, tb_off;
985 if (!first_ppc_cpu->env.tb_env) {
986 error_report("No timebase object");
990 freq = first_ppc_cpu->env.tb_env->tb_freq;
992 tb_off_adj = tb->guest_timebase - cpu_get_host_ticks();
994 tb_off = first_ppc_cpu->env.tb_env->tb_offset;
995 trace_ppc_tb_adjust(tb_off, tb_off_adj, tb_off_adj - tb_off,
996 (tb_off_adj - tb_off) / freq);
998 /* Set new offset to all CPUs */
1000 PowerPCCPU *pcpu = POWERPC_CPU(cpu);
1001 pcpu->env.tb_env->tb_offset = tb_off_adj;
1002 kvmppc_set_reg_tb_offset(pcpu, pcpu->env.tb_env->tb_offset);
1006 void cpu_ppc_clock_vm_state_change(void *opaque, bool running,
1009 PPCTimebase *tb = opaque;
1019 * When migrating a running guest, read the clock just
1020 * before migration, so that the guest clock counts
1021 * during the events between:
1027 * This reduces clock difference on migration from 5s
1028 * to 0.1s (when max_downtime == 5s), because sending the
1029 * final pages of memory (which happens between vm_stop()
1030 * and pre_save()) takes max_downtime.
1032 static int timebase_pre_save(void *opaque)
1034 PPCTimebase *tb = opaque;
1036 /* guest_timebase won't be overridden in case of paused guest or savevm */
1037 if (!tb->runstate_paused) {
1044 const VMStateDescription vmstate_ppc_timebase = {
1047 .minimum_version_id = 1,
1048 .minimum_version_id_old = 1,
1049 .pre_save = timebase_pre_save,
1050 .fields = (VMStateField []) {
1051 VMSTATE_UINT64(guest_timebase, PPCTimebase),
1052 VMSTATE_INT64(time_of_the_day_ns, PPCTimebase),
1053 VMSTATE_END_OF_LIST()
1057 /* Set up (once) timebase frequency (in Hz) */
1058 clk_setup_cb cpu_ppc_tb_init (CPUPPCState *env, uint32_t freq)
1060 PowerPCCPU *cpu = env_archcpu(env);
1063 tb_env = g_malloc0(sizeof(ppc_tb_t));
1064 env->tb_env = tb_env;
1065 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1066 if (is_book3s_arch2x(env)) {
1067 /* All Book3S 64bit CPUs implement level based DEC logic */
1068 tb_env->flags |= PPC_DECR_UNDERFLOW_LEVEL;
1070 /* Create new timer */
1071 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_decr_cb, cpu);
1072 if (env->has_hv_mode) {
1073 tb_env->hdecr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_ppc_hdecr_cb,
1076 tb_env->hdecr_timer = NULL;
1078 cpu_ppc_set_tb_clk(env, freq);
1080 return &cpu_ppc_set_tb_clk;
1083 /* Specific helpers for POWER & PowerPC 601 RTC */
1084 void cpu_ppc601_store_rtcu (CPUPPCState *env, uint32_t value)
1086 _cpu_ppc_store_tbu(env, value);
1089 uint32_t cpu_ppc601_load_rtcu (CPUPPCState *env)
1091 return _cpu_ppc_load_tbu(env);
1094 void cpu_ppc601_store_rtcl (CPUPPCState *env, uint32_t value)
1096 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
1099 uint32_t cpu_ppc601_load_rtcl (CPUPPCState *env)
1101 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
1104 /*****************************************************************************/
1105 /* PowerPC 40x timers */
1107 /* PIT, FIT & WDT */
1108 typedef struct ppc40x_timer_t ppc40x_timer_t;
1109 struct ppc40x_timer_t {
1110 uint64_t pit_reload; /* PIT auto-reload value */
1111 uint64_t fit_next; /* Tick for next FIT interrupt */
1112 QEMUTimer *fit_timer;
1113 uint64_t wdt_next; /* Tick for next WDT interrupt */
1114 QEMUTimer *wdt_timer;
1116 /* 405 have the PIT, 440 have a DECR. */
1117 unsigned int decr_excp;
1120 /* Fixed interval timer */
1121 static void cpu_4xx_fit_cb (void *opaque)
1126 ppc40x_timer_t *ppc40x_timer;
1130 cpu = env_archcpu(env);
1131 tb_env = env->tb_env;
1132 ppc40x_timer = tb_env->opaque;
1133 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1134 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
1148 /* Cannot occur, but makes gcc happy */
1151 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->tb_freq);
1154 timer_mod(ppc40x_timer->fit_timer, next);
1155 env->spr[SPR_40x_TSR] |= 1 << 26;
1156 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1) {
1157 ppc_set_irq(cpu, PPC_INTERRUPT_FIT, 1);
1159 trace_ppc4xx_fit((int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
1160 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1163 /* Programmable interval timer */
1164 static void start_stop_pit (CPUPPCState *env, ppc_tb_t *tb_env, int is_excp)
1166 ppc40x_timer_t *ppc40x_timer;
1169 ppc40x_timer = tb_env->opaque;
1170 if (ppc40x_timer->pit_reload <= 1 ||
1171 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
1172 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
1174 trace_ppc4xx_pit_stop();
1175 timer_del(tb_env->decr_timer);
1177 trace_ppc4xx_pit_start(ppc40x_timer->pit_reload);
1178 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1179 next = now + muldiv64(ppc40x_timer->pit_reload,
1180 NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1182 next += tb_env->decr_next - now;
1185 timer_mod(tb_env->decr_timer, next);
1186 tb_env->decr_next = next;
1190 static void cpu_4xx_pit_cb (void *opaque)
1195 ppc40x_timer_t *ppc40x_timer;
1198 cpu = env_archcpu(env);
1199 tb_env = env->tb_env;
1200 ppc40x_timer = tb_env->opaque;
1201 env->spr[SPR_40x_TSR] |= 1 << 27;
1202 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1) {
1203 ppc_set_irq(cpu, ppc40x_timer->decr_excp, 1);
1205 start_stop_pit(env, tb_env, 1);
1206 trace_ppc4xx_pit((int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
1207 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
1208 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
1209 ppc40x_timer->pit_reload);
1212 /* Watchdog timer */
1213 static void cpu_4xx_wdt_cb (void *opaque)
1218 ppc40x_timer_t *ppc40x_timer;
1222 cpu = env_archcpu(env);
1223 tb_env = env->tb_env;
1224 ppc40x_timer = tb_env->opaque;
1225 now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
1226 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
1240 /* Cannot occur, but makes gcc happy */
1243 next = now + muldiv64(next, NANOSECONDS_PER_SECOND, tb_env->decr_freq);
1246 trace_ppc4xx_wdt(env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
1247 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
1250 timer_mod(ppc40x_timer->wdt_timer, next);
1251 ppc40x_timer->wdt_next = next;
1252 env->spr[SPR_40x_TSR] |= 1U << 31;
1255 timer_mod(ppc40x_timer->wdt_timer, next);
1256 ppc40x_timer->wdt_next = next;
1257 env->spr[SPR_40x_TSR] |= 1 << 30;
1258 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1) {
1259 ppc_set_irq(cpu, PPC_INTERRUPT_WDT, 1);
1263 env->spr[SPR_40x_TSR] &= ~0x30000000;
1264 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
1265 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
1269 case 0x1: /* Core reset */
1270 ppc40x_core_reset(cpu);
1272 case 0x2: /* Chip reset */
1273 ppc40x_chip_reset(cpu);
1275 case 0x3: /* System reset */
1276 ppc40x_system_reset(cpu);
1282 void store_40x_pit (CPUPPCState *env, target_ulong val)
1285 ppc40x_timer_t *ppc40x_timer;
1287 tb_env = env->tb_env;
1288 ppc40x_timer = tb_env->opaque;
1289 trace_ppc40x_store_pit(val);
1290 ppc40x_timer->pit_reload = val;
1291 start_stop_pit(env, tb_env, 0);
1294 target_ulong load_40x_pit (CPUPPCState *env)
1296 return cpu_ppc_load_decr(env);
1299 static void ppc_40x_set_tb_clk (void *opaque, uint32_t freq)
1301 CPUPPCState *env = opaque;
1302 ppc_tb_t *tb_env = env->tb_env;
1304 trace_ppc40x_set_tb_clk(freq);
1305 tb_env->tb_freq = freq;
1306 tb_env->decr_freq = freq;
1307 /* XXX: we should also update all timers */
1310 clk_setup_cb ppc_40x_timers_init (CPUPPCState *env, uint32_t freq,
1311 unsigned int decr_excp)
1314 ppc40x_timer_t *ppc40x_timer;
1316 tb_env = g_malloc0(sizeof(ppc_tb_t));
1317 env->tb_env = tb_env;
1318 tb_env->flags = PPC_DECR_UNDERFLOW_TRIGGERED;
1319 ppc40x_timer = g_malloc0(sizeof(ppc40x_timer_t));
1320 tb_env->tb_freq = freq;
1321 tb_env->decr_freq = freq;
1322 tb_env->opaque = ppc40x_timer;
1323 trace_ppc40x_timers_init(freq);
1324 if (ppc40x_timer != NULL) {
1325 /* We use decr timer for PIT */
1326 tb_env->decr_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_pit_cb, env);
1327 ppc40x_timer->fit_timer =
1328 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_fit_cb, env);
1329 ppc40x_timer->wdt_timer =
1330 timer_new_ns(QEMU_CLOCK_VIRTUAL, &cpu_4xx_wdt_cb, env);
1331 ppc40x_timer->decr_excp = decr_excp;
1334 return &ppc_40x_set_tb_clk;
1337 /*****************************************************************************/
1338 /* Embedded PowerPC Device Control Registers */
1339 typedef struct ppc_dcrn_t ppc_dcrn_t;
1341 dcr_read_cb dcr_read;
1342 dcr_write_cb dcr_write;
1346 /* XXX: on 460, DCR addresses are 32 bits wide,
1347 * using DCRIPR to get the 22 upper bits of the DCR address
1349 #define DCRN_NB 1024
1351 ppc_dcrn_t dcrn[DCRN_NB];
1352 int (*read_error)(int dcrn);
1353 int (*write_error)(int dcrn);
1356 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, uint32_t *valp)
1360 if (dcrn < 0 || dcrn >= DCRN_NB)
1362 dcr = &dcr_env->dcrn[dcrn];
1363 if (dcr->dcr_read == NULL)
1365 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
1370 if (dcr_env->read_error != NULL)
1371 return (*dcr_env->read_error)(dcrn);
1376 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, uint32_t val)
1380 if (dcrn < 0 || dcrn >= DCRN_NB)
1382 dcr = &dcr_env->dcrn[dcrn];
1383 if (dcr->dcr_write == NULL)
1385 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
1390 if (dcr_env->write_error != NULL)
1391 return (*dcr_env->write_error)(dcrn);
1396 int ppc_dcr_register (CPUPPCState *env, int dcrn, void *opaque,
1397 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
1402 dcr_env = env->dcr_env;
1403 if (dcr_env == NULL)
1405 if (dcrn < 0 || dcrn >= DCRN_NB)
1407 dcr = &dcr_env->dcrn[dcrn];
1408 if (dcr->opaque != NULL ||
1409 dcr->dcr_read != NULL ||
1410 dcr->dcr_write != NULL)
1412 dcr->opaque = opaque;
1413 dcr->dcr_read = dcr_read;
1414 dcr->dcr_write = dcr_write;
1419 int ppc_dcr_init (CPUPPCState *env, int (*read_error)(int dcrn),
1420 int (*write_error)(int dcrn))
1424 dcr_env = g_malloc0(sizeof(ppc_dcr_t));
1425 dcr_env->read_error = read_error;
1426 dcr_env->write_error = write_error;
1427 env->dcr_env = dcr_env;
1432 /*****************************************************************************/
1434 int ppc_cpu_pir(PowerPCCPU *cpu)
1436 CPUPPCState *env = &cpu->env;
1437 return env->spr_cb[SPR_PIR].default_value;
1440 PowerPCCPU *ppc_get_vcpu_by_pir(int pir)
1445 PowerPCCPU *cpu = POWERPC_CPU(cs);
1447 if (ppc_cpu_pir(cpu) == pir) {
1455 void ppc_irq_reset(PowerPCCPU *cpu)
1457 CPUPPCState *env = &cpu->env;
1459 env->irq_input_state = 0;
1460 kvmppc_set_interrupt(cpu, PPC_INTERRUPT_EXT, 0);